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Abstract: The ‘red herring’ hypothesis (RHH) claims that apart from income and medical technology,
proximity to death rather than age constitutes the main determinant of healthcare expenditure (HCE).
This paper seeks to underpin the RHH with some theory to derive new predictions also for a rationed
setting, and to test them against published empirical evidence. One set comprising ten predictions
uses women’s longer life expectancy as an indicator of the difference in time to death in their favor.
Out of 28 testing opportunities drawn from the published evidence, in the case of no rationing seven
out of eleven result in full and two in partial confirmation; in the case of rationing, twelve out of
17 result in full and one in partial confirmation. The other set, containing 35 testing opportunities,
concerns the age profile of HCE. In the case of no rationing, seven out of twelve result in full and four
in partial confirmation; in the case of rationing, eleven out of 23 in full and nine in partial confirmation.
There are but ten contradictions in total. Overall, the new tests of the RHH can be said to receive a
good deal of empirical support, both from countries and settings with and without rationing.

Keywords: ‘red herring’ hypothesis; gender difference in healthcare expenditure; age profile of
healthcare expenditure; time to death; rationing

1. Introduction

According to conventional wisdom, age and sex are the crucial determinants of a
person’s healthcare expenditure (HCE); accordingly, the future aging of population is
predicted to cause a continuing surge in HCE. This view was challenged by [1] who
arguably were the first to be able to distinguish three concepts of time, viz. (i) historical
time reflecting medical technology, (ii) calendar age, and (iii) time to death. This was
possible thanks to a panel dataset which recorded also the insured’s time of death. Since,
in a regression, concepts (i) and (iii) proved significant but not concept (ii), the authors
concluded that the focus on age and aging was a ‘red herring’, detracting attention from new
medical technology as the driver of HCE. This ‘red herring’ hypothesis (RHH henceforth)
has been subject to a debate that is not resolved to this day. It states that (apart from income
and medical technology) proximity to death rather than age is the main driver of healthcare
expenditure (HCE). There are several variants of the RHH hypothesis. While [2] distinguish
no fewer than four versions, the one adopted here is their no. 3, “In a regression equation
for individual HCE, the age variable(s) become(s) weak or zero, once time-to-death (TTD)
is included”). Of course it is true that with each year, all individuals are closer to death
ceteris paribus, the process of population aging does not imply increasing proximity to death.
To the contrary, in the future persons aged 80 (say) may well be farther away from death
and hence the costly final years of life than at present—if the RHH is true. Given constant
medical technology, future cohorts may even cause less HCE on a lifetime basis because
the years with high HCE account for a lower share of their total lifespan.

Interestingly, a theoretical justification of the RHH seems to be lacking. Figure 1 below
is designed to fill this gap in a simple way. The solid rectangular graph reflects the desire
to be 100 percent healthy until the time has come to drop dead (indicated by AD1), an ideal
shared by most western (or westernized) cultures [3,4]. The actual age profile follows the
dashed line with age at death indicated by AD2. For the two profiles shown, second-degree
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stochastic dominance (SDSD) predicts that people prefer the ideal profile to the actual one in
spite of later death since the area FGH exceeds the area HAD1AD2 (When Figure 1 is turned
around to make the Health axis the horizontal one, it becomes evident that the two health
profiles can be interpreted as cumulative distribution functions, indicating the probability
mass of “Health” up to a given age. This justifies application of the SDSD criterion). This
implies that people are willing to make effort to return to the ideal rectangular age profile,
importantly in the guise of HCE. However, with increasing closeness to death, the greater
becomes the difference between actual and desired health status, triggering an increasing
amount of HCE. Note that this argument holds regardless of age; to see this, consider a
(likely) future where age at death increases to AD3, along with an extension of the ideal
age profile of health. Once again, HCE (arrows originating from the line FAD3 not shown)
increases with closeness to death.

Figure 1. Ideal and actual health profiles, and HCE.

Admittedly, this line of argument is somewhat simplistic because with increasing
age, the likelihood of being able to return to the ideal profile decreases, possibly caus-
ing individuals to “pull the plug” and to let HCE drop to zero (see [5,6] for a pertinent
theoretical development).

Yet if (approximately) true, the RHH has an important implication for policy. The
conventional wisdom is that the aging of a population will cause a cost explosion in health
care, most recently in the context of long-term care [7]. However, provided deviations
from the ideal health profile do not start earlier in life [for which there is no evidence, to
the contrary; see [8]), HCE (and likely long-term care expenditure) will continue to be
concentrated on a few years prior to death. This leaves the pace of technological change in
medicine as the crucial determinant of future HCE at the individual level.

In spite of the intuitive justification provided above, the RHH has not been fully
confirmed by empirical evidence. [9] even proclaimed “the death of the red herring”, based
on their finding that age continues to be a significant determinant of HCE even when time
to death is included in the regression equation. However, a review of the literature (see
Table A1 of Appendix B) reveals that the majority of the contradictory findings originate
from countries and settings subject to rationing (as is true also of [9]). In these cases,
observed HCE must not be interpreted as the outcome of patient demand only; rather,
it reflects the influence of physicians as rationing agents, resulting in a demand- and
supply-side interaction to be modeled in Section 2.1 below.
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Section 2.2 of this paper groups countries and settings according to whether they are
characterized by rationing of health care or its absence, respectively. This is important
for the development of two sets of new predictions derived from the RHH. The first set,
presented and tested in Section 3.1, uses women’s higher remaining life expectancy (RLE)
as an indicator of time to death. In OECD countries, females have a longer RLE than males
both at birth and at age 65, suggesting that this difference holds across all ages [10]. Causes
of this difference include biological factors favoring women (hormones, metabolism), social
factors (work stress, networks), and behavioral factors (risk taking, alcohol and substance
abuse) [11].

In the present context, women’s longer RLE as a determinant of a difference in HCE
needs to be qualified by their higher willingness to pay (WTP) for health care, which is an
important driver of HCE in the absence of rationing as soon as patients have to pay for
medical care out of pocket. There is evidence suggesting that women have higher WTP
than men even when controlling for income. [12] obtained a higher estimated WTP for
the prevention of influenza among female compared to male employees if beneficiaries
were other employees in the vaccinated subgroup (with the difference lacking statistical
significance in the non-vaccinated one) and if beneficiaries are other adult household
members in the non-vaccinated subgroup. While gender-specific estimates of WTP for the
same type of medical care are rare, [13] do find it to be significantly higher for Japanese
women in the case of myocardial infarction (but only insignificantly so in the case of the
common cold and retinal detachment). Dental care also qualifies because it is of interest to
both sexes; here, [14] estimate a higher WTP of women for implants, which is confirmed
by [15] in the case of extractions, fillings, and cleaning. From surveys, it is known that
women have a stronger concern for their health than men [16]. Women’s longer RLE
therefore must be combined with their higher WTP in an analysis of the gender difference
in HCE.

The second set of predictions (presented and tested in Section 3.2) concerns the age
gradient of HCE, which turns out also to depend on the presence (absence, respectively)
of rationing. In principle, the age gradient could also be affected by a change of WTP as a
function of both age and RLE. Indeed, there is some evidence suggesting that WTP falls
with age [17]. However, the authors fail to hold RLE constant, a crucial omission in view of
the RHH. In contradistinction, in a recent experiment of the discrete-choice type designed
to measure both private and social WTP for an end-of-life medical intervention, age does
not prove to be a significant predictor [18].

Section 4 offers concluding remarks along with an overview of the outcomes of
empirical tests and of the limitations of this study.

2. Materials and Methods
2.1. Absence and Presence of Rationing in Health Care

The ‘red herring’ hypothesis (RHH) originally was developed without taking a possi-
ble effect of rationing into account, which is also true of Figure 1. In the following, the RHH
is assumed to be true; rather than trying to derive the age profile of HCE from dynamic
optimization as notably in [19]. There, the optimal age profile of HCE can be derived only
by a simulation involving parameters that are not reported in the published literature
designed to test the RHH (see Tables 1 and 2). However, the remit of this paper is to pit the
RHH against actual empirical evidence.

The starting point is a specification of HCE reflecting the RHH. If HCE is governed by
the patient (denoted by xP), the hypothesis can be approximated by

xP = (a− bT)2,
with a > 0, 0 < b < a/T for all T, ∂xP/∂T = −2b(a− bT)< 0,
∂2xP/∂T2 = 2b2 > 0, ∂xP/∂a = 2(a− bT) > 0,
and ∂2xP/∂T∂a = −2ba < 0,

(1)



Healthcare 2022, 10, 211 4 of 27

with T > 0: time to death (RLE, respectively). Note that HCE increases with closeness to
death ( T → 0) regardless of age, in keeping with the RHH as defined in Section 1. Due
to ∂2xP/∂T2 > 0, the fall in HCE becomes less marked with increasing distance from
death; conversely, HCE increases progressively with proximity of death, as found, e.g.,
by [1]. Note that this formulation cannot accommodate the observation that sometimes
HCE drops in the last year of life. However, with only a couple of exceptions among the
studies collected in Table A1 of Appendix B, this is the case when TTD is not controlled for,
while a cubic equation would greatly add to the complexity of the analysis in Appendix A.
Also, prices and income are neglected since the evidence cited in Sections 3.1 and 3.2 relates
to individuals with a high degree of health insurance coverage.

As argued in the Introduction, in rationed settings observed HCE is the outcome of
demand-side and supply-side influences because physicians do not simply implement the
demands of their patients. Yet observed HCE given rationing does not represent the “short
side” of the market (in view of comprehensive insurance coverage, price has (almost) no
influence) but is the resultant of physicians exerting rationing effort and patients exerting
effort to obtain care as desired. A simple structural model is designed to reflect this
interaction. On the patient side, the generic utility function.

uP = uP{xP(eP; T
)}
− eP

with ∂uP

∂xP > 0, ∂2uP

∂xP2 < 0, ∂xP

∂eP > 0 and ∂2xP

∂eP2 < 0
(2)

depends on the amount of medical services xP which in turn increases with patient effort eP

(in utility terms) aimed at obtaining the desired amount of care. Of course, this is not to deny
that ultimately patients value health. However, for the present purpose, analyzing derived
utility as a function of medical services is sufficient. Moreover, the amount of medical
services (and utilization of healthcare resources more generally) is not distinguished from
HCE for simplicity because countries with their different levels of fees and prices are not
directly compared here. The first-order optimality condition reads,

∂uP

∂xP
∂xP

∂eP − 1 = 0; (3)

the interplay of its two components is assumed to give rise to Equation (1). For instance,
∂uP/∂xP and ∂xP/∂eP may both decrease with T.

In the case of rationing, the physician (denoted by superscript R) is hypothesized to
have utility (with eR symbolizing rationing effort and A, patient age),

uR = uR{xR(eR; T, A
)}
− eR if ∂uR

∂xR > 0,

with ∂2uR

∂xR2 < 0, ∂xR

∂eR < 0, ∂2xR

∂eR2 > 0;
(4)

uR = uR{xR(eR; T, A
)}

+ eR if ∂uR

∂xR < 0,

with ∂2uR

∂xR2 < 0, ∂xR

∂eR < 0, ∂2xR

∂eR2 > 0.
(5)

In a rationed setting, physicians may still prefer to provide more care to patients to
avoid a bad conscience [20]. In that event ∂uR/∂xR > 0, with xR symbolizing the resulting
HCE, and their rationing effort amounts to a deduction of their utility as in Equation (4).
However, some of them may derive utility from satisfying the demands of authorities if
they are compensated for their effort, again in utility terms. In this event Equation (5)
applies with ∂uR/∂xR < 0 and ∂2uR/∂xR2 < 0. In both cases, more rationing effort gives
rise to less HCE, with decreasing marginal effectiveness.

The optimality conditions for an interior solution read,

∂uR

∂xR
∂xR

∂eR − 1 = 0; (6)
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∂uR

∂xR
∂xR

∂eR + 1 = 0. (7)

In Appendix A, the outcome of the interaction between the patient and the rationing
physician is modeled as a Nash equilibrium in terms of efforts eP and eR which also
determines HCE in equilibrium. However, these effort levels are unobservable. On the
patient’s side, effort is driven by maximum willingness to pay a, the parameter b, and
time to death T if the RHH is true (see Equation (1) again). On the physicians’ side, the
determinants of their utility continue to be an open issue according to the reviews by [21,22].
As to rationing in particular, [23] note in their international review that most of it is implicit
rather than explicit, which also means that the criteria applied vary greatly. However, two
are mentioned with high frequency, (cost) effectiveness and equity. The first is satisfied to a
greater degree ceteris paribus if patients have more years to live beyond their current age.
Equity as well as the ‘fair inning’ argument of [24] call for linking the amount of care the
rationing physician is willing to provide to remaining life expectancy adjusted for age. A
tractable specification is T/A, which reflects age-based rationing, as proposed by [25] and
extensively discussed in [26]. Finally, [27] find evidence suggesting that physicians treat
patients with longer remaining life expectancy more aggressively than others. Therefore,
assume that the unobservable optimality conditions (6) and (7) give rise to the following
function in observable quantities,

xR = f + g · (T/A), with f > 0, g > 0. (8)

At a Nash equilibrium with positive HCE (see Figure A1 of Appendix A), one has in
view of Equations (1) and (8),

x
[
eP∗
]
= x

[
eR∗
]
, implying (a− bT)2 = f + g · (T/A), (9)

with eP∗ and eR∗ symbolizing optimal effort levels in response to that of the other player.
This simple formulation could be criticized on the grounds that physicians act as

Stackelberg leaders rather than being on a par with their patients. However, a Stackelberg
solution would require explicit modeling of physician behavior (to derive iso-utility curves).
In view of the uncertainty surrounding medical objectives cited above, this approach would
rest on shaky theoretical foundations. Therefore, the symmetric Nash equilibrium derived
in Appendix A is retained.

2.2. Categorization of the Evidence to Be Discussed According to the Presence and Absence
of Rationing

This section is devoted to the sources of empirical evidence regarding the ‘red her-
ring’ hypothesis to be discussed in Sections 3.1 and 3.2. While they originally comprised
almost 30 publications, those assembled in Table A1 of Appendix B had to satisfy the
following requirements:

• The publication relates to the ‘red herring’ hypothesis in one way or another yet need
not explicitly be designed to test it;

• The evidence presented is sufficiently detailed to permit a test of at least two predic-
tions derived either from Appendix D (gender difference) or Appendix E (age profile
of HCE);

• The author of this paper is/was not involved in the research.

Countries and settings are categorized according to whether or not their healthcare
sector is subject to rationing. Admittedly, this categorization reflects the subjective judgment
of the authors cited for testimony in Table A1 at least to some extent. Out of the 15
publications retained, 12 (=80 percent) support the RHH according to the authors’ judgment,
with six (Nos. 2, 6, 8, 9, 12, and 14) coming from a country or setting with at least some
rationing. Conversely, two of the three studies that do not support the RHH relate to
countries (or sets of countries) with at least some rationing. Therefore, while the RHH
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initiated from a country without rationing (Switzerland), it may apply more generally
provided physicians’ rationing effort is accounted for.

Conclusion 1. Out of the many studies revolving around the ‘red herring’ hypothesis
published since its launch in 1999, 15 permit testing the hypothesis in at least two ways
with regard to women’s longer remaining life expectancy or the age profile of healthcare
expenditure. A clear majority comprising countries and settings both without and with
rationing finds supporting evidence.

3. Results
3.1. The Effect of Women’s Longer Remaining Life Expectancy on HCE with and without
Rationing (W-Predictions)
3.1.1. Statement of W-Predictions

Throughout this section, women are characterized by their higher RLE and their
higher WTP for healthcare services compared to men (denoted by dT > 0 and da > 0,
respectively in Equation (1); a possible difference in b is neglected for simplicity). Note that
although the gender differences in T and a are more than marginal, dT and da rather than
∆T and ∆a are used to keep notation simple. In Appendix D, the predictions concerning the
induced gender difference in HCE are derived from the models of Section 2.1; they appear
in Table 1 below.

As to WNR1 (no rationing, Equation (A7)), women’s higher WTP dominates the effect
of their greater distance from death T, resulting in higher HCE in the general popula-
tion. The reason is that patients’ WTP is found to vary little with distance from death in
Appendix C (the parameter b in Equation (1) is clearly below one).

Prediction WR1 (rationing, Equation (A11)) reflects the interaction between the patient
and the rationing physician. Accordingly, all the parameters appearing in Equation (9) play
a role. In particular, with b < 1 in the general population, women’s higher WTP (da > 0)
again dominates their greater distance from death, causing their HCE to exceed that of men.

Turning to WNR2 (no rationing, Equation (A7)), one has to take into account that in
the year prior to death at the latest, b < 1, causing their higher RLE to lose influence and
leading to the prediction that their HCE is higher than men’s, with the difference depending
positively on current HCE which reflects their WTP. The same prediction holds according
to WR2 (rationing, Equation (A11)): Here, the difference depends negatively on patient age
due to the physician’s rationing influence.

According to WNR3 (no rationing, Equation (A8)), a decreasing RLE (increasing
closeness to death, respectively) has a weaker increasing effect on women’s HCE than
men’s in the general population. A change in RLE (with the difference in favor of women
held constant) affects the two genders in the same way by assumption. Since b < 1 (see
Appendix C), its impact is small, hence a comparatively weak influence of the proximity
of death on women’s HCE resulting in a lower value compared to men. This is also the
prediction of WR3 (rationing, Equation (A12)), although the reason is different. Here,
a change in RLE greatly affects the amount of care the physician is willing to provide,
especially to women with their higher RLE (see T2 in Equation (A12) of Appendix D).
This means that their HCE increases more slowly than men’s with proximity to death;
yet the difference is small because the physician takes into account patient age (which is
usually high).

As to WNR4 (no rationing, Equation (A8)), the parameter b exceeds one until shortly
before death (see Appendix C), resulting in a stronger effect on women’s HCE compared to
men’s with an increase in their RLE. Therefore, their HCE increases at a lower (constant)
rate with closeness to death (recall the negative value of Equation (A7)). The prediction
WR4 (rationing, Equation (A13)), is the same, but again for a different reason: Now the
parameters in T appearing in Equation (A12) go to zero, causing its originally strong
influence on the gender difference in HCE to be reduced.

Finally, WNR5 (no rationing, Equation (A9)) relates the development of HCE over
time, which is assumed to be driven by an increase in maximum WTP due to new medical
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technology and resulting in an increase in RLE for both sexes (da > 0 and dT > 0, with
the initial differences in favor of women again held constant). Since these changes are
assumed to affect both genders in the same way while physicians do not intervene, the
predicted HCE difference in favor of women is unaffected regardless of closeness to death.
According to WR5 (rationing, Equation (A14)), however, the physician is willing to consent
to more HCE in response to higher RLE and hence effectiveness of medical care regardless
of gender, which leads to a convergence of women’s and men’s HCE over time (especially
at very high age, again because the physician takes patient age into account).

A comparison between the two columns of Table 1 below reveals that the presence
(absence, respectively) of rationing does make a clear difference in two out of five instances.
Whereas WNR2 (no rationing) predicts that women close to death exhibit higher HCE than
men in the same situation, WR2 (rationing) predicts it to be lower than men’s. Regarding
the development of HCE over time, WNR5 predicts a constant difference in favor of women,
while according to WR5, any difference tends to vanish, with full convergence at very high
age. In the remaining three cases, predictions differ in detail only, making testing difficult.

Table 1. Predictions and evidence regarding women’s HCE compared to men’s under the ‘red herring’
hypothesis (RHH).

No Rationing Rationing

Prediction; Source 1 Confirmed? 2 Prediction; Source 1 Confirmed ? 2

WNR1: In the general population,
women exhibit higher HCE than men,

with the difference depending
positively on current HCE;

Equation (A7)

Hashimoto et al.
(2020) [28]: ?

Karlsson et al. (2016) [29]: y
Moorin et al. (2012) [30]: y

WR1: In the general population,
women exhibit higher HCE than men,

with the difference depending
negatively on patient age;

Equation (A11)

Costa-Font and Vilaplan-Rieto (2020)
[31]: y

Gregersen (2013) [32]: p
Howdon and Rice

(2018) [33]: ?
Lorenz et al. (2020) [34]: y

Seshamani and Gray (2004) [35]: ?
Wei and Zhou (2019) [36]: n

WNR2: In their last year before death
at the latest, women exhibit higher
HCE than men, with the difference

depending positively on current HCE;
Equation (A7)

Hashimoto et al.
(2020) [28]: y

Karlsson et al. (2016) [29]: y
Moorin et al. (2012) [30]: n

WR2: In their last year before death at
the latest, women exhibit lower HCE

than men, with the difference
depending negatively on patient age;

Equation (A11)

Costa-Font and Vilaplan-Rieto (2020)
[31]: n

Gregersen (2013) [32]: y
Howdon and Rice

(2018) [33]: y
Lorenz et al. (2020) [34]: y

Seshamani and Gray (2004) [35]: n
Wei and Zhou (2019) [36]: ?

WNR3: In the general population,
women’s HCE increases at a lower

constant rate than men’s with
closeness to death;

Equation (A8)

Hashimoto et al.
(2020) [28]: ?

Karlsson et al. (2016) [29]: ?
Moorin et al. (2012) [30]: y

WR3: In the general population,
women’s HCE increases at a lower
rate than men’s with closeness to

death, with the difference depending
negatively on patient age;

Equation (A12)

Costa-Font and Vilaplan-Rieto (2020)
[31]: n

Gregersen (2013) [32]: ?
Howdon and Rice

(2018) [33]: ?
Lorenz et al. (2020) [34]: n

Seshamani and Gray (2004) [35]: ?
Wei and Zhou (2019) [36]: ?

WNR4: In their last year before death
at the latest, women’s HCE increases
at a lower constant rate than men’s

with closeness to death; Equation (A8)

Hashimoto et al.
(2020) [28]: p

Karlsson et al. (2016) [29]: p
Moorin et al. (2012) [30]: y

WR4: In their last year before death at
the latest, women’s HCE increases at a

rate slightly lower than men’s with
closeness to death, with the difference
depending negatively on patient age;

Equation (A13)

Costa-Font and Vilaplan-Rieto (2020)
[31]: y

Gregersen (2013) [32]: ?
Howdon and Rice

(2018) [33]: y
Lorenz et al. (2020) [34]: y

Seshamani and Gray (2004) [35]: y
Wei and Zhou (2019) [36]: ?

WNR5: Any difference between
women’s and men’s HCE remains
constant over time; Equation (A9)

Hashimoto et al.
(2020) [28]: ?

Karlsson et al. (2016) [29]: ?
Moorin et al. (2012) [30]: y

WR5: Women’s HCE approaches that
of men over time, converging at very

high age; Equation (A14)

Costa-Font and Vilaplan-Rieto (2020)
[31]: ?

Gregersen (2013) [32]: y
Howdon and Rice

(2018) [33]: ?
Lorenz et al. (2020) [34]: y

Seshamani and Gray (2004) [35]: y
Wei and Zhou (2019) [36]: ?

Totals y: 7; p: 2; n: 2; ?: 5 y: 12; p: 1; n: 4; ?: 11

1 The equation number refers to the pertinent Appendix; e.g., (A16) to Appendix D. 2 y: yes; p: partial; n: no; ?: no
test possible.
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3.1.2. The W-Evidence

The papers to be discussed are listed in Table A1 of Appendix B. They are evaluated
with respect to the effect of women’s longer remaining life expectancy RLE (time to death
TTD, respectively) on their HCE compared to men’s.

Costa-Font and Vilaplan-Rieto (2020) [31], mostly rationing
The authors use the Survey for Health, Ageing and Retirement in Europe (SHARE)

dataset covering the years 2004 to 2017 (waves no. 1 to 7, with no. 3 excepted) and 17 coun-
tries. According to their Table 1, the majority of individuals sampled (and observations) are
from countries that impose rationing (even though the United Kingdom is not included).
Their sample includes some 54,500 individuals aged 50+ of which 2760 died. In order to
control for the endogeneity of TTD with respect to healthcare services, the authors use
parents’ ages of death as instruments, estimating the values of living parents through
multiple imputation. Rather than HCE, they analyze (a) the likelihood of and (b) the length
of stays in hospital, outpatient visits, stays in nursing home, personal care, and prescrip-
tion drugs consumed. They find support of the RHH throughout. However, somewhat
contrary to the paper’s concluding sentence, “The effect of ageing on health care use seems
to be simultaneously affected by several red herrings”, the estimates with endogenous
TTD presented in the author’s Table 3 reveal that components (b) have similar coefficients
pertaining to Age, Age2, and TTD. Since outpatient visits are the component of HCE where
patient demand most likely interacts with rationing effort on the part of the physician, the
discussion focuses on this variable.

In their Figure E.2 (panel d), the authors display the age gradients of outpatient visits
with TTD > 36 as well as TTD = 12 months. If one is willing to count the age group 50–64 as
being still part of the general population, WR1 is confirmed as women exhibit more visits
than men. However, WR2 is contradicted because the difference in favor of women obtains
also when TTD = 12 months. Additionally, the rate of change is not higher among women
than men, contradicting WR3. Yet women’s visits do display a (weak) tendency towards
convergence with men’s when TTD decreases, vindicating WR4. Finally, WR5 cannot be
tested because the SHARE waves are aggregated.

Gregersen (2014) [32], Norway, some rationing
This study uses hospital data, covering all admissions 1998–2009 recorded by the (very

comprehensive) Norwegian Patient Registry. While the author’s regression analysis reveals
a spike in HCE during the last year of patients’ lives, this spike decreases with age. Still,
the author concludes that his findings support the RHH (see Table A1).

As to prediction WR1, the female/male HCE ratio can be read off from the author’s
Figure 1. At age 40 (beyond normal childbearing age), it is 1.33 in 1998–2003 and increases
up to age 50. By age 70, however, it is 0.52 (a similar reversal holds in the period 2004–2009).
This constitutes but partial confirmation. Beyond age 80, females consistently exhibit lower
HCE than males, confirming prediction WR2.

Predictions WR3 and WR4 cannot be tested because the author does not vary TTD.
As to prediction WR5, women’s life expectancy in Norway increased from 81 years

in 1998 to 83 years in 2009 [37], arguably also reflecting access to new medical technology.
In the authors’ Figure 1, the female/male HCE ratio increases from 1.50 at age 40 (after
childbearing age) in 1998–2003 to 1.57 in 2004–2009; at age 70, it increases from 0.75 and 0.83.
Finally, this ratio was 1.00 in 2004–2009, indicating convergence between gender-specific
HCE and hence full vindication of RW5.

Hashimoto et al. (2010) [28], Japan, no rationing
The authors use data on beneficiaries of National Health Insurance aged 65+ in the

southern Kyushui district, some 51,000 of whom died between 2001 and 2003 while 365,000
were alive in 2004 so had TTD≥ 12 months. Recorded HCE comprises outlays on outpatient,
inpatient, home care, and institutional care. The authors find support of the RHH.

The authors’ Table 2 exhibits the four components of HCE for males and females in
the age groups 65–74, 75–84, and 85+, (too high for testing WNR1) distinguishing between
survivors and decedents. Prediction WNR2 applies to this latter category; it is confirmed,
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being supported in 10 out of 12 comparisons. Only in the age group 75–84 is women’s
homecare expense higher than men’s and in the age group 85+, for institutional care.
Prediction WNR4 is partially confirmed, being vindicated in eight out of 12 comparisons
distinguishing between survivors and decedents (who evidently were closer to death).
With increasing closeness to death, women indeed exhibit a more moderate increase in
HCE than men; the four exceptions again relate to homecare and institutional care.

Finally, WNR5 cannot be tested because the three years of observation are lumped
together.

Howdon and Rice (2018) [33], England, rationing
The authors’ data set covers the financial years 2005/06 to 2011/12; it is split in two

samples comprising some 40,000 individuals aged 50+ each. In the first sample, individuals
died 2011/12; in the second, they died between 2005/06 and 2010/11. The authors conclude
that the RHH is confirmed in that TTD rather than age drives HCE but emphasize that
TDD itself is a proxy for morbidity on which they have detailed information. Indeed, in
their regressions the coefficient pertaining to log(TTD) typically drops by two-thirds when
morbidities are included.

With observations starting at age 50, predictions WR1 and WR3 cannot be tested. As to
WR2, a comparison of the authors’ Figures 3 and 4 reveals that men’s HCE in the last four
quarters before death indeed exceeds that of women (although confidence intervals are
not given), confirming the prediction. Additionally, the increase in women’s HCE between
quarters no. 16 and 4 before death is indeed slower than men’s, as predicted by WR4.

Prediction WR5 cannot be tested since the authors do not report the comparisons
performed above for their two samples.

Karlsson et al. (2016) [29], German private health insurer, no rationing
In this work, some 600,000 persons were observed from 2005 to 2011; being privately

insured, they are not subject to rationing (Sections 3.4 and 3.5 of the authors’ text). They
find that annual HCE increases strongly between ages 50 and 80 and that with 5.6 percent,
a relatively low share of lifetime HCE occurs in the last year of life. Yet, noting that the
last three years of life account for almost 14 percent of lifetime HCE, they do not deem the
RHH to be rejected (see Table A1). The authors also note a high degree of persistence over
time in that the probability of being in the same quintile of the HCE distribution is at least
0.5 over six years.

Prediction WNR1 is confirmed because females consistently exhibit higher HCE than
men; moreover, the difference increases with higher HCE, with two exceptions in the 65+
age bracket (authors’ Table 5). Prediction WNR2 receives full support. According to the
authors’ Table 9, the HCE ratio in favor of women is 1.34 two years before death and 1.37
in the last year before death. Additionally, this increase in the ratio goes along with an
increase in current HCE, as predicted.

WNR3 cannot be tested because the authors do not exhibit the development of HCE
during the last six years of life according to gender in their Figure 11. As to WNR4, women’s
HCE increases by a mere 0.5 percent from two years to one year before death, compared to
3 percent of men’s. However, the constancy of these increases cannot be verified with just
two years, resulting in partial support. WNR5 cannot be tested either since the authors do
not report changes in HCE between 2005 and 2011.

Lorenz et al. (2020) [34], Germany, rationing
The authors on average have observations on about 320,000 individuals covered by

social health insurance over the period from 2001 to 2015, during which some 34,400 women
and 30,000 men died. Estimating third-order polynomials, they derive age-specific trends in
real expenditure, distinguishing between “ordinary” HCE and long-term care expenditure.
Since age continues to have a positive impact on HCE even when TTD is controlled for,
they conclude that their evidence contradicts the RHH.

However, WR1 is confirmed since in the authors’ Figure 2 women’s HCE exceeds
men’s between ages 15 and 50, i.e., well beyond childbearing age, with the difference
increasing at first but then decreasing with age, as predicted. As to WR2, it is confirmed as
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well because regardless of TTD (which is varied between one and four years in the authors’
Figure 3), women exhibit higher HCE than men across all ages.

However, WR3 is contradicted because from four years to one year before death,
women’s HCE increases by a factor of about 4.5 at age 40 (at earlier ages, confidence
intervals in the authors’ Figure 3 are very wide, causing values to overlap), men’s, by a
factor of about 3.4 only. At age 50, women’s HCE multiplier is as high as 5.0, and men’s
about 3.75 only. Therefore, women’s HCE increases faster than men’s—and the difference
widens rather than narrows with age. As to prediction WR4, it is confirmed. The HCE
multiplier from just two years to one year before death is only 1.54 at age 50 for women but
2.61 for men. At age 60, the two multipliers drop to 2.47 and 2.67, respectively, at age 70, to
2.29 and 2.48; at age 80, they are 2.0 and 2.48, respectively. Therefore, women’s HCE does
increase at a lower rate than men’s with closeness to death, with the difference between the
two rates largely decreasing with age, as predicted.

Prediction WR5 is confirmed by the authors’ Figure 5a, which displays growth rates
of real HCE in the last year of life. Whereas up to age 76 women’s HCE increases at rates
sometimes faster and sometimes slower than men’s, by the age of 85 its growth rate cannot
be distinguished from that of men, indicating the predicted convergence.

Moorin et al. (2012) [30], Western Australia, no rationing
In their attempt to test the RHH, the authors limit their database to the 60,498 indi-

viduals who died between 1990 and 2004. They subdivide this period of observation in
three eras: 1990–1994 with 22,143 decedents (era 1), 1995–1999 with 19,756 (era 2), and
2000–2004 with 18,599 decedents (era 3). In addition, they distinguish HCE on (a) primary
care, (b) specialist, and (c) diagnostic and therapeutic services. The authors are in broad
support of the RHH (see Table A1).

As to prediction WNR1, in category (a), women’s HCE exceeds that of men across all
ages in all three eras and in categories (b) and (c), in all three eras up to age 70. In the three
out of nine cases [three eras, categories (a), (b), and (c)] where HCE increases with age, the
difference in HCE increases as well; in the six cases where HCE decreases with age beyond
childbearing age, the difference in HCE decreases, too, establishing the predicted positive
correlation and providing clear support of WNR1. As to WNR2, it is contradicted in that in
seven out of nine cases displayed in the authors’ Figure 1, women at high age exhibit lower
(fitted) HCE than men.

Prediction WNR3 is confirmed in all nine instances; in era 1, e.g., the HCE ratio in
women’s favor was approximately 1.90 at age 40 but dropped to 1.42 at age 80, reflecting a
slower increase than among men with closeness to death at a roughly constant rate (see the
authors’ Figure 1 after enlargement).

As to WNR4, in their Figure 2 the authors plot HCE at 60 to 37, 36 to 25, 24 to 13, 12
to 3, and 2 to 0 months before death. In eight of nine cases, women’s HCE increase at a
lower rate than men’s, as predicted. With the exception of category (b), HCE increases
progressively with closeness to death in all three eras, as predicted by the RHH.

As to prediction WNR5, women in Australia arguably had access to improved medical
technology as in other industrial countries, and they saw their RLE increase, too. In
1960–1962, RLE was 16 years at age 65 and increased to 22 years by 2011–2013 [38]. Across
the three eras distinguished, the difference between women’s and men’s HCE displays an
almost perfect constancy, as predicted.

Seshamani and Gray (2004) [39], United Kingdom, rationing
Designed explicitly to test the RHH, this study uses hospital data covering some 91,000

admissions of patients aged 65 and higher from 1977 to 1999. It finds that HCE starts rising
as early as 15 years prior to death but increases tenfold during the last five years of life.
This boost exceeds the 30 percent increase between ages 65 and 85, leading the authors to
conclude that the RHH is vindicated (see Table A1).

The authors report HCE only after age 65, obviating a test of WR1. Their Table 4 shows
consistently higher HCE for females than males, contradicting WR2.
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Prediction WR3 cannot be tested either. As to WR4, the authors’ Table 4 exhibits
HCE ten years and one year prior to death, respectively, making a proximate test possible.
Among women, this difference is associated with an extra HCE of GBP 2967 at age 65 and
GBP 3061 at age 95, a minimal increase. Among men, the HCE difference is GBP 2292 at
age 65 but rises to GBP 2657 at age 95. Therefore, closeness to death is associated with a
lower increase in women’s HCE than men’s, with the difference decreasing past the age of
75, thus confirming R4.

Prediction WR5 can be tested as well. Women’s life expectancy increased from 75 years
in 1970–1972 to 79 years in 1990–1992 [40], suggesting that the National Health Service
of the United Kingdom granted citizens access to new medical technology as in other
countries. The authors’ Figure 7 distinguishes the years 1970, 1980, and 1990 and ages 90,
95, and 100. The female/male HCE ratio falls from 1.21 in 1970 to 0.94 in 1990 for women
aged 90, indicating convergence. At the very high age of 95, it falls from 1.39 in 1970 to 0.91
in 1990, confirming WR5 once again.

Wei and Zhou (2020) [36], China, rationing
Whereas in private correspondence the first author claims there is no rationing in

China, arguing that the (mandatory) benefit list of health insurance is comprehensive, the
paper explains the drop in hospitalizations and HCE after age 60 among the deathbound by
a “more conservative treatment . . . for the elderly”, likely reflecting age-based rationing.

The authors use the 2011 and 2013 waves of the China Health and Retirement Lon-
gitudinal Study (CHARLS) to determine TTD for the 401 individuals (out of some 17,500
aged 45+) who died between the two years. They find support for the RHH since Age as
well as Age2 lose statistical significance as soon as TTD1 to TTD3 (=1 if deceased in the first
(second, last year after 2011)) are included in the regression for lnHCE. While they do not
systematically distinguish between men and women, the male dummy in their estimates for
the whole sample and the subsample of 60+ olds permits to test two of the W-hypotheses.

In fact, in the author’s Table 2 (which refers to individuals aged 45+, roughly still
the general population), the male dummy points to HCE that is approximately 30 percent
lower for men than for women, clearly confirming WR1. As to WR2, their Table 3 refers
to individuals aged 60+ (analyzed in their Table 2) who can be said to be somewhat
close to death on average, Chinese life expectancy being 75 years in 2011 (https://data.
worldbank.org/indicator/SP.DYN.LE00. IN?locations = CN, accessed on 15 November
2021). However, estimated HCE once again points to a 30 percent lower value among men,
contradicting WR2.

Predictions WR3 throughWR5 cannot be tested either because the evidence is not
presented separately for women and men.

These findings (see Table 1 again) give rise to

Conclusion 2. In the 28 instances where the published results are sufficiently detailed to
permit testing with regard to the gender difference in HCE, in the case of no rationing
seven out of eleven are in full and one in partial support of the ‘red herring’ hypothesis. In
the case of rationing 12 out of 17 are in full and one in partial support. As to the two cases
where the presence (absence, respectively) of rationing makes a difference, both WR2 and
WNR2 are confirmed five out of nine times.

3.2. The Age Profile of HCE under the ‘Red Herring’ Hypothesis with and without
Rationing (A-Predictions)
3.2.1. Statement of A-Predictions

For simplicity, the difference in HCE induced by women’s longer RLE is neglected
in this section the better to focus on the effects of age and aging. However, in view of the
RHH an important distinction is whether or not these effects are stated with remaining
life expectancy RLE (time to death TTD, respectively) held constant. Whereas ANR1 (no
rationing, Equation (A15) of Appendix E)) predicts an increase in HCE with age because
death draws closer, it predicts constancy if TTD is controlled for, in accordance with the
RHH. Yet AR1a (rationing, Equation (A19)) predicts a decrease in HCE with age when TTD

https://data.worldbank.org/indicator/SP.DYN.LE00
https://data.worldbank.org/indicator/SP.DYN.LE00
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is not held constant as long as patients are of young to medium age. Physician influence
causes HCE to decrease with patient age ceteris paribus, an effect which dominates at young
to medium age because patients’ WTP is low when death is still far away.

According to AR1b (Equation (A19)), the relationship between patient age and HCE
turns positive at high age since the physician’s rationing effort is governed by the ratio of
RLE to age, a ratio which now is close to zero so loses its impact. The interaction between
the two players then boils down to one between the patient’s increasing WTP with closeness
to death and the physician’s basic willingness to provide medical care; this results in HCE
increasing with age.

Turning to the case where RLE is held constant, one has ANR2 (no rationing, Equation
(A16)) simply stating that HCE does not vary with age since patients respond to TTD
only. By way of contrast, AR2a (rationing, Equation (A21)) predicts that HCE falls with
patient age in the general population, at a rate which decreases with age due to age-
based rationing whose effect becomes ever more dominant. However, according to AR2b
(rationing, Equation (A22), the age profile of HCE becomes flat at very high age, once
again because the ratio of RLE to patient age approaches zero so loses its importance to
the physician.

Finally, a steepening of the age profile in HCE over time is predicted by ANR3 (no
rationing, Equation (A17)) in the general population. There, patients’ WTP does not
decrease strongly with the increase in RLE yet; therefore, the increase in WTP in response
to new medical technology dominates. Steepening over time is also predicted by AR3
(rationing, Equation (A22)), albeit at a rate that depends negatively on patient age due to
the physician’s influence. In the last year before death at the latest, when patients’ WTP
falls markedly with an increase in TTD, ANR4 (no rationing, Equation (A17)) predicts a
flattening of the age profile of HCE in response to this increase. This holds also for AR4
(Equation (A22), and for the same reason (b > 1) because the influence of the physician
becomes relatively stronger, although with lowered rationing effort due to increased TTD.

Once again, the presence (absence, respectively) of rationing matters. First of all, in
the absence of rationing there are but four predictions (ANR1 to ANR4), while a rationing
context gives rise to six (AR1a, AR1b, AR2a, AR2b, AR3, AR4) due to the importance of
age in rationing. Next, ANR1 predicts an increase in HCE with patient age if TTD is not
held constant but AR1a predicts a decrease at young to medium and patient age (which
turns into an increase at high age according to AR1b). The remaining predictions (ANR3
vs. AR3, ANR4 vs. AR4) differ in detail only.

3.2.2. The A-Evidence

Bjørner and Arnberg (2012) [41], Denmark, some rationing
This study is based on some 500,000 individuals per year who were observed between

2000 and 2009. According to the authors, it is in support of the RHH.
As to prediction AR1a, the components of HCE (hospital, psychiatry, medicine, GPs,

and specialists) all decrease with age between ages 0 and 14 as well as 30 and 42 when
TTD is not held constant up to age 85 and at a high rate between ages 15 and 32 (authors’
Figure 1), but at rates that do not consistently increase with current HCE. Therefore, support
of AR1a is but partial. AR1b is also confirmed in part only because the components HCE
increase progressively between ages 60 and 80—but decrease beyond age 86.

In the authors’ Figure 2, total HCE is related to values of TTD ranging in five steps
from one to nine and more years (the latter roughly reflecting the general population cited
in AR2a). However, the predicted decrease is observed between ages 30–34 and 40–44 only,
providing but partial support of AR2a. Prediction AR2b is also partially confirmed in that
beyond the age group 80–84 three out of the five age profiles become flat, while two are
even decreasing.
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Table 2. Predictions and evidence regarding the age profile of HCE under the ‘red herring’ hypothesis
(RHH) 1.

No Rationing Rationing

Prediction; Source 1 Confirmed? 2 Prediction; Source 1 Confirmed? 2

ANR1: If RLE is not held constant,
HCE increases with patient age at
a rate that depends positively on

current HCS; Equation (A15)

De Nardi et al. (2016) [42]: y
Hashimoto et al. (2010) [28]: y

Karlsson et al. (2016) [29]: y
Karlsson et al. (2020) [43]: y
Moorin et al. (2012) [30]: ?

AR1a: If RLE is not held constant
and at young to medium age,

HCE decreases with patient age;
Equation (A19)

Bjørner and Arnberg (2012) [41]: p
Costa-Font and Vilaplan-Rieto

(2020) [31]: ?
Geue et al. (2014) [44]: y
Gregersen (2014) [32]: n
Hazra et al. (2017) [45]: ?

Kolodziejczyk (2020) [46]: ?
Lorenz et al. (2020) [34]: p

– –
AR1b: If RLE is not held constant
and at high age, HCE increases

with patient age; Equation (A19)

Bjørner and Arnberg (2012) [41]: p
Costa-Font and Vilaplan-Rieto

(2020) [31]: y
Geue et al. (2014) [44]: n
Gregersen (2014) [32]: y

Hazra et al. (2017) [45]: y
Kolodziejczyk (2020) [46]: ?
Lorenz et al. (2020) [34]: y

ANR2: If RLE is held constant,
HCE does not vary with age;

Equation (A16)

De Nardi et al. (2016) [42]: ?
Hashimoto et al. (2010) [28]: p

Karlsson et al. (2016) [29]: ?
Karlsson et al. (2020): [43]: n
Moorin et al. (2012) [30]: p

AR2a: If RLE is held constant,
HCE in the general population

falls with patient age at a rate that
depends negatively on patient

age; Equation (A20)

Bjørner and Arnberg (2012) [41]: p
Costa-Font and Vilaplan-Rieto

(2020) [31]: ?
Geue et al. (2014) [44]: ?
Gregersen (2014) [32]: n
Hazra et al. (2017) [45]: ?

Kolodziejczyk (2020) [46]: n
Lorenz et al. (2020) [34]: y

– –
AR2b: If RLE is held constant and
at very high age, the age profile of
HCE becomes flat; Equation (A21)

Bjørner and Arnberg (2012) [41]: p
Costa-Font and Vilaplan-Rieto

(2020) [31]: y
Geue et al. (2014) [44]: y
Gregersen (2014) [32]: p

Hazra et al. (2017) [45]: y
Kolodziejczyk (2020) [46]: y
Lorenz et al. (2020) [34]: y

ANR3: In the general population,
the age profile of HCE becomes

steeper over time; Equation (A17)

De Nardi et al. (2016) [42]: y
Hashimoto et al. (2010) [28]: ?
Karlsson et al. (2016) [29]: y
Karlsson et al. (2020) [43]: ?
Moorin et al. (2012) [30]: p

AR3: In the general population,
the age profile of HCE becomes

steeper over time, with the rate of
increase depending negatively on

patient age; Equation (A22)

Bjørner and Arnberg (2012 [41]): p
Costa-Font and Vilaplan-Rieto

(2020) [31]: ?
Geue et al. (2014) [44]: ?
Gregersen (2014) [32]: p
Hazra et al. (2017) [45]: ?

Kolodziejczyk (2020) [46]: ?
Lorenz et al. (2020) [34]: p

ANR4: In the last year before
death at the latest, the age profile
of HCE becomes flatter over time;

Equation (A17)

De Nardi et al. (2016) [42]: ?
Hashimoto et al. (2010 [28]: ?
Karlsson et al. (2016) [29]: ?
Karlsson et al. (2020) [43]: ?
Moorin et al. (2012) [30]: p

AR4: In the last year before death
at the latest, the age profile of

HCE becomes flatter over time,
with the rate of change depending

negatively on patient age;
Equation (A22)

Bjørner and Arnberg (2012) [41]: ?
Costa-Font and Vilaplan-Rieto

(2020) [31]: ?
Geue et al. (2014) [44]: ?
Gregersen (2014) [32]: ?

Hazra et al. (2017) [45]: ?
Kolodziejczyk (2020) [46]: ?
Lorenz et al. (2020) [34]: y

Totals y: 7; p: 4; n: 1; ?: 7 y: 11; p: 9; n: 3; ?: 13

1 The equation number refers to the pertinent Appendix; e.g., (A22) to Appendix E. 2 y: yes; p: partial; n: no; ?: no
test possible.

As to prediction AR3, the evidence is somewhat indirect. In their Figure 6, the authors
compare the predicted contribution of aging to the long-term development of HCE in
different scenarios. Given healthy aging (which arguably reflects medical innovation in the
course of time), HCE rises at an increasing rate, reflecting a steepening of the age profile
of HCE since the authors hold all other influences constant. However, the rate of change
cannot be related to patient age; thus, support of AR3 is but partial.
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Prediction AR4 cannot be tested because it relates to the last year before death at the
latest, a period not singled out by the authors.

Costa-Font and Vilaplan-Rieto (2020) [31], mostly rationing
The database of this paper is described in Section 3.1.2, where the selection of the

number of outpatient visits for testing is justified.
Since observations start at age 50, the ratio of Age to TTD (T/A in Equation (A19) of

Appendix E) is below one; therefore, predictions AR1b and AR2b apply. As to AR1b, it is
confirmed by the estimate M1 in the authors’ Table 3 which exhibits a positive coefficient
pertaining to Age while that of Age2 is insignificant. In the estimate M5 with TTD held
constant, Age and Age2 lose their significance (contrary to TTD), implying the flat age profile
predicted by AR2b.

A possible steepening of the age gradient of HCE over time (AR3, AR4) cannot be
tested because the waves of SHARE are aggregated.

De Nardi et al. (2016) [42], US Medicare, no rationing
The authors measure HCE of 67,000 US Medicare enrollees over the years 1996 to 2010,

all at least 65 years old. They find support of the RHH (see Table A1 of Appendix B) since
HCE increases markedly during the last 12 months of life.

The authors’ Figure 3 supports prediction ANR1 because HCE increases with age over
an age span of 35 years, with the exception of just four years. Predominantly, the rate of
growth goes up with age (and hence HCE), as predicted. However, ANR2 cannot be tested
because the authors do not report the age profile of HCE with TTD held constant.

Prediction ANR3 is confirmed. The authors report the change over three years in the
cumulative distribution functions (cdfs) defined over total HCE, HCE excluding nursing
homes, and hospitals (in a US context, medical technology is likely to have advanced even
over this short time period). In the authors’ Figure 2, the cdfs shift upward, with the
amount of shift depending positively on HCE (except for extremely high values of HCE).
Because such high values are typical for patient shortly before death, this absence of a shift
over time confirms prediction ANR4.

Geue et al. (2014) [44], Scotland, rationing
The authors dispose of a panel covering some 141,000 individuals 45 years and older

from 1991 to 2001. They perform survivor analysis using a Gompertz distribution in order to
be able to estimate TTD values for survivors, without systematically distinguishing between
females and males. While finding support of the RHH, they emphasize the (negative)
interaction between TTD and age which becomes more marked with increasing age in the
regression designed to explain the occurrence of positive HCE. However, these interaction
terms are nonsignificant in the regression for cost ratios (the benchmark cost = 1.00 being at
age = 45–64 and TTD = 20 quarters) with very few exceptions.

Predictions AR1a and AR2a (which refer to young to medium age) cannot be tested
because when the authors vary TTD as well as age (as in their Table 6), they start at
age 65–69. This does not apply to AR1b, which however fails to be confirmed because
a movement from the age group 75–79 years up to 90+ years combined with one from
19 ≥ TTD ≤ 15 to 14 ≥ TTD ≤ 1 is not associated with increasing cost ratios. As to AR2b,
it is vindicated since regardless of TTD, the age profile of HCE stays flat (the cost ratios do
not differ from 1.00 and are even lower than 1.00 in three cases).

Finally, the authors do not report the change in the age profile of HCE over time, so
predictions AR3 and AR4 cannot be tested either.

Gregersen (2014) [32], Norway, some rationing
The database of this study is described in Section 3.1.2 above (see also Table A1 of

Appendix B).
Prediction AR1a is contradicted because in the author’s Figure 1, fitted hospital HCE

increases among young adults. AR1b is confirmed in that HCE increases between ages 70
and 85 for both genders. As to AR2a, it is contradicted. In the author’s Figure 2, HCE in the
last year before death is shown as a function of age; between the ages 20–24 and 50 (women)
and 20–24 and 55–59 (men), it mostly increases rather than decreases. However, AR2b is
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confirmed by the author’s Table 3 which shows that the age profiles of HCE become flatter
beyond the 75–79 age bracket.

According to [47], life expectancy of Norwegian women increased from 81.3 years in
2000 to 83.1 years in 2010, suggesting that they benefitted from new medical technology,
boosting their willingness to pay (WTP). In the author’s Figure 1, there is a clear steepening
of the age profile of HCE for between 1998–2003 and 2004–2009 between ages 40 and 83
among women (60 and 87 for men, respectively), but with the shift increasing with age so
partially in line with prediction AR3.

Prediction AR4 cannot be tested because the shift in HCE over time is not displayed
with TTD controlled for.

Hashimoto et al. (2010) [28], Japan, no rationing
The database pertaining to this study is described in Section 3.1.2.
The authors’ Table 2 can once again be exploited for testing. According to prediction

ANR1, HCE increases with age at a rate that depends positively on current HCE if TTD
is not held constant. With age groups 65–74, 75–84, and 85+, two genders, and four
components of HCE, there are 16 testing possibilities among survivors. In 14 instances,
HCE increases with age; moreover, the amount of increase depends positively on the
amount of HCE in the next-lower age group, constituting strong confirmation of ANR1
(the two exceptions concern expenses on outpatient care).

Among decedents, TTD does not vary more than three years so is held constant at least
to an approximation. Here, ANR2 predicts a flat age profile of HCE. It is fully confirmed in
the eight comparisons involving outpatient and inpatient expenditure (HCE even tends to
decrease with age). However, it is contradicted in the other eight comparisons involving
homecare and institutional care, resulting in but partial confirmation. As Hashimoto et al.
note, the RHH was originally formulated in the context of medical interventions that held
the promise of restoring health rather than long-term care (see Figure 1 again); therefore,
these contradictions are not surprising.

Finally, ANR3 and ANR4 cannot be tested because the dates are of the cross-section
type.

Hazra et al. (2017) [45], UK, rationing)
The authors have access to data covering some 98,000 individuals aged 80+ over the

years 2010 to 2014. They estimate third-degree polynomials of Age in their regression to
find that in the last year of life (i.e., with TTD held constant), predicted HCE does not
increase with age, arguably supporting the RHH (in their Table 2, it even decreases with
age at very high ages). Although the authors state as their objective to test the RHH, they
abstain from issuing a verdict, emphasizing the importance of comorbidities instead.

Predictions AR1a and AR2a cannot be tested because the database does not contain
patients at young to medium age. However, AR1b is confirmed by the left-hand panel of
the authors’ Figure 2, which shows an increase in HCE up to age 100 among women and 97
among men, respectively. Prediction AR2b also receives empirical support since the in the
last year before death, the right-hand panel of the authors’ Figure 2 exhibits an age profile
of men’s HCE that becomes flatter with increasing age (and even has negative slope for
women, as noted above).

Since prediction AR3 refers to the general population, it cannot be tested. The same is
true of AR4 since changes over time are not documented.

Karlsson et al. (2016) [29], German private health insurer, no rationing
The database for this study is described in Section 3.1.2 above.
Prediction ANR1 is supported by the authors’ Figure 5 which displays a roughly

constant rate of increase in HCE up to age 65, accelerating afterwards where HCE is highest
(in the 65+ category according to the authors’ Table 5). ANR2 cannot be tested because
when holding TTD constant, the authors do not distinguish between age classes.

As to ANR3, it is confirmed indirectly using the authors’ Figure 9 which shows the
cdfs pertaining to 2011 and 2015. In 2011, 50 percent of HCE are reached at an estimated
value of USD 6920, while in 2015, they are reached at USD 6240 already. Since according



Healthcare 2022, 10, 211 16 of 27

to the authors’ Table 5, the highest HCE are exhibited in the 25–64 age group across all
quintiles and for both genders, this shift in the cdf reflects a steepening of the age profile of
HCE. Finally, ANR4 cannot be tested because the authors do not display a cdf with TTD
controlled for.

Karlsson et al. (2020) [43], German private health insurer, no rationing
The database is the same as the one described in Section 3.1.2; however, the authors

provide more detailed analysis of the effect of age on HCE. Finding a positive age gradient
in HCE also when controlling for TTD, they conclude that the RHH is rejected.

Yet their Table 3 provides support for ANR1 in that HCE (with the only exception
of the 65–69 age bracket) increases with patient age, with the rate of increase consistently
rising with age (and hence HCE). However, the same Table 3 contradicts ANR2 because
with TTD controlled for, as HCE again increases with age (albeit at a reduced rate).

Predictions ANR3 and ANR4 cannot be tested because in their extrapolations, the
authors do not report age gradients of HCE.

Kolodziejczyk (2020) [46], Denmark, some rationing
The author has a database covering 2371 twins aged 70 or more in 1999, 60 percent

of whom were deceased by the end of 2010. The age at death of the co-twins as well as
their mother’s serve as instruments for endogenizing time to death (TTD). On the basis
of a range of estimations using annual HCE data from 1999 to 2006, the author concludes
that earlier contributions likely overestimated the impact of RLE on HCE without issu-
ing a verdict concerning the RHH. However, TTD has a significantly negative coefficient,
while Age lacks significance in four of age regression results, with the negative coeffi-
cient of Age squared rendering the marginal effect of age negative rather than positive.
To illustrate, the highest positive coefficient of Age (=0.2081, 2SLS estimation, author’s
Table 4) is used. When combined with the −0.1442 pertaining to Age squared and evalu-
ated at the mean of 0.744 for Age/100, the marginal effect of Age on logHCE amounts to
0.2081-2-2·0.1442·0.744 = −0.0065 < 0. Therefore, this study can be said to broadly confirm
the RHH.

Predictions AR1a and AR1b cannot be tested because the author controls for TTD
throughout. As to AR2a, it is contradicted by the author’s Table 4. Regardless of estimator,
the marginal overall effect of Age is positive rather than negative at age 40 (say) because
the negative coefficient of Age squared is too small. For instance, the 2SLS estimate amounts
to ∂logHCE/∂Age =0.2081− 2 · 0.1442 · 0.4 = 0.093 > 0. However, AR2b is confirmed
because at age 85, the estimate shrinks to ∂logHCE/∂Age = 0.2081 −2 · 0.1442 · 0.85=
0.2081− 2 · 0.1442 · 0.85= −0.037 < 0. Predictions AR3 and AR4 cannot be tested since the
author does not document changes over time.

Lorenz et al. (2020) [34], Germany, rationing
The database of this study is described in Section 3.1.2 above.
Panel (b) of the authors’ Figure 2 provides partial support of prediction AR1a in that

women’s HCE decreases between the ages 30 and 42 (i.e., beyond childbearing age at least
in part) and men’s up to age 20. AR1b is fully supported by the same source because
women’s HCE increases between ages 65 and 78 (men’s, between 65 and 77).

Prediction AR2a is also confirmed by panels (a) and (b) of the authors’ Figure 3, where
TTD is held constant. Women’s HCE falls between ages 30 and 65 (with three short-lived
exceptions), which is also true of men’s HCE (again with exceptions, the major one being
between ages 25 and 60 for those one year away from death). In return, the rate of decrease
tapers off with patient age, as predicted. According to the same source, AR2b is confirmed
as well since beyond age 80 for both genders, HCE three years, two years, and one year
before death hardly differs, indicating a flat age profile of HCE (with a spike in the last year
before death).

Prediction AR3 is confirmed in part only. According to panel (a) of the authors’ Figure
5, among women only girls and the age bracket 25–42 exhibit HCE that grow faster than the
general trend; among men, this is true only for boys. Panel (b) of the same figure supports
AR4, showing that in their last year of life, both women’s and men’s HCE converge to the
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general trend after age 70, with the rate of convergence faster among men. Finally, among
women at least, the rate of convergence decreases with age, as predicted.

Moorin et al. (2012) [30], Western Australia, no rationing
The database of this study is described in Section 3.1.2 above.
When reporting age profiles of HCE, the authors hold RLE constant, obviating a test of

prediction ANR1. As to ANR2, it is partially confirmed. The authors’ Figure 1 displays the
three components of fitted HCE (a: primary care, b: specialist services, and c: diagnostic
and therapeutic service) during the last year of life. With three eras and the two genders
distinguished, there are 18 age profiles of HCE. Component (a) displays an increase with
age for both genders across the three eras distinguished by the authors, accounting for six
cases. Components (b) and (c) show four weakly positive and eight negative relationships
(whether or not their slopes are significantly different from zero is unclear because no
standard errors of regression coefficients are given).

Prediction ANR3 is partially confirmed, too. The authors’ Figure 1 distinguishes three
eras of four years length, 1990–1994, 1995–1999, and 2000–2004. Australian women saw
their RLE at age 65 from 16 years in 1960–1962 to 22 years by 2011–2013 [38] presumably
also because they had access to improved medical technology, boosting their WTP. In the
10 (out of 18) instances where fitted HCE increases with age, the age profile never steepens
consistently across the three eras. The age profile of men’s HCE does become steeper across
all three components from 1990–1994 to 1995–1999 but becomes flatter afterwards. The
profile of women’s component (a) of HCE steepens from 1995–1999 to 2000–2004. As to
ANR4, support is again but partial because in the authors’ Figure 1, the age profiles of HCE
among those aged 85+ (many of whom are close to death) become flatter from 1995–1999 to
2000–2004 in category (a), more negative from 1995–1999 to 2000–2004 in category (b), and
consistently more negative in category (c).

Conclusion 3. In the 35 instances where the published results are sufficiently detailed to
permit testing with regard to the age profile of HCE, in the case of no rationing seven out
of twelve are in full and four in partial support of the RHH; in the case of rationing, eleven
out of 23 are in full and nine in partial support. As to the three cases where the presence
(absence, respectively) of rationing makes a difference, both AR1a and ANR1 are confirmed
five out of eleven times but both AR2a and ANR2 as well as AR2b andANR2, zero times.

4. Conclusions

The objectives of this contribution are to provide some theoretical underpinning to
the ‘red herring’ hypothesis (RHH), to derive two new sets of predictions amenable to
empirical testing, and to pit them against available evidence. First, the RHH is extended
to apply to a rationed settings as well by modeling healthcare expenditure (HCE) as the
resultant of patients’ effort to obtain the desired amount of HCE and the physician’s
rationing effort. Next, for deriving testable predictions regarding gender differences in
HCE, women’s higher remaining life expectancy RLE (longer time to death, respectively)
is used. A complication is that their willingness to pay for health care is also higher than
men’s, while their lower income does not matter since the evidence comes from countries
and setting with comprehensive health insurance coverage. A second set of predictions
refers to the age profile of HCE. Here, an important distinction is whether or not time to
death (RLE, respectively) is held constant.

Among the 15 studies identified in the existing literature that permit at least two
tests of the RHH, a majority of 80 percent are in support of the RHH, comprising also
six that come from countries and settings subject to at least some rationing. Among the
28 opportunities of testing for the predicted gender-specific differences in HCE (in 16 cases,
no test was possible), eleven relate to a non-rationing background and 17, to a rationing
one. In the non-rationed category, the RHH is fully confirmed seven times (twice, partially);
there are two rejections. Among the 17 opportunities from a rationing background, 12
provide full (one, partial) support of the RHH. Overall, there are seven contradictions.
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Turning to of the age profile of HCE predicted by the RHH, one can identify 35 testing
opportunities (in no fewer than 20 cases, no test was possible). The twelve opportunities
from a non-rationed setting yield seven full (four partial) confirmations of the RHH; the
23 from rationed countries and settings, eleven full (another nine, partial) confirmations.
Overall, there are four contradictions.

Therefore, the new, rather fine tests developed in this paper result in a somewhat
weaker support of the RHH than the 80 percent in the retained published literature. In
particular, out of a total of 63 (=28 + 35) testing opportunities, 37 (=7 + 12 + 7 + 11, or
59 percent) result in full confirmation, 16 (=2 + 1 + 4 + 9, 25 percent) in partial confirmation,
and ten (=2 + 4 + 1 + 3, 16 percent) in a contradiction. Of the 37 full confirmations, 14 (=7 + 7,
38 percent) come from non-rationed countries and settings, while 23 (=12 + 11, 62 percent)
come from rationed ones. Therefore, although the RHH was originally developed in a
non-rationed context, it receives a greater degree of confirmation in rationed ones.

This surprising result suggests that regardless of the presence or absence of rationing,
it would be appropriate for policy-makers concerned by surging HCE to be open about
the fact that the issue is not so much the aging of population but rather whether to grant
general access to costly new medical technology. However, it may also reflect one of
the limitations of this work. In particular, in the absence of rationing there may still be
physician influence originating from the patient-physician interaction, which is neglected
here. Additionally, the rationing effort by physicians is not derived from a behavioral
model; rather it is assumed to be governed by effectiveness and equity considerations in a
very simple way. Moreover, all predictions are derived from the ‘red herring’ hypothesis
without specification of a competing alternative. Another limitation is that studies which
might have provided additional opportunities for testing may have been overlooked. More
specifically, the evidence comes almost exclusively from industrialized countries, where
women not only have a higher remaining life expectancy than men but also can express
their higher demand for healthcare services (reflected by their high maximum willingness
to pay a). This fact may limit the applicability of the RHH beyond industrial countries.
Finally, the interpretation of the results of the retained studies might be biased in favor of
the RHH (or simply erroneous). However, in spite of these limitations, it seems worthwhile
to continue examining gender differences in HCE as well as age profiles of HCE in the light
of the ‘red herring’ hypothesis.
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Appendix A. Derivation of the Nash Equilibrium

From the first-order condition (FOC) with respect to eP for an interior solution
[Equation (3) of the text], one obtains the patient’s comparative-static equation determining
the optimal response to a shock deR > 0 as{

∂2uP

∂xP2
∂xP

∂eP +
∂uP

∂xD
∂2xP

∂eP2

}
deP +

{
∂2uP

∂xP2
∂xP

∂eR +
∂uP

∂xP
∂2xP

∂eP∂eR

}
deR = 0 (A1)



Healthcare 2022, 10, 211 19 of 27

Assuming that the patient sets effort in an attempt at maximizing utility rather than
minimizing disutility (after all, the ultimate target is health), the first term must be negative
in view of the second-order condition. This implies that the second term is positive, hence

deP

deR = −
∂2uP

∂xP2
∂xP

∂eR + ∂uP

∂xP
∂2xP

∂eP∂eR

∂2uP

∂xP2
∂xP

∂eP + ∂uP

∂xP
∂2xP

∂eP2

> 0 (A2)

is the slope of the patient’s response function. Since the values of this function are not
known, the patient’s response function is depicted as a straight line in Figure A1a for sim-
plicity.

For the rationing physician, the comparative-static equation becomes in view of both
Equations (6) and (7),{

∂2uR

∂xR2
∂xR

∂eR +
∂uR

∂xR
∂2xR

∂eR2

}
deR +

{
∂2uR

∂xR2
∂xR

∂eP +
∂uR

∂xR
∂2xR

∂eR∂eP

}
deP = 0 (A3)

in full analogy with Equation (A1). Rationing effort arguably gives rise to disutility at
the margin, implying that the first term is negative if ∂uR/∂xR > 0 and negative also if
∂uR/∂xR < 0. Therefore, the second term must be positive to satisfy Equation (A.3), yielding

deR

deP = −
∂2uR

∂xR2
∂xR

∂eP + ∂uR

∂xR
∂2xR

∂eR∂eP

∂2uR

∂xR2
∂xR

∂eR + ∂uR

∂xR
∂2xR

∂eR2

> 0. (A4)

The physician’s response function is again depicted as a straight line in Figure A1a
for simplicity.

It becomes evident from panel (a) that a Nash equilibrium (NE) with positive effort
levels is likely to exist. For zero effort levels, the physician’s response function would
have to run higher than the patient’s for all values of patient effort eP—a rather restrictive
requirement (see dashed lines in panel (a)). As drawn, the Nash equilibrium is stable
because an off-equilibrium point such as P initiates an adjustment process that converges
at NE (on the properties of the Nash equilibrium and the stability condition, see e.g.,
Mas-Collel, Whinston and Green (1995, [48], chs. 8.D and and 12.G).

Figure A1b exhibits the projection of effort levels eP* and eR* associated with the NE
into HCE-space. Three outcomes can be distinguished:

• HCEP
[
eP∗
]
= HCER

[
eR∗
]

The patient’s effort at obtaining care results in the same amount of HCE as the
physician’s rationing effort. Treatment takes place, but observed HCE reflects the in-
tended amounts of both the patient and the physician, as in Appendix A in the presence
of rationing.

• HCEP
[
eP∗
]
> HCER

[
eR∗
]

The patient’s effort at obtaining care results in an amount of HCE that exceeds the
amount associated with by the physician’s rationing effort. Whether or not to accept this
outcome is the patient’s decision. In the case of acceptance, treatment takes place but
observed HCE reflects the amount intended by the physician in principle. In the case of
non-acceptance, the patient may search for an accommodating provider, resulting in the
first outcome; otherwise, HCE is zero (almost never recorded in the papers discussed in
Sections 3.1 and 3.2). In sum, this outcome is indistinguishable from the first one.
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Figure A1. Outcomes associated with the patient-physician interaction given rationing. (a) in efforts
space (dashed no equilibrium; (b) in HCE space.

• HCEP
[
eP∗
]
< HCER

[
eR∗
]
.

The patient’s effort at obtaining care results in an amount of HCE that falls short
of the amount offered by the physician. In a rationed context, this is a very unlikely
outcome; in a non-rationed one, this case would reflect supplier-induced demand if the
physician prevails.

Observed amounts of HCE in a rationed setting will be therefore analyzed assuming
the first outcome, permitting application of the pertinent predictions of Appendix A.

Appendix B

Table A1. Retained sources of the evidence concerning the ‘red herring’ hypothesis (RHH).

Authors Type of Data Country Rationing? In Support of RHH?

1. Atella and Conti (2014)
[49] Fixed panel 2006–2009, three categories of outpatient HCE Italy No (Donatini et al. (2001), p. 101 [50]) Yes 1

2. Bjørner and Arnberg (2012) [41] Panel 2000–2009, inpatient and outpatient HCE Denmark Some (Vallgårda et al. (2001), pp. 74–75 [51]; Cylus and
Papanicolas (2015) [52]) Yes 2

3. Breyer et al. (2015) [27] Pseudo-panel 1997–2009, 2340 age and sex groups Germany Yes (Nadolski (2002) [53]; Thielscher et al. (2012) [54];
Cylus and Papanicolas (2015) [52]) No

4. Costa-Font and Vilaplana-Prieto
(2020) [31]

Pseudo-panel, waves 1, 2 and 4–7 of SHARE,
288,600 observations 17 countries Yes (the majority of individuals sampled are subject

to rationing) No 1

5. De Nardi et al. (2016) [42] Panel 1996–2010, 67,000 Medicare enrollees United States No (Nelson (2011) [55]) Yes

6. Gregersen (2014) [32] Pseudo-panel, entire population of 5 mn, 1998–2009 Norway Some (Cylus and Papanicolas (2015) [52]) Yes

7. Hashimoto et al. (2010) [28] Panel 2000–2004 aged 65+, 354,500 survivors,
5099 decedents Japan No (personal communication from H. Hashimoto; Gaille,

2019 [56]) Yes 3

8. Hazra et al. (2017) [45] Panel 2010–2014, 98,000 aged 80+ United Kingdom Yes (Light (1997) [57]; Cylus and Papanicolas (2015) [52]) Yes 3

9. Howdon and Rice (2018) [5] Panel 2005–2012, 40,000 suvivors and decedents each United Kingdom Yes (Light, 1997 [57]; Cylus and Papanicolas, 2015 [52]) Yes

10. Karlsson et al. (2020) [43] Pseudo-panel, members of private health insurer,
2005–2011, 8.7 mn observations Germany No 4 No

11. Karlsson et al. (2016)
[29]

Pseudo-panel, members of private health insurer,
2005–2011, 8.7 mn observations Germany No 4 Yes

12. Kolodziejczyk (2020)
[46] Panel of twins, 1999–2010, aged 70+ Denmark Some (Vallgårda et al. (2001), pp. 74–75 [51]; Cylus and

Papanicolas (2015 [52]) Yes

13. Moorin et al. (2012)
[30] All deaths 1990–2004, three categories of outpatient HCE Western Australia Not until 2010 (Baume (1998) [58]; O’Connor (2010) [59]) Yes 5

14. Seshamani and Gray (2004) [39] Inpatient HCE United Kingdom Yes (Light (1997) [57]; Cylus and Papanicolas (2015) [52]) Yes

15. Seshamani and Gray (2004) [35] Inpatient HCE United Kingdom Yes (Light (1997) [57]; Cylus and Papanicolas (2015) [52]) Yes

16. Wei and Zhou (2020) [36] China Health and Retirement Longitudinal Study 2011
& ’13 China Yes (Fang, 2020) [60] Yes

1 Age is a significant independent predictor but dominated by TTD. 2 Cohort effects and increases in life expectancy
important for forecasting HCE. 3 Time to death significant but exhibits decreasing effect at very high ages. 4 Time to
death significant but exhibits decreasing effect at very high ages. 5 The data refer to privately insured individuals.
6 Drop in expenditure on specialist services in the last month before death as one contradiction.
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Appendix C. Deriving Estimates of the Parameter b in Equation (1)

The study by [1] refers to a setting without rationing. The dependent variable is the log
of quarterly real HCE measured from 1993 to 1992; it increased from CHF (Swiss francs) 408
to 1098 (see text below their Figure 2). In their Table 3, the last quarter prior to death (Q1)
has a coefficient of 1.849, compared to 0 in quarter no. 20 (Q20, the benchmark), with age
and gender held constant. Using the average HCE of CHF 753 over the observation period,
the transition from Q20 to Q1 is therefore associated with an increase in HCE by CHF 2145
(=2.849 · 753) over 5 years (most of the evidence discussed in Sections 3.1 and 3.2 refers
to annual data). Now according to Equation (1) of the text, this increase corresponds to
2b(a− bT), with a− bT equal to HCE. Using the average of CHF 753 once again, one obtains

2b · 753 = 2145→ b = 1.424 per 20 quarters, → b = 0.285 per year, (A5)

a value clearly below one for the general population.
However, the value of b may well be higher in the year prior to death. The coefficient

pertaining to Q5 is 0.459, leading to an estimated HCE of CHF 1099 (=1.459 · 753) in excess
of the benchmark. The transition from Q5 to Q1 is therefore associated with an increase in
HCE amounting to CHF 713 (=1812–1099) over four quarters. In analogy to Equation (A5),
one obtains

2b · 713 = 1812→ b = 1.271 per 4 quarters, → b= 1.271 per year, (A6)

a value clearly above one in the year prior to death (at the latest, quite possibly already
earlier), years which predominantly occur at high to very high age.

Appendix D. W-Predictions Concerning the Effect of Women’s Higher RLE and Higher
WTP on HCE under the ‘Red Herring’ Hypothesis (RHH)

As noted in Section 1, women not only have higher RLE but also higher WTP
ceteris paribus (this clause is satisfied in the studies analyzed, which come from countries
and settings with comprehensive health insurance coverage).

Appendix D.1. Absence of Rationing

In the absence of rationing, one can use Equation (1) to obtain the combined effect
of women’s higher RLE (denoted by ∂T > 0) and WTP. Strictly speaking, it would be
preferable to add two elasticities in Equation (A7) below to make the two components
commensurable; however, this would complicate the analysis considerably. An alternative
is to think of a unit change as a variation by one standard deviation. With ΣNR denoting
this combined effect, one has

ΣNR = ∂xP

∂T + ∂xP

∂a = ∂
∂T (a− bT)2 + ∂

∂a (a− bT)2

= −2b(a− bT) + 2(a− bT) = 2(1− b)(a− bT)
> 0 if b < 1 (WNR1; applies to the general population
(see Appendix C) , value depending positively on current HCE);
< 0 if b > 1 (WNR2; applies to the last year before death at the latest
(see Appendix C) , absolute value depending positively on current HCE).

(A7)

since a− bT > 0 to ensure positive HCE. In Appendix C, estimates of b are derived; with
b ≈ 0.3, it is clearly below one for the general population. However, with b ≈ 1.3, it is
above one in the last year before death. Thus under the RHH, with b < 1 women’s HCE
is higher than men’s except in the year before death at the latest when b > 1, with the
difference depending positively on current HCE. This is entered as predictions WNR1 and
WNR2 in Table 1.
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As to the effect of a change in RLE (proximity to death, respectively), one has from
Equation (A7)

∂ΣNR

∂T = 2(1− b)(−b) = −2b(1− b)
< 0 if b < 1 (WNR3; applies to the general population (see Appendix C));
> 0 if b > 1 (WNR4; applies to the year before death at the latest
(see Appendix C)).

(A8)

Except shortly before death, women’s HCE is predicted to decrease more slowly
than men’s with increasing RLE (recall the positive value of Equation (A7)); conversely, it
increases more slowly at a constant rate than men’s with closeness to death. Conversely,
shortly before death women’s HCE increases faster with closeness to death (now the value
of Equation (A7) is negative) than men’s, at a constant rate in both cases.

Finally, the increase in maximum WTP over time due to new in medical technology always
goes along with an increase in RLE, as evidenced in Section 3.1.2. Therefore, one obtains
from Equation (A8),

∂2ΣNR

∂a∂T
= 0 (WNR5), (A9)

implying that in the absence of rationing, any difference between women’s and men’s HCE
remains constant over time.

Appendix D.2. Presence of Rationing

In a rationing context, the Nash equilibrium implies the equality xP(eP∗
)
=xR(eR∗

)
:= x,

with eP∗ and eR∗ denoting optimum effort levels. Therefore, x = (a− bT)2 = f + g(T/A).
Analyzing x2 = x · x by imposing this equality and multiplying Equation (1) by Equation
(4) turns out to be much simpler than analyzing x itself. Note that the partial derivatives
of x2 with respect to A and T have the same sign as those of x while there is no need to
determine the location of the Nash equilibrium. However, this implies that no derivatives
with respect to x can be formed and evaluated. One therefore obtains

x2 = (a− bT)2{ f + g(T/A)}, with
∂x
∂x2

∂x2

∂A = 1
2x (a− bT)2{−g

(
T/A2)} < 0 and

∂x
∂x2

∂x2

∂T = 1
2x

{
(a− bT)(−2b){ f + g(T/A)}+ (a− bT)2{2g(1/A)}

}
>
<0.

(A10)

Therefore, the RHH predicts that HCE decreases unambiguously with age due to the
influence of the rationing physician, while age per se does not matter to the patient. With
regard to remaining life expectancy T, there are two opposing forces. On the one hand,
patients are less interested in HCE when their RLE is higher (giving rise to the negative
first term in the large bracket); on the other hand, the physician’s rationing effort decreases
with higher RLE (giving rise to the positive second term).

For the combined effect of women’s higher RLE and WTP, one obtains

ΣR = ∂x
∂T + ∂x

∂a = ∂x
∂x2

{
∂x2

∂T + ∂x2

∂a

}
= 1

2x

{
(a− bT)(−2b)

{
f + g

(
T2/A

)}
+(a− bT)2(2gT/A) + 2(a− bT)

{
f + g

(
T2/A

)} }

= 1
x

{
−b(a− bT)

{
f + g

(
T2/A

)}
+g(a− bT)2(T/A) + (a− bT)

{
f + g

(
T2/A

)} }
≈ −b

{
f + g

(
T2/A

)}
+ g(a− bT)(T/A) +

{
f + g

(
T2/A

)}
≈ (1− b)

{
f + g

(
T2/A

)}
+ g(a− bT)(T/A)

> 0(WR1; applies to the general population because b < 1(see Appendix C),

with the difference in favor of women depending negatively on patient age);

< 0(WR 2; applies to the last year before death at the latest because b > 1

(see Appendix C),with the difference to the detriment of women depending

negatively on patient age).

(A11)
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The approximation holds because observed HCE cannot differ too much from the
desired amount (a− bT) lest the tension between patient and physician becomes excessive,
in which case there is no treatment hence HCE = 0. Thus, except shortly before death
women are predicted to exhibit higher HCE than men in a rationed setting. These are WR1
and WR2 in Table 1.

As to the rate of change of HCE as a function of remaining life expectancy (holding the
gender difference in RLE constant), one obtains from Equation (A11)

∂ΣR

∂T
≈ −bg(1/A)− bg(T/A) + g(a− bT)(1/A)

+ f + gT(T/A) + T{g(T/A) + gT(1/A)}

≈
{
−bg + g(a− bT) + gT2

}
(1/A) + {−bg + 2gT}(T/A) + f

≈ f + g
{
−b + (a− bT) + T2

}
(1/A) + g{−b + 2T}(T/A)

> 0(WR3; applies to the general population, with the difference

depending negatively on patient age).

(A12)

since both brackets are positive. Therefore, given rationing and in the general popu-
lation women exhibit HCE that decreases at a lower rate than men’s with increasing RLE
(increases at a lower rate than men’s with proximity death, respectively; see Equation (A11)
again).

In the year before death at the latest, one has with T → 0

∂ΣR

∂T ≈ f + g(a− b)(1/A)
> 0 (WR4; applies to the last year before death at the latest, with the
difference depending negatively on patient age).

(A13)

Thus, shortly before death women also exhibit HCE that decreases at a lower rate with
increasing RLE [recall that Equation (A11) has a negative value in this case] thus increases
at a lower rate than men’s with closeness to death. Yet the difference is small compared to
that of Equation (A12), where the first bracket now shrinks in value while the second goes
to zero.

Finally, the increase in both maximum WTP and RLE over time due to new medical technology
has also an effect on the gender difference of HCE. From Equation (A13), one obtains

∂2ΣR

∂a∂T
≈ g(1/A)

> 0 (WR5; any gender difference in HCE approaches zero

among the very old sin ce 1/A→ 0).

(A14)

Therefore, any difference between women’s and men’s HCE is predicted to decrease
over time, with full convergence at high age.

Appendix E. A-Predictions Concerning the Age Profile of HCE under the ‘Red Herring’
Hypothesis (RHH)

Appendix E.1. Absence of Rationing

Appendix E.1.1. Influence of Age on HCE with Remaining Life Expectancy (Time to Death,
Respectively) Not Held Constant

In many published studies, the age profile of HCE is reported without controlling
for remaining life expectancy RLE (time to death, respectively). For deriving predictions,
one can use the fact that RLE predominantly correlates negatively with age in observed
data. Examining the case of perfect negative correlation with dA = −dT is sufficient for
the present purpose.
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Therefore, in the absence of rationing, one obtains from Equation (1) of the text

∂xP/∂A = −∂xP/∂T = 2b(a− bT)
> 0 (ANR1; with the rate of increase depending positively on

current HCE (see Table 2)).
(A15)

Therefore, if RLE (T respectively) is not held constant, higher age implies a decrease in
T and hence an increase in HCE according to the RHH.

Appendix E.1.2. Effect of Age on HCE with Remaining Life Expectancy T Held Constant

In the absence of rationing, age per se does not matter according to the RHH [see
Equation (1)], thus

∂xP/∂A = 0 (ANR2), (A16)

resulting in a flat age profile of HCE.

Appendix E.1.3. Steepening of the Age Gradient of HCE over Time?

The issue of ‘steepening’ of the age gradient of HCE over time has not been resolved.
While [11,61] have found evidence to this effect, [62] failed to find it, possibly because
their data are from a non-rationed setting. Here, new medical technology boosting WTP is
considered as the main change that might cause steepening over time.

Therefore, Equations (A5) and (A6) can be used once again, with dT > 0 because RLE
increases over time,

ΣNR = ∂xP

∂T + ∂xP

∂a = 2(1− b)(a− bT)
> 0 if b < 1 (ANR3; applies to the general population (see Appendix C),
with the rate of increase positively depending on current HCE);
< 0 if b > 1 (ANR4; applies to the last year before death at the latest
(see Appendix C), with the rate of decrease positively depending
on current HCE).

(A17)

In the general population and in the absence of rationing, the RHH predicts a steepen-
ing of the age profile of HCE over time at a rate that depends positively on current HCE.
Shortly before death at the latest, however, the predicted age profile becomes flatter at a
rate that again depends on current HCE.

Appendix E.2. Presence of Rationing

For ease of reference, Equation (A10) is repeated here,

x2 = (a− bT)2{ f + g
(
T2/A

)}
, with

∂x
∂x2

∂x2

∂A = 1
2x (a− bT)2{−g

(
T2/A2)} < 0 and

∂x
∂x2

∂x2

∂T = 1
2x

{
(a− bT)(−2b)

{
f + g

(
T2/A

)}
+ (a− bT)2{2g(T/A)}

}
>
<0.

(A18)

Appendix E.2.1. Influence of Age on HCE with Remaining Life Expectancy Not
Held Constant

With increasing age, RLE decreases ceteris paribus, inducing a negative correlation
between age and RLE. Once again, examining the case of a perfect negative correlation
with dT = −dA is sufficient. Given rationing, the pertinent derivative of Equation (A18)
thus reads, recalling that x. = HCE ≈ (a− bT)
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∂x
∂A + ∂x

−∂T = ∂x
∂x2

{
∂x2

∂A −
∂x2

∂T

}
= 1

2x

{
−(a− bT)2g

(
T2/A2)−{ (a− bT)(−2b)

{
f + g

(
T2/A

)}
+(a− bT)2{2g(T/A)}

}}
≈ − 1

2

{
(a− bT)

{
g
(
T2/A2)− 2b

{
f + g

(
T2/A

)}
+2g(a− bT)(T/A)

}}
≈ − 1

2 (a− bT)
{

g
(
T2/A2){1− 2b/A + 2(a− bT)/(T/A)} − 2b f

}
< 0(AR1a; this applies to low to medium age because 2(a− bT)
≈ 2HCE > 0 dominates the bracket since b f < (a− bT));
0( AR1b; this applies to high age because T/A < 1 hence
T2/A2 = (T/A)2 → 0).

(A19)

Therefore, with time to death not held constant and in the presence of rationing, HCE
is predicted to fall with age first. However, at high age, the value of Equation (A19)
approaches (a− bT)b f > 0, indicating that HCE increases with age.

Appendix E.2.2. Influence of Age on HCE with Remaining Life Expectancy Held Constant

In this case, the derivative of Equation (A18) reads

∂x
∂A

=
∂x
∂x2

{
∂x2

∂A

}
=

1
2x

{
−(a− bT)2g

(
T2/A2

)}
≈ −g

2
(a− bT)(T/A)2

< 0 (AR3 (applies to the general population, with the rate of decrease

depending negatively on patient age)).

(A20)

Therefore, in the presence of rationing the RHH predicts a fall of HCE with age at a
rate that decreases with age, reflecting the influence of the rationing physician

At very high age (T/A→ 0), Equation (A20) approaches

∂x
∂A

= 0 (AR2b), (A21)

indicating that the age profile of HCE becomes flat; time to death relative to age loses
its importance.

As to the issue of steepening of the age profile of HCE over time, one can use Equation (A18)
again, which combines the effects of higher RLE and higher WTP,

ΣR=
∂x
∂T

+
∂x
∂a

=
∂x
∂x2

{
∂x2

∂T
+

∂x2

∂a

}
≈ (1− b)

{
f + g

(
T2/A

)}
+ g(a− bT)(T/A)

0 (AR3; this applies to the general population because

b < 1 (see Appendix C), with the rate of increase depending

negatively on patient age);

0( AR4; this applies to the last year before death at the latest

because b > 1( see Appendix C), with the rate of decrease

depending negativelyon patient age).

(A22)

Thus, in the general population the RHH predicts a ‘steepening’ of the age profile
of HCE over time in the presence of rationing. At very high age, however, it predicts an
increasingly flat age profile. In both cases, the rate of change depends negatively on age.
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