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Abstract: Systems biology is an important concept that connects molecular biology and genomics
with computing science, mathematics and engineering. An endeavor is made in this paper to
associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases
are clinical phenotypes generated by integration of genetic, molecular and environmental factors.
Basic concepts of systems biology like network construction, modular thinking, biological constraints
(downward biological direction) and emergence (upward biological direction) could be applied to
clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex
clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases
are biological complex entities which like other biological phenomena can be explained by a systems
biology approach. The above powerful biological tools of systems biology can explain robustness
growth and stability during disease process from modulation to phenotype. The purpose of the
present review paper is to implement systems biology strategy and incorporate some conceptual
issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease
process and progression can be addressed by the holistic realistic approach of systems biology in
order to define in better terms earlier diagnosis and more effective therapy.
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1. Introduction

Chronic complex diseases are multifarious in origin with a variety of biologically culpable
components and environmental factors being implicated. Complex diseases are clinically progressive
through multiple interactions between the involved components and environmental parameters. Heart
failure (HF) and coronary artery disease (CAD) are chronic complex cardiac diseases promoted by the
integration of various genetic, molecular and environmental factors. HF and CAD are complex adaptive
systems and should be approached with the holistic methodology of systems biology. Technological
progress of computational methodologies has motivated scientists and clinical practitioners to address
complex pathologies. The advances of systems biology in the field of cardiovascular systems and
the build-up of vast numbers of biological data have increased accurate analysis and integration of
accumulated data [1]. The gradual build up of new scientific knowledge in the field of cardiology
together with the advances in medical technology increased the chances to acquire further related
information from complex medical datasets. Large numbers of computational data can be uploaded
and maintained on vast remote servers (cloud computing). With the valuable accumulation of data
it is possible to retrieve relevant medical information when it is needed and integrate this across
data groups. Systems biology is the science that deals with integration of biological components
producing ”system” of interacting molecules, networks, modules and phenotypes. Wolkenhauer [2]
defines systems biology as “an approach to understanding complex, non-linear spatio-temporal
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phenomena, across multiple levels of structural and functional organization”. The principal objective of
systems biology is to comprehend the way that interactive biological components construct functional
networks at the level of organism and disease [3]. In addition, systems biology is concerned with the
“emergent” functional properties derived from the interplay between genes, molecules, cells and tissues
(upward biological direction), and with the restrictions imposed by “constraints” (downward biological
direction) which establish biological robustness. After the advances made in molecular understanding
of complex diseases it is inevitable for a shift of perspective in medical thinking from genomics to
clinical phenotypes. Therefore, the interdisciplinary application of systems biology concept is extended
to the level of clinical medicine. In explaining complex diseases new expressions are emerging based
on systems biology phraseology like “systems medicine” which stands for the medical application of
systems biology and “in silico medicine” that represents the “in silico computational integration of
patient-specific data” [4].

Classical medical thought cannot predict clinical progression of complex cardiac diseases on
the onset of disease. In contrast, using systems biology approach, in some significant aspects of
complex cardiac diseases, like clinical progression and follow up, predictability may be possible.
It seems that a disease process has hierarchical construction and clinical progression similar to the
evolution-adaptation path of the biological world. Therefore, the extension of systems biology concepts
to the domain of clinical medicine is possible and appealing. In clinical medicine, we are obliged to
consider diseases as multileveled entities where dynamic molecular components and environmental
events are integrated. Only, through this understanding is it possible to integrate clinical and basic
science research in order to improve our knowledge and practice in the field of clinical medicine.
This way, the use of systems biology methodology can be advantageous in the clinical domain for the
welfare of patients and community.

Medical practitioners with knowledge in molecular biology and appreciation of the concepts of
systems biology may approach diseases from different angle and describe disease complexity with
unfamiliar ways. Yet, with systems biology, still remain some restrictions in order to understand
the nature of a disease or to explain progression to various clinical phenotypes which continuously
are changing. These limitations are extended in two fields of knowledge: in the time resolution of
the disease phenotype and in the spatial (extension in different parts of the body) resolution of the
biological background connected to the disease. It is possible, under the conceptual structure of systems
biology, to integrate established features of complexity, network structure and hierarchical build-up
that characterize a disease. All these features that distinguish a disease are taken into consideration in
order to search for organizing principles during progression of a disease in space and time [5].

The purpose of this review paper is to incorporate and apply systems biology conceptual issues
into the clinical field of complex cardiac diseases. The integration of data from both those scientific
fields, clinical cardiology and systems biology, probably will give a better perspective in explaining
complexity and clinical progression. Emergent properties of complex diseases and constraints imposed
for enhanced disease robustness usually are the result of regional biological and environmental
interactions. Only with thorough examination of the biological and environmental interacting
parameters as one entity, will it be possible to define the role of each factor separately. In complex
cardiac diseases the emphasis given to individual patient should be holistic in nature and focused
more to the interaction between intrinsic biological parameters and extrinsic environmental factors.

2. Philosophical Aspects of Systems Biology

The concept of complexity is implicated in many natural systems like those existing in biology,
environment and medicine including human diseases. For centuries, the explanation of the complex
biological phenomenon was based on the process of reduction of complex structures into smaller
components. This approach was named “reductionism” and had an impact on conventional clinical
medical thought. Reductionism has described and analyzed complex diseases in all steps of clinical
enquiries, including prognosis, diagnosis, prevention and mode of treatment. Despite important
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breakthroughs in clinical medicine, by the reductionist methodology, there are still unanswered
questions and limitations for common complex diseases. Ahn et al. [6] suggest that “there are limits to
reductionism, and an alternative explanation must be sought to complement it” and that “the systems
perspective appreciates the holistic and composite characteristics of a problem and evaluates the
problem with the use of computational and mathematical tools”. The same authors in another article
claim that reductionism “dividing a problem into its parts leads to loss of important information about
the whole” and that reduction “disregards component-component interactions and the dynamics that
result from them” [7]. Thus, “systems medicine explores medicine beyond linear relationships and
single parameters” and “involves multiple parameters obtained across multiple time points and spatial
conditions to achieve a holistic perspective of an individual” [7].

The changes in biological sciences and clinical medicine oblige us to question some of the facts of
reductionism in explaining complex phenomena. The concept of reductionism was dominant for many
decades as the philosophical carrier of biochemistry, molecular biology and in some extent was the
basis for clinical medicine. Nevertheless, the discipline of systems biology has grown into a promising
branch of knowledge that can explain complex biological phenomena from molecular and cellular
level to the field of practicing medicine.

In clinical medicine, the concept of phenotype under systems biology approach is the holistic
expression of combined molecular interactions, in all levels of clinical progression, as the disease is
evolving in space (many organs or tissues) and time. The reductionist concept of gene-dependent
biological theory and the direct interrelation between genes and phenotypes have been replaced by
the recognition of biological complexity, epigenetic effects and environmental processes. It seems that
“reductionism is being displaced by systems biology, which favors the study of integrated systems”
and that “integrated systems acquire new, system-level properties” [8]. Krohs and Callebaut [9], regard
that systems biology has three scientific roots: (1) biological cybernetics and systems theory, (2) classical
molecular biology, and (3) omics-disciplines. They stand up for the importance of omics data as central
informational source to understand the concept of systems biology. They describe systems biology
“as a merger of modeling and strategies from data-poor fields with data from fields that are data-rich,
but largely deficient in explanatory modeling” [9,10].

In complex diseases, the relationship or interconnection between biological components is
characterized by the complexity of three basic characteristics: the structure made by biological
components, the pattern of their interconnection, and the process leading to phenotype. This approach
is related to the notion of “three perspectives of organization, structure, and process that provide an
integrative conceptual framework for the understanding of biological life” [11].

The human body as part of the biological world is organized as a complex system assembled
from metabolic networks, biochemical pathways, functional components or modules, and phenotypes
or models. The term “functional module” is applied to a group of autonomous and interconnected
biological components that also possesses a discrete function under physiological or pathological
circumstances [12,13]. Integration of complex networks from various biological hierarchies—genome,
proteome, transcriptome, metabolome, cellular molecular components—builds-up models or
phenotypes capable of interpreting complex biological phenomena or disease states. The integration
principle of biological data can be extended to clinical level in an effort to predict the holistic behavior
of functional modules and models underlying the disease state. It is impossible to predict the disease
behavior by simple analysis of the properties of separated components.

Joyner and Pedersen [14], suggest that understanding of a disease process is accomplished
through the perspective of integrative physiology as opposed to reductionism or systems biology.
They claim, also, that the term “systems biology” is “narrowly defined” and based in “lack of fluency”
of concepts such as homeostasis, regulated systems and redundancy. In the same line of interest,
Kuster et al. [15] argue that systems biology is not a separate discipline with “omics” the active domain,
but should be functioning as part of integrative physiology. Greenhaff and Hargreaves [16] believe
that systems biology “is rooted in processes operating at a cellular level” and argue the presence of
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“conceptual inconsistencies between the fields of systems biology and integrative physiology in the
context of exercise science”. Joyner [17] argues that Neo-Darwinism addresses human disease as an
“oversimplified genotype equals phenotype” concept and that systems biology is cell centric that tries
to bring together the genotype with the apparent complexity of human disease.

Nevertheless, in contrast to physiology, systems biology approach is integrative and also involves
the study of new concepts like robustness, constraints and emergent properties applied in each level of
complexity of human disease that is out of the sphere of integrative physiology. Thus, it seems that
systems biology is crucial to reconcile reductionism with biological complexity explaining genesis and
progression of human disease. Integrative physiology is largely occupied with “how the organism
is working” under disease’s stress while systems biology has the potential to explain the beginning,
progression and modes of treatment of complex diseases like heart failure and atherosclerosis [18].
Complex diseases are self-organized nonlinear processes that can be realized as dissipative biological
constructions functioning far from natural equilibrium. For the practicing clinician, physiology is
important because it includes the concepts of homeostasis, regulated systems and redundancy [14].
However, from our perspective this knowledge is not addressed to the disease as a functional entity. In
studying pathophysiology the physician is concerned with the way that physiology is altered during
the disease process, but for the clinician the disease entity is approached better with systems biology
concept of emerging properties and constraints application. The emerging biological properties in
each level -from the molecule to phenotype- are related to disease progression. The reference to the
emerging properties in each step of disease is based on the interaction of various networks and modules
in cellular, supracellular and clinical level. The incorporation of the biological or clinical emergent
properties in each level of the clinical progression would facilitate also the understanding of the
current and prospective therapy. Complexity of a multifarious disease demonstrates a clinical behavior
that cannot be anticipated only by the isolated function of the genetic or molecular constituents.
Systems biology application to clinical cardiology was reinforced by growth of other scientific fields
like nonlinear dynamics, computational capabilities and chaos theory [19].

3. Directions and Disciplines

The accumulated disease-related data, network construction and clinical modeling, need
the holistic approach of systems biology and a leveled enquiry to look into clinical progression.
Two strategic directions for the study of complex diseases have been developed; the bottom-up (data
about systems components) and the top-down (systems-level data) directions [9,10,18] (Figure 1).

The two strategies are complementary exploring the complexity that characterizes the hierarchical
structure of cardiac diseases. It is acknowledged that in the bottom-up direction most important is
the emergence of novel properties not expected from the isolated function of individual components.
In addition, along the top-down direction significant is the construction of phenotypes (models),
modules and networks that are underlying the disease state. The top-down direction is approaching
“biological generalizations without the need for a full understanding of all molecular properties from
the bottom-up” direction [10]. In other words we can describe phenotypes or modules or networks of
a disease without fully knowing or understanding all the biochemical interconnections that are taking
place. We could consider the disease entity as a complex whole of discrete biological mechanisms
with some specific components and tasks that differ from the acknowledged normal components and
functions. Furthermore, the disease entity is viewed as a layered biological construction with linked
levels of “abnormal” molecular or clinical states.

The fields of molecular or clinical research are named disciplines as they are independent stages
or levels of disease progression and each one of those is the object of intense research (Figure 2).
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Figure 2. Progression of complex heart diseases: Relationship between emergent properties and
constraints outlines progression of complex heart diseases.

In HF, as disciplines are referred the levels (fields) of genomics and epigenetics, cellular
networks, regulatory modules and clinical phenotypes. As modules in HF are referred,
the regulatory mechanisms of natriuretic peptide system (NPS), sympathetic adrenergic system
(SAS), renin-angiotensin-aldosterone system (RAAS) and left ventricular remodeling. In this paper,
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two clinical phenotypes of HF are mentioned: HF with preserved ejection fraction (HFpEF) and HF
with reduced ejection fraction (HFrEF).

In CAD as disciplines are included the levels of genomics and epigenetics, cellular networks,
coronary artery status and clinical phenotypes. The term of modules in CAD includes the coronary
artery status like the pre-existent or post-acute artery obstruction, degree of coronary stenosis, coronary
collaterals, myocardial or arterial remodeling and the environmental factors. Clinical phenotypes
are the various appearances of CAD, like myocardial infarction, acute coronary syndromes and
asymptomatic CAD [20].

4. Basic Concepts of Systems Biology Applied to Clinical Medicine

The most important concept of systems biology is the principle of robustness that stands for the
presence of stability regardless of unsteady conditions [21]. Two other basic biological concepts are
connected to systems biology robustness and are applied for the study of cardiac diseases; constraints
and emergent properties. The above three adjacent concepts demonstrate strong causal connections
between themselves and significant capacity of sequence. The emergent properties are upwardly
causal (bottom-up direction) while constraints are downwardly causal (top-down direction) [22].
As they are applied in clinical medicine, the dialectic characteristics of the three basic biological
concepts are able to elucidate contradictions and relations between levels of clinical complexity and
figure out appropriate diagnostic or therapeutic solutions. Yet, many of the molecular components
and networks participating in disease complexity remain undetermined.

4.1. Constraints

With systems biology approach, constraint-based explanation of the biological robustness
is considered as a regulatory mechanism in metabolic networks [23,24]. Green and Jones [22],
differentiated the mechanistic from the constraint-based explanations, and underlined that “while
mechanistic explanations emphasize change-relating causal features, constraint-based explanations
emphasize formal dependencies and generic organizational features that are relatively independent
of lower-level changes in causal details”. In actual fact, the concept of constraints emphasizes the
top-down causation from a higher level order to the pattern of processes at the lower levels [25].
The downward causation is the opposite of the reductionist principle because behavior of the biological
elements of the lower level is determined by the behavior of the higher leveled order. Constraints
are restricting some behaviors of the lower level while at the same time they allow other behaviors
to appear [26]. The mathematical expression of the physical constraints as boundary conditions can
be transferred to clinical cardiology thinking. This concept is extended from higher levels of clinical
phenotypes and modules to lower levels of genes and proteins (Figure 1). The concepts of clinical
boundaries or constraints could be used in clinical medicine and through this dialectic approach
practicing physicians or cardiologists learn to react positively to the presence of a disease (Figure 2).

In medical terms this concept demonstrates how clinical constraints are imposed by phenotypes
to lower level of modules. Clinical constraints, actually, decrease some degrees of freedom of the
disease system enforced from phenotypes to lower level of modules and various networks. The above
idea of constraint-based reasoning can be used to comprehend the interdependency between levels and
explain complex disease progression. Complex cardiac diseases demonstrate significant robustness
through functional enforcement of constraint-based relationships. This clinical robustness is analogous
to the biological robustness, introduced by Kitano, as “a capacity for a biological system to maintain its
performance across a range of perturbations to internal and external conditions” [21]. In practical terms
this reasoning elucidates the dynamic functional interrelationship between disease levels, important
for clinical decisions in diagnosis and therapy. For example, the clinical phenotypes of HF include
many physiological regulatory systems (modules); most important are the neurohumoral and the
cardiac remodeling systems [18]. Together with the function of the heart, regulatory systems are
compensatory and significant for the homeostatic regulation of the body in an integrated functional
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network that includes molecular systems and organs. The failing myocardium increases activation of
vasoconstrictive and vasodilatory compensatory systems in order to preserve cardiac output. These
compensatory regulatory mechanisms belong to a lower level of activity compared to phenotypes
and are regulated (constrained) by the degree of myocardium failure. Thus, the degree of modular
activation is imposed and determined (constrained) with top-down causation by the higher level of
phenotype according to compensatory needs of the failing myocardium (Figure 3).
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In addition, the location and “the size of a myocardial infarction (phenotype higher level) will
impose the extent of the post-infarction collaterals and the size of the myocardial remodeling (modular
lower level)” [20]. This reasoning will influence clinical decision for medical or invasive therapy
(Figure 3).

4.2. Emergence

The emergent functional characteristics originate from a self-organized process of biological
components structured in a “system” with hierarchical order and bottom-up causation. The universal
phenomenon of emergence is extended to molecular and clinical medicine, and implicates pathology
and progression of complex diseases. Systems biology approach of emergence, applied as systems
medicine at the clinical level, improves our understanding for the sequence of molecular and
biochemical events that take place in cardiac diseases. This approach facilitates also the practicing
clinician to comprehend why clinical picture progressively is changing, as disease is adjusted to novel
emergent properties. The hierarchical network and modular construction, in a ladder of biological
progression, from genes to phenotypes, involves emergence of new properties in each step of the
biological process. The emergent new properties generate malfunctioning biological processes which
participate in disease progression. This concept of emergence was developed in biology in order to
understand and explain the phenomenon of life [27,28]. In the past, many articles have been published
describing the emergent biological status and its characteristics [29,30]. It seems that the phenomenon
of emergence depends on multiple factors interacting non-linearly, while the emergent properties
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in many ways are unexpected and possess level characteristics. Furthermore, functional emergent
properties in each level which are provoked by non-linear interaction of multiple parameters, lead to
functional connection (relationship) between successive biological levels. The emergent properties in
each higher level are related or generated from the underlying processes of the lower level. This way,
the specific structure of each lower level will have some connection to the emergent properties of the
next higher level but this relationship is not completely causal. It seems that other factors are required,
not necessarily directly causal, to explain differentiation and independence of emergent properties
at the higher level from properties of the lower level. Cardiac diseases are organized in a complex
functional manner with capacity of adaptation to a variety of internal and external environments.

The interaction of elements in each level with internal (comorbidities) and external environmental
factors probably can explain partly the phenomenon of higher level emergence. However, current state
of knowledge does not allow complete comprehension of the interconnection and interdependence
between higher emergent properties and fundamental properties of lower level. In the realm of clinical
medicine emergence of new properties in each level of complex cardiac diseases, is significant in order
to explain the relentless progression of the disease. Emergence of new properties in cardiac diseases
includes clinical signs and symptoms as well as worsening of the clinical status. Adaptation to noxious
factors produces novel and irreducible emergent properties which cannot be explained through the
reductionist integrative physiology of causal connection.

For example, in people with coronary atherosclerosis the size of atherosclerotic lesion and
the degree of luminal artery obstruction (modules) are not implying that a myocardial infarction
(phenotype) will definitely develop (Figure 3). The majority of coronary obstructions are not followed
by myocardial infarctions but a lot of people are asymptomatic without ischemia or develop silent
myocardial ischemia or angina. For a myocardial infarction to develop other internal and/or external
environmental factors are obviously required [20].

5. From Networks to Modules and Models (Phenotypes)

The diverse and disparate field of “omics” and other biological datasets can be connected with well
recognized biological pathways related to complex diseases. Metabolic interconnections are significant
for many reasons; to locate important biomarkers or make a breakthrough on drug discovery or
most important to recognize pathways related to clinical progression from molecules to phenotypes.
In each discipline level, complex biological phenomena are better explained and understood by the
conception of biological networks. Integration of disparate biological components in interacting
biological networks is fundamental to understand cellular functions. Networks are composed of
nodes (biological units) and edges or links (interactions between units), and produce a pattern
of interconnections between components. Network behavior depends from the function of three
factors: context (the components participating in a specific process), time (changing characteristics
of each component), and space (topographic relationship between components) [6]. Many cellular
networks-metabolic, signaling, and regulatory-have been described [31]. Aon [32], suggests that
in view that “there is no direct relationship between metabolite, mRNA, protein, and gene” and in
“order to be able to capture or explain developmental programs or the underlying mechanisms of a
disease” it is essential to address the problem of biological interrelations with the network construction.
He addresses the problem with the integration of “three different kinds of networks, mass-energy,
information, and signaling” [32].

Analysis and evaluation of biological networks connected to human diseases give rise to the
discipline of network medicine and network cardiology [33]. Application of the network concept to the
domain of clinical cardiology produces interacting networks at the level of modules and phenotypes.
The impact of network thinking in clinical cardiology is crucial in order to understand and describe
the progressive nature of HF and CAD. Implication of the interactive networking system, to the
final construction of modules and models, is changing the way we understand genesis and clinical
deterioration of chronic heart diseases [34]. This approach explains the accumulated complexity of the
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biological phenomenon of the disease as it is progressing hierarchically from networks to modules and
models integrating various unrelated biological compounds to the hierarchical system. At the present
time of knowledge, all intermolecular links are not known across disciplines of complexity.

The main question in this inquiry is to recognize emerging principles and properties during
shifting from one discipline to the next. Functional organization of biological systems is such that
cooperation between interrelated components in networks and modules produce higher organized
systems like disease phenotypes. Hierarchically structured disease conceptualization and the
emergent clinical picture (like signs and symptoms) at the level of the phenotype, both increase our
understanding of disease process. In biological networks there are non-random interactions (edges)
between components (nodes) but there is intense clustering of adjacent nodes and long-distance
linkage [10,35]. Barabasi and Oltvai [35] suggest that scale-free networks characterized by intense local
nodal linkage and increased perceptibility of network properties are common in biological systems. In
the realm of medicine these networks with high connectivity are basic structural elements for build-up
of robust hierarchical systems during the disease process. Advance from biochemical pathways and
networking to clinical modeling, is based on abstract thinking, but this type of reasoning is appropriate
in order to unravel clinical progression. Today with advances in the field of molecular medicine and
accumulated information on network construction, underling cellular and tissue functions, we can
make this significant step from network thinking to clinical phenotypes.

Modules are critical functional entities which have a decisive impact on the structure of the
model. Modules are networks with adaptive design characteristics that emerge spontaneously by
self-organization. They are considered constructions of a higher level of complexity and participate
in the progressive process of chronic diseases. Mathematical modeling of networking is examined
extensively in different branches of science and medicine. In fact, we cannot interpret complex
biological systems without modeling. In the past, modeling as a mathematical method was applied to
the field of biological complexity and used for exploration of some basic concepts of the cardiovascular
system. Modulation of cardiac action potential supported by Hodgkin-Huxley equations and
mitochondrial ATP production are two examples of mathematical modeling application in the
cardiovascular system [36,37]. At a clinical level, there are many functioning modules participating in
construction of phenotypes. Some of the modules can change their function according to clinical set-up
without disturbing the function of other modules. However, at the same time they are cooperating
into new functions and contributing to disease’s clinical manifestations or progression.

Phenotype is a biological entity that could be applied to the level of molecules or networks
or to the level of the clinical stage, and it encompasses a group of characteristics that could easily
be identified as such. In the present paper, the term phenotype or model is addressed only to the
clinical level and describes “appearances” of a disease process with clinically distinct or meaningful
pathophysiological characteristics [38]. The term “clinical phenotype” is a mode of expression that
incorporates anatomic, physiologic, biochemical and genetic parameters as well as clinical behavioral
traits and complex interactions with a variety of intrinsic and extrinsic environmental factors [39].
Clinical phenotypic endurance to genetic, molecular or environmental perturbations characterizes
the robustness of the disease phenotype. This phenotypic stability points to favorable adaptation to
disturbed health equilibrium while phenotype’s robustness and behavior are controlled by constraints
imposed by downward causation. However, when these perturbations exceed an upper limit of
resistance then robustness is interrupted, with amendment of the phenotype features.

6. Repercussions to Clinical Cardiology

6.1. Personalized Medicine

Classical description of cardiac diseases in medical literature and guidelines are marked by
their limited conception of disease genesis, progression and personalized treatment. With systems
biology approach disease management or therapy is individualized with the complacent thought
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of “the most appropriate therapy should be adjusted to the patient’s needs” [40]. Personalized
medicine is the application, to individual patient, of the holistic methodology of systems biology
for a tailored and unique medical care. It is based on the integration of accumulated data from
molecular stores, sequencing genomes, bioinformatics and biological or clinical networks [40].
In addition, biological and clinical networks integrate and interpret data from transcriptome,
metabolome, proteome, comorbidities, environmental parameters and nutrition peculiarities.
Patient-centered health policies are using all these variables in an attempt to improve follow-up
of cardiac diseases from genesis to progression and phenotype construction.

The medical practitioner should address the patient as a person and not only inquire about clinical
parameters or symptoms. For example, the experienced cardiologist should not address only angina
as a symptom in patients with CAD, but, also, inquire about the patients’ whereabouts, personal or
family medical history and personal preferences for the mode of treatment. All biological and clinical
parameters involved in CAD like comorbidities, genetics and dietary practices, are integrated and
conceived as a whole before prevention and therapy are undertaken. The patient is the primary object
of interest having in mind that the exact pathogenic process underlying a complex cardiac disease is
varied and disease phenotype is not always the same.

Systems biology uncovers biological pathways not previously comprehensible, identifies
concealed biomarkers and generates novel therapeutics from isolated genes, metabolites and other
biological substances. Personalized medicine is closely associated with applied methods for designing
novel drugs. Systems approach, using molecular biomarker specific characteristics, improves “drug
discovery and drug development process-encompassing a better molecular understanding of disease
process, drug safety profiles and drug efficacy” [41]. The same authors claim that “novel therapies
based on such molecular-system-based approaches are very appealing, but still they are in their infancy
due to limited accessibility of robust and affordable molecular systems biology platforms” [41].

Ayers and Day [42] emphasize the idea that systems medicine “become one of the mainstays
. . . of future research . . . not only for extracting further mechanistic knowledge . . . but also for
faster and more effective drug development”. Connection of biological information with electronic
medical records intends to revolutionize public health and clinical medicine with preventive and
therapeutic programs more appealing to individual patient [43]. Translation of novel discoveries in the
field of biomarkers and pharmacotherapy and their clinical implementation will eventually increase
potential for personalized interventions. The Biochemical Pharmacology Discussion Group in a recent
presentation described two major methods for designing pharmaceutical drugs; the traditional drug
discovery (TDD) and the phenotypic drug discovery (PDD) [44]. The TDD method is “empiric design”
and “researchers target a particular domain or protein after working to understand its mechanisms
and molecular biology” while in PDD preferable method “many different compounds are tested on a
system until one results in an observable phenotype of success, and the compounds’ mechanisms of
action are not considered” [44].

There is a basic difference in clinical application of medical knowledge as it is extracted from
various Practice Guidelines and as it is determined by the concept of Personalized Medicine. Guidelines
are directed at populations and ignore pertinent factors related to individual patient like personal
or family medical history and individual preferences towards disease management and therapy.
Moreover, guidelines disregard differences in therapeutic effect of pharmacologic agents as well as
interactions between drugs commonly seen in patients treated with multiple therapeutic medications.
The concept of personalized medicine is based on the position taken by patient’s clinical practitioner
who decides according to patient management inclination and disease variability and complexity [45].

6.2. Complex Cardiac Diseases

Systems biology application to clinical field, as systems medicine, is based to identification of
important molecular and environmental interactions that affect genesis and progression of cardiac
diseases. These interactions extend from intermolecular and network levels up to clinical level of
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modules and phenotypes. Clinical thinking in chronic diseases follows both directions of study,
bottom-up and top-down, with interexchange of information between various stages (disciplines) of
the disease (Figure 3). Cardiac complex diseases are multifaceted in origin with numerous variables,
intrinsic (genetic, molecular, inflammatory) and extrinsic (environmental) to interact vigorously
(Table 1).

Table 1. Clinical understanding of chronic cardiac diseases with reductionism and systems
biology approach.

Medical Applications Reductionism’s Objectives Systems Biology
Holistic Strategy

Clinical focus Isolated clinical parameters
Interactions between components,
like molecules, networks, modules,

models (phenotypes)

Prevention Isolated culprit molecular and
environmental parameters

As an entity the whole range of
culpable variables

Diagnosis Isolated molecules, biomarkers,
signs, symptoms The patient as a “diseased person”

Therapy Treating causes and symptoms Treating the patient from an
holistic perspective

The term “environmental” includes true external to the patient factors as well as comorbidities
which participate in the demise of the patient. This unstable process is extended in time (chronic
disease) and space (multi-organ process). Chronic and spatial variables are important not only for
pathogenesis but also for disease progression.

6.3. Progression of Heart Failure

The assumption that the HF syndrome is a complex adaptive system could be used to understand
the nature of HF clinical progression. The HF syndrome demonstrates a progressive clinical
deterioration with characteristics of a dynamical and non-linear system with chaotic behavior [19].
The clinical deterioration of HF has the features of a complex and unstable system that is stabilized with
a self-organized positive feedback neurohormonal and left ventricular remodeling mechanisms [19].
Therefore, the clinically progressive course of HF is determined decisively by the built-in mechanisms
of neurohormonal compensatory regulatory systems and left ventricular remodeling compensation.
HF syndrome is characterized by periods of clinical stabilization interrupted by periods of clinical
instability. There is no effective therapy to strengthen stable equilibrium periods or to prevent instability
and progression to final clinical stage [18]. Mann and Bristow [46] described the behavior of heart
failure (HF) syndrome with systems biology approach and construction of clinical modules and
models. They distinguished specific clinical syndromes or clinical models like cardiorenal model,
cardiocirculatory or hemodynamic model, neurohormonal model and biomechanical model [46].
It is crucial to acknowledge that HF syndrome is a modular construction with predictable behavior
of functional clinical models that involves biochemical networks, cellular and regulatory systems,
and myocardial dysfunction [18,47]. The systems biology approach intends to identify molecular
networks and regulatory systems that are linked to clinical properties. The role of individual genes
in the pathogenesis and clinical progression of HF is limited to the field of hypertrophic and dilated
cardiomyopathies which are caused by gene mutations. Hundreds of mutations were found in patients
with hypertrophic cardiomyopathy responsible for different phenotypes. In general, some HF patients
possess a complex multigenic inheritance but the significance of individual genes in pathogenesis
and progression of HF is limited. In the HF process the role of transcriptomics, proteomics and
metabolomics is increasing [18]. This enhances the possibility for early HF diagnosis with specific
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biomarkers and increases the chances of more precise treatment. However, in HF, the complete genetic
network system and gene expression are still uncertain, and the whole of interactions between genomic,
transcriptomic, proteomic and metabolomic systems are unknown. The metabolomic profile of patients
with HF is based on circulating established biomarkers like the B-type natriuretic peptide (BNP) useful
for diagnostic and prognostic reasons. Recently, attention was focused on the presence of various
metabolites due to the diminished fatty acid oxidation, increased anaerobic glycolysis and ketone body
oxidation, and impaired metabolism of branched-chain amino acids that occur in HF patients [48].
Thus, the HF process is complex and this, together with our fragmentary knowledge about the exact
pathophysiology and progression, makes the creation of a complete HF network modeling difficult.
The objective of the systems biology is the construction of novel networks, modules and models, and
their integration with the existent ones. At the present time it is impossible to possess all the pertinent
networks related to HF and merge them in a satisfactory clinical phenotype.

The clinical phenotype of patients with reduced ejection fraction (HFrEF) is extensively studied
and understood but the clinical phenotype and natural history of patients with preserved ejection
fraction (HFpEF) remain poorly defined [49]. The subclinical progression of the pre-clinical diastolic
dysfunction (PDD) to the classical clinical phenotype of HFpEF is incompletely understood [49].
In HFrEF syndrome, systems biology approach explains better the importance of neurohormonal
compensatory regulatory mechanisms like SAS, NPS and RAAS. The neurohormonal regulatory
mechanisms are functional elements (modules) which together with left ventricular remodeling
compensation are capable of stabilizing clinical progression, but not capable of preventing instability
and progression to the last stage. Probably systems biology will provide more tools to understand
the sequence of events in HFpEF and also to modify progression and final demise. The clinical
understanding of HFpEF syndrome is increasing when examined with systems biology methodology,
instead of the classical Oslerian method. Extensive prospective studies are required to comprehend
the natural history of clinical progression in HFpEF patients and to determine the associated
neurohormonal and left ventricular remodeling mechanisms that are involved [49].

6.4. Progression of Coronary Artery Disease

Atherosclerosis is the main cause of the sub-clinical and clinical forms of CAD and cerebrovascular
diseases [50]. A sigmoidal (S-shaped) curve of development depicts atherosclerotic plaque and
CAD progression “with a slow initial growth period of 30–50 years, followed by a fast expanding
asymptomatic period of 10 years, and eventually by a final period with clinical symptoms” [20,51].
Genome-wide association studies (GWAS) were used to study complex diseases like CAD in order to
identify loci connected with a particular disease. Bjorkegren et al. [51] declare that systems genetics
are “a complementary approach to unlocking the CAD heritability and etiology”. They mention
that GWAS recognize 153 possible CAD loci with 46 of those having genome-wide significance.
These loci collectively can explain only <10% of genetic variance of CAD while the remaining 90%
of CAD heritability is related to environmental factors. Genetic and environmental factors are two
independent entities contributing to disease [51]. Thus, genetic contribution through mutational
changes in many genes involved in genesis and progression of atherosclerosis has limited significance.
The CAD loci identified by the GWAS are mainly associated to the early atherosclerotic course rather
than to the later phases of the atherosclerotic clinical disease phenotypes. The GWAS approach is not
able to recognize and explain the pathological changes and clinical progression of CAD phenotypes [21].
To extract more information in order to evaluate the heritability of CAD by both common and rare
variants and to assess more accurately the clinical utility of genetic risk scores, very large sample
sizes in mega-biobanks of at least half a million participants are needed [52]. Atherosclerotic process
is a complex phenomenon involving epigenetic adjustments which are adapted and programmed
to various gene expressions. Feinberg and Fallin [53] described epigenetics as the “information
transmitted during cell division other than DNA sequence per se”. Proposed examples included
“(1) DNA methylation . . . (2) posttranslational modifications of nucleosome proteins . . . and (3) the
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density of nucleosomes . . . ” [53]. Recently, epigenetic changes and DNA methylation developed into
a new field exploring atherosclerotic processes [54]. It seems that both genetic and lifestyle risks are
independently related to development of CAD. Epidemiological and clinical trials established that
various risk factors like lipoproteins, smoking, hypertension, diabetes and unhealthy lifestyle behavior
are associated to atherosclerotic plaque pathogenesis and gradual progression to atherosclerotic disease.
In a recent study “after quantifying both genetic and lifestyle risk among 55,685 participants” it was
found “that adherence to a healthy lifestyle was associated with a substantially reduced risk of coronary
artery disease” [55].

The new discipline of proteomics is focused on the characteristics of proteins in all biological
systems including cells and tissues and their participation in health and human diseases. The role
of proteomics in human diseases is more complicated as the complexity involves genetic variants,
changed proteomes and environmental factors. All these parameters are integrated and interacted with
limited predictive capability for the natural history of clinical progression. There are wide applications
of proteomics in cardiovascular diseases as they are the identification of circulating protein biomarkers
and the recognition of diseases’ pathophysiological mechanisms and potential therapeutic targets [56].
The evolution of isoform proteomics has significant consequences for cardiovascular research and
probably for clinical application. In cardiovascular diseases these isoforms are represented “with
differential expression levels or patterns, localizations, interactions, and post-translational modification
in different cell types and during disease progression”[56]. These isoform changes are described
during disease progression in ischemic cardiomyopathy, dilated cardiomyopathy, aortic stenosis and
hypertrophy [57,58].

Metabolomic technologies allow us to quantify specific metabolites that reflect disturbances of
myocardial metabolism. The main methods that estimate simultaneously a vast number of metabolites
are the nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) [59]. Myocardial
metabolism is altered in heart diseases like in atherosclerotic process, CAD and HF. In addition,
diabetes and obesity that are comorbidities associated to heart diseases and affecting many organs
are responsible for generalized metabolic disturbances. Measuring specific metabolites the diagnostic
and prognostic picture of a heart disease is becoming more realistic and more manageable. Metabolic
processes are supporting cellular functions and participate in the well being of cells and tissues.
Significant primary cellular function is the generation of energy in the form of adenosine triphosphate
(ATP) from metabolically active energy sources. In heart diseases, energy cellular changes contribute
to the cardiovascular pathology. Ussher et al. [59] emphasize that “during cardiometabolic disease
progression, metabolic pathways are often perturbed and lead to the accumulation or loss of various
metabolites that can be detected in the circulation via metabolomic profiling”. In patients with
myocardial ischemia during exercise stress testing reduction of some metabolites of tricarboxylic
acid (TCA) cycle, due to decrease in oxidative metabolic activity, was observed [60]. In ischemic
myocardium both fatty acid and glucose oxidation rates are significantly decreased. Those changes
are provoking important reduction in the myocardial extraction rate of free fatty acids and they are
increasing the myocardial lactate [61,62]. Metabolomic profiling is an important screening procedure
in order to predict subclinical atherosclerosis and identify patients at risk for early CAD. A number of
circulating metabolites like the circulating trimethylamine-N-oxide and lysophosphatidylcholines are
considered potential biomarkers which increase the risk of cardiovascular incidents [63,64].

Research on atherosclerotic plaque rupture reveals cellular and molecular processes that are
fundamental for atherosclerotic plaque progression, from fatty streaks to intermediate lesion, up to
the stage of plaque rupture and clinically important artery obstructive lesions [65,66]. Complexity
of the atherosclerotic process and progressive nature of the sub-clinical and clinical obstructive
coronary disease are meticulously explained and validated within the framework of systems biology.
Intraluminal rupture of a non-obstructive plaque can produce a thrombus with partial or complete
artery blockage and appearance of an acute coronary artery syndrome. An unbroken plaque eventually
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will grow and progress to a lesion which can obstruct the arterial lumen and induce symptomatic
coronary obstructive disease [67].

Integration and translation of recent discoveries in the field of cellular and molecular domains
that are related to genesis and progression of atherosclerotic plaques can increase our understanding
for sub-clinical and clinical appearances of CAD. Molecular advances have reiterated the importance
of low density lipoprotein (LDL) receptor expression on the level of LDL concentrations. Rise of
LDL receptor expression lessens LDL levels and diminishes genesis or progression of atherosclerotic
plaques. More than 1000 mutations in gene encoding LDL receptor were reported in a database
for familiar hypercholesterolemia patients [68]. Lately was identified a mutation in the gene
encoding protein 6 of LDL receptor (LRP6) in a family with autosomal dominant premature CAD and
metabolic syndrome [69]. Lipoproteins and metabolism are interconnected and lead to atherosclerosis.
Accumulated knowledge of LDL and high density lipoprotein (HDL) metabolism contributes to
discovery of inhibitors of HMG-CoA reductase, drugs that are familiar as statins [67].

Other fields of research have been developed in order to identify culprit atherosclerotic
targets which are considered important to follow-up progression of atherosclerotic process and
myocardial ischemia. Recent procedures in imaging and computing data analysis improved disease
understanding. Frueh et al. [70], describe a strategy based in 3-D imaging and computational
methods in order to identify endothelial cells of interest covering atherosclerotic plaques in relation
to biomechanical factors like shear stress and wall stress. The above applied methodology aimed
to identify new signaling pathways and their reaction to blood flow with intention to increase
understanding of mechanotransduction on endothelial cells and expand therapeutic potential [70].
Integration of biological and biomechanical factors constructs functional networks significant for
further understanding of genesis and progression of atherosclerosis to clinical phenotypes. In coronary
arteries, there is significant link between concentration of circulating plasma LDL and turbulent flow
in areas of bifurcations or curbs. It was found that “in a top-down direction, in areas of bifurcation or
trifurcation, the wall shear stress (WSS) is changing endothelial cells’ genes expression, which, in a
bottom-up direction, promotes arterial remodeling and atherosclerosis” [20,71,72].

In atherosclerotic plaque destabilization process, many complex cellular and molecular
mechanisms are involved. These mechanisms are not fully comprehended and many of those are
questionable for their significance [73]. Szostak et al. [74], in ApoE−/− mouse aorta, constructed an
“atherosclerotic plaque destabilization biological network model with the semi-automated curation
pipeline, Biological Expression Language Information Extraction Workflow (BELIEF)”. They concluded
that “network models combined with the network perturbation amplitude algorithm provide a
sensitive, quantitative method to follow disease progression at the molecular level” in order to
“investigate and quantify molecular mechanisms during plaque progression” [74]. However, biological
network models (BNMs) responsible for atherosclerotic plaque destabilization and able to quantify
significance of biological processes in CAD, are not yet feasible [74,75].

The importance of the immune system in response to myocardial ischemia is recently reviewed
with emphasis to imaging of immune activity in organs implicated in CAD [76]. Nahrendorf et al. [76]
believe that control of the immune system’s post-myocardial infarction activity could possibly diminish
re-infarction probability and HF appearance. Positron emission tomography (PET) with the use of
18F-fluorodeoxyglucose (FDG) stored in metabolically active cells can be used to mark inflammatory
networks involved in myocardium, vessels and other target tissues. This way, most probably, PET
findings combined with magnetic resonance imaging (MRI) data could decode systemic inflammatory
networks in atherosclerosis or CAD in a pre-clinical stage or after ischemic events [77].

In general and in contrast to reductionist approach, systems biology strategy is a scientific method
demanding “foundational questions” in order to study complexity as “the relationship between the
whole and its parts” and to pursue complex cardiac diseases [18,78].
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7. Conclusions

Chronic cardiac diseases like HF and CAD are complex adaptive systems promoted by integration
of various genetic, molecular and environmental factors and approached with the holistic methodology
of systems biology. Human HF and CAD are considered as self-organized biological systems,
progressive in nature, which could be explained successfully with systems biology approach. Systems
biology methodology provides important tools for biological and clinical analysis of complexity which
characterizes cardiac diseases. Systems biology approach implicates two directions of study, bottom-up
(genes to phenotypes) and top-down (phenotypes to genes), and provides leveled understanding of
disease progression. In addition, it is explaining the emergent (upward direction) functional properties
of disease in each level of progression and describes the imposed constraints (downward direction)
that establish robustness for modular stability and phenotype disease progression.
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