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Abstract: Electronic health records contain the patient’s sensitive information. If these data are
acquired by a malicious user, it will not only cause the pilferage of the patient’s personal data but
also affect the diagnosis and treatment. One of the most challenging tasks in cloud-based healthcare
systems is to provide security and privacy to electronic health records. Various probabilistic data
structures and watermarking techniques were used in the cloud-based healthcare systems to secure
patient’s data. Most of the existing studies focus on cuckoo and bloom filters, without considering
their throughputs. In this research, a novel cloud security mechanism is introduced, which supersedes
the shortcomings of existing approaches. The proposed solution enhances security with methods
such as fragile watermark, least significant bit replacement watermarking, class reliability factor,
and Morton filters included in the formation of the security mechanism. A Morton filter is an
approximate set membership data structure (ASMDS) that proves many improvements to other
data structures, such as cuckoo, bloom, semi-sorting cuckoo, and rank and select quotient filters.
The Morton filter improves security; it supports insertions, deletions, and lookups operations and
improves their respective throughputs by 0.9× to 15.5×, 1.3× to 1.6×, and 1.3× to 2.5×, when
compared to cuckoo filters. We used Hadoop version 0.20.3, and the platform was Red Hat Enterprise
Linux 6; we executed five experiments, and the average of the results has been taken. The results of
the simulation work show that our proposed security mechanism provides an effective solution for
secure data storage in cloud-based healthcare systems, with a load factor of 0.9. Furthermore, to aid
cloud security in healthcare systems, we presented the motivation, objectives, related works, major
research gaps, and materials and methods; we, thus, presented and implemented a cloud security
mechanism, in the form of an algorithm and a set of results and conclusions.

Keywords: COVID-19; cloud computing; digital artifacts; Morton filter; E-health records

1. Introduction

The availability of medical records, in the digital form, has played a significant role
during the first wave of COVID-19. There was no medicine and vaccine during the first
wave of this deadly virus in the year 2020. The only way to combat this zoonotic virus
was to maintain social distance. During the second spike of COVID-19, in the month
of June 2021, when millions of people had been administering jabs of vaccine every day
worldwide, the most prominent method to control this virus was social distancing. Many
experts have designed machine learning algorithms to detect the coronavirus in a suspect.
After the confirmation that the person is suffering from coronavirus, consultation with
the qualified medical practitioner is required. Cloud computing has performed and is still
performing a prominent role in the area of E-health services during this pandemic. The
area of applications of cloud computing has been widening day by day. It is considered
one of the most cost-efficient computing paradigms. At the same time, researchers and
scientists criticized the cloud ecosystem [1] and services, due to the lack of digital forensic
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tools and technologies applied in the cloud computing environment. No technology or
paradigm of computing can be declared as a 100% fool-proof secure system. This poses
that the privacy and security of patient’s information and records must be ensured. Digital
medical transcripts are of great importance, as the overall diagnosis is dependent on these
reports, and any tampering with the transcripts might be life threatening. To investigate
any tampering or modification in the patient’s data, digital forensic techniques must be
used. Cloud forensic investigation [2] is of the prime concern today, due to the availability
of sensitive data, such as medical and financial on the cloud. There is extreme necessity
to take immediate action, such as seizing artifacts quickly, acquiring the evidence, and
analyzing the dossier in a timely manner. There is a possibility that digital artifacts may be
tampered or modified while transferring from cloud infrastructure to the cloud forensic
investigation team. In addition, the seized digital artifacts must be reliable and impeccable.
It is the need of the hour to design a framework [3] to ensure the reliability of these seized
digital artifacts. The present article focuses on the development of a mechanism, which
is specifically designed to point out the location of modified or altered artifacts, while
moving from the cloud infrastructure to the forensic investigation team. In this article, we
represent a space-efficient scheme, which is specifically designed to find out the position
of modified digital artifacts. The principal advantage of this mechanism is that it can be
comfortably integrated into various available forensic transmission schemes. Furthermore,
this designed mechanism is used to locate the position of tampered data in a hierarchical
block. To achieve this, a novel algorithm is designed, with the help of the Morton filter [4].
The major property of this system is that it is based upon space-efficient probabilistic data
structure, which can be applied to verify whether an element belongs to a specific set or
not. The Morton filter is selected, due to its high throughput, when compared with other
probabilistic data structures, such as cuckoo, semi-sorting cuckoo, and rank and select
quotient filters. Another data structure that is used to store the metadata at the application
level is stack. When the modified digital artifact is detected, the proposed algorithm can
promptly locate it and reveal its position in the hierarchical block.

The rest of this paper is organized as follows. Section 2 describes the motivation, main
objectives of the proposed mechanism, related works, and major research gaps. Section 3
explains the mechanism design, along with explanation of symbols used in the mechanism.
Section 4 introduces the working of the system and introduction of designed algorithm.
Section 5 explains the functionality of the algorithm. Section 6 highlights the benefits of
using the Morton filter. Section 7 presents the performance evaluation and results. Finally,
we give concluding remarks in Section 8.

2. Motivation

In cloud-based healthcare systems, the treatment of the patient is dependent upon
digital medical transcripts. The reliability and accuracy of these medical transcripts must
be ensured during the transfer of E-health records from patient to doctors. Cloud forensic
is a prominent digital forensic technique that can be applied to perform examinations in
cloud-based systems. The result of forensic analysis is dependent upon the digital artifacts.
The reliability of digital artifacts is one of the most important objectives to achieve in the
entire forensic process. When the job of collection of artifacts is over, then the phases of
identification, collection, preservation, analysis, examination, and presentation start. Even
after the completion of analysis, all the artifacts must be preserved [5]. Any alteration
or tampering of digital artifacts will break the chain of custody. In each service model
of cloud computing, forensic investigators have demonstrated the procedure to perform
live forensics. There are various challenges that revoke the live cloud forensics in real
applications, and we are discussing some of them. When digital artifacts are seized from
the channel, it must be promptly transferred to the forensic analysts. If it is required to
retransfer the altered or tampered data [6], then it must be ensured that only the part of
altered data or artifact is transferred and not all of the data. In such a way, it is economically
feasible for forensic analysts to find out the position of tampered digital artifacts. Another
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major problem in sending the digital artifacts as streaming data packets is the absence
of metadata and other semantic values. It is a tedious and complex task to relocate the
corrupted or altered data within a hierarchical block of artifacts during real-time analysis.
It is possible to transfer raw data and metadata simultaneously to handle the problem, but
it will not be economically feasible for the organization. Moreover, it will slow-down the
entire process, and redundancy in the metadata can occur at some level. Therefore, an
effort has been made to develop a mechanism to find the location or position of altered,
modified, and tampered data in a block of data hierarchy. The fundamental motivation
of this mechanism is that it specifies the position of tampered data within a block of data
stream [7]. This mechanism takes the benefits of the Morton filter [8] and a stack [9] to
place and fetch the metadata on the application level. When the altered data is identified,
the mechanism can restrain it immediately and conveys its position in the hierarchical
block. Hence, this space-efficient mechanism can be applied to ensure the reliability of
digital artifacts in cloud forensics [10] for cloud security [11].

2.1. Objectives of the Mechanism

The principal objectives of the proposed security mechanism are given below.

• Various secure, cloud-based healthcare systems were designed with probabilistic data
structures, such as cuckoo [12], bloom, and attribute bloom filters. The most advanced
and efficient filter is the Morton filter, and it is the best approach to design a cloud
security mechanism with Morton filter as throughput, when compared with other
probabilistic data structures.

• Designing a security mechanism that provides secure data storage in cloud-based
healthcare systems.

• Employing fragile watermark that has the capability to find any tampering of data
and digital artifacts.

• Designing a generic security mechanism that can be applied to various cloud-based
healthcare systems.

• Realizing a performance evaluation of the proposed security mechanism, based on
metrics such as throughput for lookups, insertions, and deletions load factor, but also
by making a security and privacy analysis and assessment of the designed security
mechanism, by comparison with other similar approaches.

2.2. Related Works

Various data structures have been used over the years by researchers to accomplish
the task of tamper detection. A non-binary Merkle tree can be used in case of a hierar-
chical dataset whenever there is a limited number of operations. This method has been
applied only for the case of hierarchical data and is not applicable for streaming data. Code
self-checksumming has been implemented to detect static and dynamic patches, delivered
by potentially unwanted programs (PUP) [13]. This tamper detection mechanism was
able to checksum instruction with the combination of absolute address and relocation.
Proof of past data possession (PDDP) [14] contains the data possession proof to check
whether the user originality possessed the evidence or not. As per this mechanism, it is
possible for the user to delete the records from the storage, but PDDP modification is not
possible. Bloom filter storage was used in this mechanism. Tamper evident logs were
used for forensic purposes. This method was based upon regular and continuous auditing.
Tamper evident log design was completely dependent on the Merkle tree, and it allows
a logger to furnish the proof of its functioning. Cryptographic, one-way hash functions
were used to develop the mechanism. Database management system stores the audit logs.
Authors explored a novel idea to provide audit logs to detect tampering effectively in
transaction processing systems. The cuckoo filter has been used to develop a fast tamper
detection mechanism for the hierarchical data in cloud forensic. The authors claimed that
the designed mechanism has full compatibility with existing forensic data transmission
schemes. The bloom, cuckoo, and counting bloom filters have been implemented to verify
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the reliability of digital artifacts. In barcode recognition and processing [15], the bloom
filter performed a significant role. The single-hash lookup cuckoo filter [16] was used,
with one hash function, to find out any specific item. Redundant records can be identified
by implementing the accurate counting bloom filter [17]. Remya et al. [18] presented a
mechanism for the security of critical electronic health records (EHRs). In this mechanism,
security can be achieved with the support of identity-based secure and encrypted data-
sharing techniques. Multiple solutions were suggested to secure cloud-based data and
records in e-health systems. Security threats and attacks [19] in cloud computing were
discussed in detail. Various types of machine learning algorithms were investigated and
implemented as a tool to provide security in cloud computing applications. Secure and
efficient digital data sharing system for cloud environments [20] have been extensively
developed and scholars have presented a cloud-based, student-centered mechanism to
solve the problem of user management. The system was based on Lagrange interpolating
polynomials. To secure software-defined networks (SDNs) [21] from threats and attacks,
a system was proposed that utilizes the benefits of software-defined networks character-
istics, along with data mining, to find any malicious activity in the data plane of SDN.
Qiang et al. [22] explained the role of digital technologies to control the coronavirus spread.
Digital technologies, such as cloud computing, artificial intelligence, internet of things,
wearable devices, blockchain technology, and 5G communication networks, have played an
irreplaceable role with public health systems in controlling the second wave of COVID-19
in China. Cloud and network security was achieved by applying network and cloud
forensics, in association with software-defined networking. Recommendations were given
by the authors to apply security and privacy in cloud forensic by using static, dynamic,
and remote cloud forensics by Quadri et al. [23]. Shangbin et al. [24] demonstrated a
framework that can be used to eliminate the effects of noise and anomalies by implement-
ing robust online evolving anomaly detection (ROEAD) and a robust feature extractor
(RFE). A comprehensive analysis, in the area of cloud computing, enabling the internet
of things was performed. Privacy protection models, frameworks, and methods were
explored. Key challenges, threats, and attacks in cloud computing security were discussed
by Tahirkheli et al. [25]. A security and privacy-preserving mechanism was developed
to maintain the integrity and confidentiality in electronic health records of patients. It is
economically feasible to store, process, and update the electronic data of patients in cloud
computing [26]. Graph models [27] were developed and tested to provide security in cloud
computing. Cryptographic threshold techniques were applied, along with intelligent secret
management and data sharing techniques. Seh et al. [28] discussed the simple moving
average and simple exponential smoothing methods, in order to investigate data breaches
in healthcare systems. Results of the time series analysis revealed that the cost of data
breaches and number of data breaches will increase in near future. Liu et al. [29] proposed
a system based on blockchain and distributed ledger-based improved biomedical security
system (BDL-IBS), in order to strengthen privacy and security in healthcare applications.
Chadwick et al. [30] designed an architecture for sharing the cyber threat information. It is
a five trust model, which is based upon five levels. Data sharing agreements (DSA) and
data protected objects (DPOs) are important constituents of the architecture, and these
constituents perform a significant role in the successful implementation of cloud-edge
based data security architecture.

2.3. Major Research Gaps

The related work and research studies draw an intense observation that security and
privacy for healthcare systems in cloud computing is enormously challenging. Thus, we
are able to find significant gaps and shortcomings of previous studies. A preliminary
review of the research literature reveals that, despite the abundance of work in the area
of cloud-based healthcare system security and privacy in electronic health records, there
is a need for studies that can present the findings and analyze the limitations of previous
studies, in terms of probabilistic data structures, such as the cuckoo, bloom, semi-sorting
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cuckoo, and rank and select quotient filters. To identify the research gaps, articles between
2016 and 2021 were analyzed. Table 1 summarizes work on the cloud-based healthcare
system security and privacy of electronic health records, through various probabilistic data
structures. As shown in Table 1, the majority of the security mechanisms are designed
on bloom and cuckoo filters. None of the mechanisms were designed on the basis of
Morton filter, which is considered one of the most efficient probabilistic data structures [8].
Filling this gap, we have designed a Morton filter-based security mechanism for healthcare
systems in cloud computing. Another major gap is that no cloud security mechanism has
been developed with the integration of least significant bit replacement watermarking and
class reliability factors. Our proposed security mechanism, for the healthcare system, is
developed with least significant bit replacement watermarking. No cloud security system is
capable of performing the reliability test on digital artifacts in cloud forensics. Our proposed
mechanism is capable of performing reliability tests on the acquired digital artifacts.

Table 1. Security and privacy mechanisms, designed with probabilistic data structures.

Reference DataStructure/Technology
Used

Cloud-Based
Healthcare System Contribution

Ying et al.
(2021) [31] Cuckoo Filter No

Suggested a security-enhanced attribute cuckoo
filter to hide the access policy and designed
ciphertext-policy attribute-based encryption

Xie et al.
(2021) [32] Cuckoo Filter No

Proposed a lattice signature method, with
Cuckoo filter, that can simplify the

computational overhead

Kumar et al.
(2021) [33] Bloom Filter Yes

Explained technique to protect cloud datasets
with bloom filter, based ciphertext-policy

attribute-based encryption

Cano et al.
(2020) [34] Elliptic Curve Cryptography Yes

Presented a solution to achieve security and the
preservation of data privacy in internet of

medical things and the cloud
Breidenbach et al.

(2020) [35] Bloom Filter No Discussed privacy-preserving concept, by using
bloom filter and cryptographic functions

Shi et al.
(2020) [36] Block Chain Yes

Investigated various approaches of E-health
records in blockchain technology and proposed

different applications of healthcare in blockchain
Adamu et al.
(2020) [37] Laravel Security Features Yes Proposed a framework that can be used to apply

security and privacy to electronic medical record
Breslow et al.

(2019) [8] Morton Filter No Designed a mechanism to prove that the Morton
filter is an improvement over the cuckoo filter

Jeong et al.
(2019) [38] Bloom Filter No

Proposed a secure cloud storage service, on the
basis of bloom filter and provable data

possession model
Patgiri et al.
(2019) [39] Bloom Filter No Explored the adaption of bloom filter in network

security, packet filtering, and IP address lookup.

Ming et al.
(2018) [40] Cuckoo Filter Yes

Designed an attribute-based signcryption
scheme (ABSC) for privacy-preserving in

electronic health record

Decouchant et al.
(2018) [41] Bloom Filter No

Presented a bloom filter-based novel filtering
method that can be applied to reads of

any length

Ramu (2018) [42] Attribute Bloom Filter Yes

Proposed a secure cloud mechanism to share
health records among various users, using

ciphertext-policy attribute-based encryption and
attribute bloom filter

Brown et al.
(2017) [43] Bloom Filter Yes

Discussed privacy-preserving record linkage
(PPRL) model, along with bloom filter, to

overcome the problems of data integration
and privacy

Vatsalan et al.
(2016) [44] Counting Bloom Filter Yes

Proposed a novel method to provide privacy for
multi-party privacy-preserving record linkage

with counting bloom filter

ABSC: attribute-based signcryption scheme; PPRL: privacy-preserving record linkage.
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In this research work, the Morton filter has been used, due to better insert, delete,
and lookup throughput. The Morton filter [8] is compared with the cuckoo, semi-sorting
cuckoo, and rank and select quotient filters, as all these are space-efficient probabilistic data
structures. These data structures can be implemented to check that a particular element is
a member of a set or not.

3. Discussion

The study proposes a new Morton filter-based security mechanism for healthcare
systems in cloud computing to provide the security and to maintain the integrity of
electronic health records. The most important issue, which is resolved in this research
article, is how to find out the position of altered data or artifacts from the hierarchical block.
A block can be defined as B = {b1, b2 . . . bn}, where bi (1 ≤ i ≤ n) is an indivisible data
constituent available in the block. The data constituent can be further divided into the
p data class, such as B = {C1, C2 . . . Cp} (1 ≤ r ≤ p). A data class Cr can be demarcated if,
and only if, its last constituent br

0 of class Cr can be considered as the boundary integral
element of Cr. While acquiring the digital artifacts, a hierarchical block structure can be
generated as a tree. A class of data entities, such as a records, can be formed as an internal
node of a tree, whereas a slice of data element can be taken as a terminal node of the tree.
Moreover, along with data class Cr, another significant class is described as the demarcated
class Cd, in this Cd (value = Hash (fdri) (1 ≤ i ≤ 0) Cd.group ∈ { “€”, “£” }). Presented as a
block of data in the form of a tree that is traversed with iterative deepening bidirectional
search [45]. Two inputs are given in Cd and in a hierarchical block, one is “€”, which is
inserted before an internal node is traversed; the second is “£”, and it is inserted when a
terminal node has been traversed.

Figure 1 illustrates the demarcated class and the moment of inputting into the tree.
Nodes will be traversed in the following order: Fdr0, Fdr1, fl1, fl2, Fdr3, fl6, Fdr2, fl3, fl4,
fl5. The designed tree depicts that the internal nodes are Fdr0, Fdr1, Fdr2, Fdr3. Hence, a
demarcated class of “€” is inserted. Similarly, a demarcated class of “£” is entered after the
traversing of their sub-trees.
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Figure 2 shows the flow of operations in the designed mechanism, which executes
the system and consists of five major constituents: LSB replacement watermarking mech-
anism [46], accommodative extractor [47], watermark validator [48], packet builder, and
positional details. The transmitting data is classified into data classes Ci (i = 1, 2 . . . n).
The hash values of class Ci are calculated as HCi = H(Ci) (i = 1, 2 . . . n), where H is taken
as a hash function [49]. Two contiguous class hash values are grouped and computed
simultaneously as H (H(Ci) || H (Ci+1), it is denoted as the class reliability factor (CRF).
The dependability in CRF can be achieved with the private key [50] is given by the sender.
The CRF will be implanted, such as fragile watermarks [51], within the packets. Fragile
watermarks have the capability to detect any modification or tampering of data. After the
delivery of the data packet, the accommodative extractor initially extracts the watermark
associated with that packet.
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At the same time, raw data is required to calculate CRF, and if the value of calculated
CRF matches with the extracted watermarks, then it will be considered that the data class
is without any alteration or tampered data; else, the class will be treated as an altered
class. For more details, regarding the algorithm for the detection of malicious activity,
watermarking as a service (WaaS) [52] can be used.

4. Materials and Methods

After inputting the demarcating class in the data stream, the location of altered or
tampered data can be found from the hierarchical block (tree). Various well-discussed data
structures are available that can be used for the purpose of designing the data block, such as
tree, hash map [53], block chain, and link list. The primary glitch in all these data structures
is the requirement of more and more space when private keys are attached with the data
structure. Therefore, it is significant to use a space-efficient probabilistic data structure [54]
for the storage of internal nodes. The Morton filter, an approximate set membership
data structure, is used to overcome the problem. It is an improved data structure, when
compared with bloom [55] and cuckoo filters [56], in terms of space-efficient insertion,
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deletion, and lookup. An algorithm named as identify_positions (Algorithm 1) has been
designed, and it explains the algorithm that can detect the position or location of modified
or tampered data in the hierarchical block. Four inputs are given: an uninitialized Morton
filter (MF), a data stream (DS), an empty stack (TK), and a counter initialized as 0. It
provides the result as a set of modified positions (MPS). Once the modified positions are
detected and available, it is possible to fetch modified or altered data from MPS. Different
subroutines are incorporated in the algorithm discussed below. The subroutine initial is
used to initialize the data structure of MF and TK. Another subroutine, chkcls, verifies the
number of classes available in streaming data. The subroutine ensures whether MF has a
private key. The subroutines inst and del perform operations to insert and delete the key
from the MF. Other routines, such as pop, push, peek, and stacktraceback, represent the
basic operations of stack data structure.

Algorithm 1. Identify positions.

1. Procedure: identify_positions of the modified data
2. Start
3. Input: The data class Ci in the data stream DS, the Morton Filter MF, Stack TK, counter i.
4. DS← ø ; initial (MF), initial (TK);
5. i← 0
6. while Ci ← DS.chkcls ( ) do
7. i++;
8. switch Ci.type do
9. Case “ €”
10. h← DS (Ci)
11. if MF.involve (DSi) = = false
12. then DS.push (h);
13. MF.inst (h);
14. Case “£”
15. If MF.lookup (DSi) = = true
16. then h← DS.pop ( );
17. MF.del (h);
18. Case “Data”
19. If detect (Ci) = = true
20. then Temp_DS = peek (TK)
21. if MF.involve (Temp_D) = = true
22. then
23. Dj = stacktraceback ( );
24. MPS = MPS ∪ {Dj}
25. End
Output: The set of modified positions MPS and modified data is detected.

5. Functionality of Algorithm

The functionality of the algorithm is discussed here, with the help of an illustration
drawn in Figure 3. The streaming data has been distributed into the classes C1, C2, . . . Cn.
The demarcating groups are DG1, DG2, and DG3, which are associated with the folders
“/Res”, “/Res/acc1”, and “/Res/acc2”. In case of demarcating the group “€”, it will be
given to the MF. Subsequently, the hash of a similar class will be pushed into the TK. On
the other hand, if the demarcating group is “£”, it will be wiped out from the MF and from
TK, and the hashed will be popped out. The detection algorithm [57] is capable of finding
any alteration or tampering within the classes C1, C2, . . . Cn.
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The value at the top of the stack will be fetched and then checked against MF. If
MF holds the value, the stack trace will be included into the set of positions (PS) from
where the modified data was detected. If class C2 is detected as a modified class, then DG2
will be recovered from the top of stack. As it has been injected into MF, the subroutine
stacktraceback will be executed and placed at the location “/Res/acc1” into MPS. On the
same note, the modified class C3 will perform the same operations on MPS, and MPS will
be constant. When modified class C4 will be detected, the stack trace will hold the value of
DG1; hence, DG1 is the only value in the stack, and the location “/Res” is included into the
MPS. Finally, the modified class, C4, will identify that DG1 and DG3 are in TK. Therefore,
“/Res/acc2” will be inserted into the MPS. As the outcome, the position of the modified
class in the hierarchical block and data class will be provided by the designed mechanism.

6. Benefits of Implementing the Morton Filter

The complexity of the procedure identify_positions is linear to the number of classes.
For each class, the time complexities of various operations, such as insert, delete, and
lookup, are O (1). Moreover, time complexity for basic stack operations, such as push and
pop is O (1), as it is possible to work at only one end of this linear data structure. The cuckoo
filter [58] is considered a better option than the bloom filter in three ways. It supports
the dynamic deletion of items. It has better lookup performance, and, most importantly,
it has better space efficiency in applications that require low false positive rates (є < 3%).
However, a Morton filter is an improvement to cuckoo filters. It is called a modified cuckoo
filter. It supports various operations, such as insertion, deletion, and lookup, as cuckoo
filters. Additionally, it achieves a high throughput and quotient filter, which enhances the
capability of the Morton filter, by leveraging its internal representation. It also requires less
memory than the cuckoo filter for a similar error rate. Its insert throughput is 15.5×, delete
throughput is 1.3×, and lookup throughput is 2.5× higher, when compared to cuckoo filter.
A comparison is made in the Figure 4 between the Morton, cuckoo, semi-sorting cuckoo,
and rank and select quotient filters. The comparison reveals that an MF is approximately
0.9× to 15.5× faster than a CF for insertions.
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Similarly, other operations are depicted in the Figures 5 and 6, respectively, regarding
the delete and lookup operations in MF, CF, ss-CF, and RSQF. In delete operation, also, the
MF is faster, by 1.3× to 1.6×, than the CF.
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7. Results

Experiments were conducted on three servers with a 2.5 GHz Intel i5 10th generation
CPU and 8 GB RAM (Lenovo, Beijing, China). We used Hadoop version 0.20.3 (Apache
Software Foundation, Forest Hill, MD, US), and the platform was Red Hat Enterprise
Linux 6 (Red Hat, Inc., Raleigh, NC, US). We executed five experiments, and the average of
the results was taken. The proposed mechanism exhibits space efficiency. Total numbers of
100,000 bits were taken and accommodated 10,000 different constituents of metadata with
a false positive rate of 7.496 × 10−12. However, the mechanism can organize 805 different
metadata pieces, in the case of the implementation of the SHA-256 hash function. In other
situations, it is possible to organize 1610 metadata constituents, if the MD5 hash function is
implemented. The experiments initially analyzed a false positive rate [59] of the Morton
filter, with the increasing quantity of metadata. A comparison is performed between the
false positive rate of the Morton and cuckoo filters. The details of both the Morton and
cuckoo filters are given below in Tables 2 and 3.

Table 2. Parameters used by cuckoo filter.

Token and Its
Explanation

α (Load
Factor)

m (No. of
Buckets)

b (No. of Entries
per Bucket)

f (Length of
Fingerprints in Bits)

Value 0.8 8 8 36

Table 3. Parameters used by Morton filter.

Token and Its
Explanation

α (Load
Factor)

m (No. of
Buckets)

b (No. of Entries
per Bucket)

f (Length of
Fingerprints in Bits)

Value 0.9 8 8 36

The Morton filter is an improvement over the cuckoo filter in three ways.

1. Memory utilization is one of the important advantages of using the Morton filter.
2. It is placed in a better position, when compared to the cuckoo filter, in the context of

insert, delete, and lookup [60] throughput.
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3. Its implementation is not a complex and tedious task, as in the case of earlier filters,
such as the bloom, quotient, and cuckoo filters.

Therefore, the proposed that a digital artifacts reliability system can be implemented
as a security mechanism, in order to ensure the reliability of electronic health records and
medical transcripts in cloud-based healthcare systems, and it can be used to strengthen
the cloud forensics [61] process. An effort has been made by the authors to overcome
all the limitations and drawbacks of bloom, quotient, and cuckoo filters, by using the
Morton filter.

8. Conclusions

In this research paper, we discuss the design and implementation of a Morton filter-
based security mechanism for cloud-based healthcare systems, which can provide security
and privacy to electronic health records or digital medical transcripts. In contrast to the
existing schemes, the developed mechanism uses the Morton filter for storage, and it can be
applied in the area of cloud forensics. For the successful implementation and execution of
the discussed mechanism, a couple of algorithms and forensic data transmission schemes
are integrated with this system. Tampered digital artifacts and their location can be
pinpointed in real-time. In addition, there are many options for probabilistic data structures,
such as cuckoo, bloom, semi-sorting cuckoo, and rank and select quotient filters. Compared
to the cuckoo filter, this Morton filter-based security mechanism is lighter and has less
computational overhead, with time complexity O (1) and load factor 0.9, in finding the
location of altered or tampered data in hierarchical data block in cloud-based healthcare
systems. Hence, it permits the digital forensic team to localize the tampered or altered
data and its location promptly. For further studies, we intend to apply advanced hashing
techniques, along with other probabilistic data structures.

Author Contributions: Conceptualization S.B. and J.M.; methodology and formal analysis S.B. and
J.M.; writing—original draft preparation S.B.; writing—review and editing S.B. and J.M.; supervision
and project administration J.M.; funding acquisition S.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ko, R.; Choo, K.-K.R. The Cloud Security Ecosystem: Technical, Legal, Business and Management Issues; Syngress Is an Imprint of

Elsevier: Waltham, MA, USA, 2015.
2. Park, S.; Kim, Y.; Park, G.; Na, O.; Chang, H. Research on Digital Forensic Readiness Design in a Cloud Computing-Based Smart

Work Environment. Sustainability 2018, 10, 1203. [CrossRef]
3. Kim, P.; Jo, E.; Lee, Y. An Efficient Search Algorithm for Large Encrypted Data by Homomorphic Encryption. Electronics 2021, 10, 484.

[CrossRef]
4. Fan, B.; Andersen, D.G.; Kaminsky, M.; Mitzenmacher, M.D. Cuckoo Filter. In Proceedings of the 10th ACM International on

Conference on emerging Networking Experiments and Technologies, Sydney, Australia, 2–5 December 2014. [CrossRef]
5. Kävrestad, J. Fundamentals of Digital Forensics; Springer: Berlin/Heidelberg, Germany, 2018.
6. Ray, B.R.; Chowdhury, M.; Abawajy, J. Hybrid Approach to Ensure Data Confidentiality and Tampered Data Recovery for RFID

Tag. Int. J. Networked Distrib. Comput. 2013, 1, 79–88. [CrossRef]
7. Chun, Y.; Han, K.; Hong, Y. High-Performance Multi-Stream Management for SSDs. Electronics 2021, 10, 486. [CrossRef]
8. Breslow, A.D.; Jayasena, N.S. Morton filters: Fast, compressed sparse cuckoo filters. VLDB J. 2020, 29, 731–754. [CrossRef]
9. Yang, H.; Kim, Y. Design and Implementation of High-Availability Architecture for IoT-Cloud Services. Sensors 2019, 19, 3276.

[CrossRef]
10. Bhatia, S.; Malhotra, J. CFRF: Cloud Forensic Readiness Framework—A Dependable Framework for Forensic Readiness in Cloud

Computing Environment. Lect. Notes Data Eng. Commun. Technol. 2020, 765–775. [CrossRef]

http://doi.org/10.3390/su10041203
http://doi.org/10.3390/electronics10040484
http://doi.org/10.1145/2674005.2674994
http://doi.org/10.2991/ijndc.2013.1.2.2
http://doi.org/10.3390/electronics10040486
http://doi.org/10.1007/s00778-019-00561-0
http://doi.org/10.3390/s19153276
http://doi.org/10.1007/978-3-030-38040-3_88


Healthcare 2021, 9, 1551 13 of 14

11. Islam, S.; Ouedraogo, M.; Kalloniatis, C.; Mouratidis, H.; Gritzalis, S. Assurance of Security and Privacy Requirements for Cloud
Deployment Models. IEEE Trans. Cloud Comput. 2015, 6, 387–400. [CrossRef]

12. Cui, J.; Zhang, J.; Zhong, H.; Xu, Y. SPACF: A Secure Privacy-Preserving Authentication Scheme for VANET with Cuckoo Filter.
IEEE Trans. Veh. Technol. 2017, 66, 10283–10295. [CrossRef]

13. Urban, T.; Tatang, D.; Holz, T.; Pohlmann, N. Towards Understanding Privacy Implications of Adware and Potentially Unwanted
Programs. In Computer Security; Springer International Publishing: Cham, Switzerland, 2018; pp. 449–469.

14. Zawoad, S.; Hasan, R. I Have the Proof: Providing Proofs of Past Data Possession in Cloud Forensics. In Proceedings of the
2012 International Conference on Cyber Security, Alexandria, VA, USA, 14–16 December 2012; IEEE: Piscataway, NJ, USA, 2012;
pp. 75–82.

15. Jiang, M.; Zhao, C.; Mo, Z.; Wen, J. An improved algorithm based on Bloom filter and its application in bar code recognition and
processing. EURASIP J. Image Video Process. 2018, 2018, 139. [CrossRef]

16. Najafimehr, M.; Ahmadi, M. SLCF: Single-hash lookup cuckoo filter. J. High Speed Netw. 2019, 25, 413–424. [CrossRef]
17. Huang, K.; Zhang, J.; Zhang, D.; Xie, G.; Salamatian, K.; Liu, A.X.; Li, W. A Multi-partitioning Approach to Building Fast and

Accurate Counting Bloom Filters. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, Cambridge, MA, USA, 20–24 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1159–1170.

18. Sivan, R.; Zukarnain, Z. Security and Privacy in Cloud-Based E-Health System. Symmetry 2021, 13, 742. [CrossRef]
19. Butt, U.A.; Mehmood, M.; Shah, S.B.H.; Amin, R.; Shaukat, M.W.; Raza, S.M.; Suh, D.Y.; Piran, J. A Review of Machine Learning

Algorithms for Cloud Computing Security. Electronics 2020, 9, 1379. [CrossRef]
20. Wu, Z.-Y. A Secure and Efficient Digital-Data-Sharing System for Cloud Environments. Sensors 2019, 19, 2817. [CrossRef]
21. Amanowicz, M.; Jankowski, D. Detection and Classification of Malicious Flows in Software-Defined Networks Using Data

Mining Techniques. Sensors 2021, 21, 2972. [CrossRef]
22. Wang, Q.; Su, M.; Zhang, M.; Li, R. Integrating Digital Technologies and Public Health to Fight COVID-19 Pandemic: Key

Technologies, Applications, Challenges and Outlook of Digital Healthcare. Int. J. Environ. Res. Public Heal. 2021, 18, 6053.
[CrossRef]

23. Waseem, Q.; Alshamrani, S.; Nisar, K.; Din, W.W.; Alghamdi, A. Future Technology: Software-Defined Network (SDN) Forensic.
Symmetry 2021, 13, 767. [CrossRef]

24. Han, S.; Wu, Q.; Zhang, H.; Qin, B.; Hu, J.; Shi, X.; Liu, L.; Yin, X. Log-Based Anomaly Detection with Robust Feature Extraction
and Online Learning. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2300–2311. [CrossRef]

25. Tahirkheli, A.; Shiraz, M.; Hayat, B.; Idrees, M.; Sajid, A.; Ullah, R.; Ayub, N.; Kim, K.-I. A Survey on Modern Cloud Computing
Security over Smart City Networks: Threats, Vulnerabilities, Consequences, Countermeasures, and Challenges. Electronics 2021,
10, 1811. [CrossRef]

26. Chenthara, S.; Ahmed, K.; Wang, H.; Whittaker, F. Security and Privacy-Preserving Challenges of e-Health Solutions in Cloud
Computing. IEEE Access 2019, 7, 74361–74382. [CrossRef]

27. Ogiela, L.; Ogiela, M.R.; Ko, H. Intelligent Data Management and Security in Cloud Computing. Sensors 2020, 20, 3458. [CrossRef]
[PubMed]

28. Seh, A.H.; Zarour, M.; Alenezi, M.; Sarkar, A.K.; Agrawal, A.; Kumar, R.; Ahmad Khan, R. Healthcare Data Breaches: Insights and
Implications. Healthcare 2020, 8, 133. [CrossRef] [PubMed]

29. Liu, H.; Crespo, R.G.; Martínez, O. Enhancing Privacy and Data Security across Healthcare Applications Using Blockchain and
Distributed Ledger Concepts. Healthcare 2020, 8, 243. [CrossRef] [PubMed]

30. Chadwick, D.W.; Fan, W.; Costantino, G.; de Lemos, R.; Di Cerbo, F.; Herwono, I.; Manea, M.; Mori, P.; Sajjad, A.; Wang, X.-S. A
cloud-edge based data security architecture for sharing and analysing cyber threat information. Futur. Gener. Comput. Syst. 2020,
102, 710–722. [CrossRef]

31. Ying, Z.; Jiang, W.; Liu, X.; Xu, S.; Deng, R. Reliable Policy Updating under Efficient Policy Hidden Fine-grained Access Control
Framework for Cloud Data Sharing. IEEE Trans. Serv. Comput. 2021, 1. [CrossRef]

32. Xie, G.; Liu, Y.; Xin, G.; Yang, Q. Blockchain-Based Cloud Data Integrity Verification Scheme with High Efficiency. Secur. Commun.
Netw. 2021, 2021, 1–15. [CrossRef]

33. Kumar, G.S.; Krishna, A.S. Data Security for Cloud Datasets with Bloom Filters on Ciphertext Policy Attribute Based Encryption.
Res. Anthol. Artif. Intell. Appl. Secur. 2021, 1431–1447. [CrossRef]

34. Cano, M.-D.; Cañavate-Sanchez, A. Preserving Data Privacy in the Internet of Medical Things Using Dual Signature ECDSA.
Secur. Commun. Netw. 2020, 2020, 1–9. [CrossRef]

35. Breidenbach, U.; Steinebach, M.; Liu, H. Privacy-Enhanced Robust Image Hashing with Bloom Filters. In Proceedings of the 15th
International Conference on Availability, Reliability and Security, Dublin, Ireland, 25–28 August 2020.

36. Shi, S.; He, D.; Li, L.; Kumar, N.; Khan, M.K.; Choo, K.-K.R. Applications of blockchain in ensuring the security and privacy of
electronic health record systems: A survey. Comput. Secur. 2020, 97, 101966. [CrossRef]

37. Adamu, J.; Hamzah, R.; Rosli, M.M. Security issues and framework of electronic medical record: A review. Bull. Electr. Eng.
Inform. 2020, 9, 565–572. [CrossRef]

38. Jeong, J.; Joo, J.W.J.; Lee, Y.; Son, Y. Secure Cloud Storage Service Using Bloom Filters for the Internet of Things. IEEE Access 2019,
7, 60897–60907. [CrossRef]

http://doi.org/10.1109/TCC.2015.2511719
http://doi.org/10.1109/TVT.2017.2718101
http://doi.org/10.1186/s13640-018-0375-6
http://doi.org/10.3233/JHS-190624
http://doi.org/10.3390/sym13050742
http://doi.org/10.3390/electronics9091379
http://doi.org/10.3390/s19122817
http://doi.org/10.3390/s21092972
http://doi.org/10.3390/ijerph18116053
http://doi.org/10.3390/sym13050767
http://doi.org/10.1109/TIFS.2021.3053371
http://doi.org/10.3390/electronics10151811
http://doi.org/10.1109/ACCESS.2019.2919982
http://doi.org/10.3390/s20123458
http://www.ncbi.nlm.nih.gov/pubmed/32570956
http://doi.org/10.3390/healthcare8020133
http://www.ncbi.nlm.nih.gov/pubmed/32414183
http://doi.org/10.3390/healthcare8030243
http://www.ncbi.nlm.nih.gov/pubmed/32751325
http://doi.org/10.1016/j.future.2019.06.026
http://doi.org/10.1109/TSC.2021.3096177
http://doi.org/10.1155/2021/9921209
http://doi.org/10.4018/978-1-7998-7705-9.ch064
http://doi.org/10.1155/2020/4960964
http://doi.org/10.1016/j.cose.2020.101966
http://doi.org/10.11591/eei.v9i2.2064
http://doi.org/10.1109/ACCESS.2019.2915576


Healthcare 2021, 9, 1551 14 of 14

39. Patgiri, R.; Nayak, S.; Borgohain, S.K. Hunting the Pertinency of Bloom Filter in Computer Networking and Beyond: A Survey. J.
Comput. Netw. Commun. 2019, 2019, 1–10. [CrossRef] [PubMed]

40. Ming, Y.; Zhang, T. Efficient Privacy-Preserving Access Control Scheme in Electronic Health Records System. Sensors 2018, 18,
3520. [CrossRef] [PubMed]

41. Decouchant, J.; Fernandes, M.; Völp, M.; Couto, F.M.; Esteves-Veríssimo, P. Accurate filtering of privacy-sensitive information in
raw genomic data. J. Biomed. Inform. 2018, 82, 1–12. [CrossRef] [PubMed]

42. Ramu, G. A secure cloud framework to share EHRs using modified CP-ABE and the attribute bloom filter. Educ. Inf. Technol.
2018, 23, 2213–2233. [CrossRef]

43. Brown, A.P.; Ferrante, A.M.; Randall, S.M.; Boyd, J.; Semmens, J.B. Ensuring Privacy When Integrating Patient-Based Datasets:
New Methods and Developments in Record Linkage. Front. Public Health 2017, 5, 34. [CrossRef]

44. Vatsalan, D.; Christen, P.; Rahm, E. Scalable Privacy-Preserving Linking of Multiple Databases Using Counting Bloom Filters.
In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15
December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 882–889.

45. Sarkar, U.; Chakrabarti, P.; Ghose, S.; De Sarkar, S. Effective use of memory in iterative deepening search. Inf. Process. Lett. 1992,
42, 47–52. [CrossRef]

46. Roy, S.S.; Basu, A.; Das, M.; Chattopadhyay, A. FPGA implementation of an adaptive LSB replacement based digital watermarking
scheme. In Proceedings of the 2018 International Symposium on Devices, Circuits and Systems (ISDCS), Howrah, India, 29–31
March 2018.

47. Kricha, Z.; Kricha, A.; Sakly, A. Accommodative extractor for QIM-based watermarking schemes. IET Image Process. 2019, 13,
89–97. [CrossRef]

48. Li, M.; Yuan, X.; Chen, H.; Li, J. Quaternion Discrete Fourier Transform-Based Color Image Watermarking Method Using
Quaternion QR Decomposition. IEEE Access 2020, 8, 72308–72315. [CrossRef]

49. Wang, D.; Jiang, Y.; Song, H.; He, F.; Gu, M.; Sun, J. Verification of Implementations of Cryptographic Hash Functions. IEEE
Access 2017, 5, 7816–7825. [CrossRef]

50. Na, D.; Park, S. Fusion Chain: A Decentralized Lightweight Blockchain for IoT Security and Privacy. Electronics 2021, 10, 391.
[CrossRef]

51. Su, G.-D.; Chang, C.-C.; Lin, C.-C. Effective Self-Recovery and Tampering Localization Fragile Watermarking for Medical Images.
IEEE Access 2020, 8, 160840–160857. [CrossRef]

52. Naz, F.; Khan, A.; Ahmed, M.; Khan, M.I.; Din, S.; Ahmad, A.; Jeon, G. Watermarking as a service (WaaS) with anonymity.
Multimedia Tools Appl. 2019, 79, 16051–16075. [CrossRef]

53. Harfoushi, O.; Obiedat, R. Security in Cloud Computing Using Hash Algorithm: A Neural Cloud Data Security Model. Mod.
Appl. Sci. 2018, 12, 143. [CrossRef]

54. Nandhini, K.; Balasubramaniam, R. Malicious Website Detection Using Probabilistic Data Structure Bloom Filter. In Proceedings
of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 311–316.

55. Reviriego, P.; Pontarelli, S.; Maestro, J.A.; Ottavi, M. A Synergetic Use of Bloom Filters for Error Detection and Correction. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 23, 584–587. [CrossRef]

56. Ho, T.; Cho, S.; Oh, S. Parallel multiple pattern matching schemes based on cuckoo filter for deep packet inspection on graphics
processing units. IET Inf. Secur. 2018, 12, 381–388. [CrossRef]

57. Li, G.; Wang, J.; Liang, J.; Yue, C. Application of Sliding Nest Window Control Chart in Data Stream Anomaly Detection. Symmetry
2018, 10, 113. [CrossRef]

58. Zhang, T.; Zhang, T.; Ji, X.; Xu, W. Cuckoo-RPL: Cuckoo Filter Based RPL for Defending AMI Network from Blackhole Attacks.
In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019.

59. Bhattacharjee, M.; Dhar, S.K.; Subramanian, S. Recent Advances in Biostatistics False Discovery Rates, Survival Analysis, and Related
Topics; World Scientific Pub. Co.: Singapore, 2011.

60. Li, D.; Chen, P. Optimized Hash Lookup for Bloom Filter Based Packet Routing. In Proceedings of the 2013 16th International
Conference on Network-Based Information Systems, Gwangju, Korea, 4–6 September 2013.

61. Roussev, V.; McCulley, S. Forensic analysis of cloud-native artifacts. Digit. Investig. 2016, 16, S104–S113. [CrossRef]

http://doi.org/10.1155/2019/2712417
http://www.ncbi.nlm.nih.gov/pubmed/30419123
http://doi.org/10.3390/s18103520
http://www.ncbi.nlm.nih.gov/pubmed/30340411
http://doi.org/10.1016/j.jbi.2018.04.006
http://www.ncbi.nlm.nih.gov/pubmed/29660494
http://doi.org/10.1007/s10639-018-9713-7
http://doi.org/10.3389/fpubh.2017.00034
http://doi.org/10.1016/0020-0190(92)90131-E
http://doi.org/10.1049/iet-ipr.2018.5814
http://doi.org/10.1109/ACCESS.2020.2987914
http://doi.org/10.1109/ACCESS.2017.2697918
http://doi.org/10.3390/electronics10040391
http://doi.org/10.1109/ACCESS.2020.3019832
http://doi.org/10.1007/s11042-018-7074-2
http://doi.org/10.5539/mas.v12n6p143
http://doi.org/10.1109/TVLSI.2014.2311234
http://doi.org/10.1049/iet-ifs.2017.0421
http://doi.org/10.3390/sym10040113
http://doi.org/10.1016/j.diin.2016.01.013

	Introduction 
	Motivation 
	Objectives of the Mechanism 
	Related Works 
	Major Research Gaps 

	Discussion 
	Materials and Methods 
	Functionality of Algorithm 
	Benefits of Implementing the Morton Filter 
	Results 
	Conclusions 
	References

