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Abstract: Fluorinated silica nanoparticles doped with Ruthenium-tris-1,10-phenanthroline dichloride
on the inside and covalently conjugated with perfluorooctyltriethoxysilane and fluorescein isothio-
cyanate on the outside were developed and served several functions; the fluorination of the particles
served to stabilize droplets in a microfluidic system at their interface to the continuous phase for
single-cell experiments, and the two dyes provided for intrinsically referenced pH readout according
to the time-domain dual lifetime referencing scheme. Apart from eliminating the droplet-to-droplet
transport, these nanoparticles at the interface of the droplets generated rigid substrates that were
suitable for the proliferation of adherent cells in the droplets without additional matrices. Cancer
and non-cancer cell lines with culture media were allowed to proliferate in the droplets and the
extracellular pH was monitored. These nanoparticles used in a microdroplet system could measure
the pH of the extracellular microenvironment of single cells and provide support for the growth of
cells in droplets of around 50 µm diameter. The pHe showed 6.84 ± 0.04 and 6.81 ± 0.04 for cancer
cells (MCF-7 and A549, respectively) and 7.36 ± 0.03 for healthy cells (HUVEC), after a 10-h incu-
bation, which can be potentially applied in distinguishing tumor from non-tumor cells. Capable of
assisting cell culture and pH sensing in droplet microfluidic systems, the dye-conjugated fluorinated
nanoparticles described in this work offer possibilities in a variety of biochemical or environmental
analytical applications.

Keywords: dye-doped fluorinated silica nanoparticles; time-domain dual lifetime referencing; droplet
microfluidic systems; live single cells; extracellular pH monitoring

1. Introduction

Cancer is a group of severe diseases involving the uncontrolled growth and infiltration
of aberrant cells in various parts of the body and is responsible for millions of deaths
worldwide [1]. The cellular microenvironment plays an important role in affecting the
development and progression of cancer cells. The tumor microenvironment modulates the
migration, metastasis, and signaling of the cancer cells [2].

The mechanistic understanding of how the microenvironment influences cancer pro-
gression is continuously improving. It is known now that extracellular pH (pHe) is a key
factor regulating cellular physiological and pathological activities [3]. It is widely accepted
that the abnormal anaerobic glycolysis in tumor cells produces abnormally high levels
of lactic acid from glucose, leading to the so-called “Warburg effect” [4], resulting in the
acidification of the cellular microenvironment and lower pHe values than that of normal
cells [5].

The extracellular pH of most healthy tissues is around 7.2 to 7.4 while that of cancer
cells can drop to 6.5 or even lower [6]. Current cancer diagnostic methods typically detect
biomarkers such as proteins and nucleic acids, but measurement of tumor cell pHe can
permit tumor diagnosis at earlier stages. Also, measurement of pHe differences between
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normal and cancerous cells has applications in anti-cancer drug development, drug delivery,
and cancer imaging solutions [7–10].

Several methods have been described for the measurement of pH values in the ex-
tracellular microenvironment. For example, field-effect transistor-based pH-sensitive
nanopipettes [11], electrochemistry-based sensor films [12], voltametric pH microsen-
sors [13], gated ion-sensitive field-effect transistors (ISFETs) [14], and surface-enhanced
Raman scattering (SERS) [15–17] have all been applied to monitoring pH in the extracellular
microenvironment (ECM). However, these approaches all require physical contact between
the surface of the cells and the measurement devices, which makes contamination likely
and diminishes spatial resolution.

Fluorescence techniques are favorable for cellular detection and analysis since they
enable high sensitivity, real-time imaging, and are non-invasive. Combined with mi-
croscopy, fluorescence-based pH-sensitive probes with good biocompatibility were utilized
to measure pHe. For instance, Ke et al. sensed pHe by means of amphiphilic lipid-DNA
ratiometric fluorescent probes anchored onto the cell surface [18]. More recently, a quan-
tum dot labeled cell-penetrating peptide with rhodamine B as a ratiometric nanosensor
was used to track and image the pH values of lysosomes in living cells and extracellular
microenvironments [19].

With their advantages of reduced sample consumption and shorter reaction times, mi-
crofluidic devices are increasingly popular platforms for bioanalysis. Droplet microfluidics
has emerged as a powerful tool for studies of single molecules and single cells; encapsu-
lation in small volume droplets facilitates high-throughput screening of drugs and other
compounds as well as a variety of other biological applications, such as enzymatic as-
says, polymerase chain reaction and related techniques, proteomics, and synthetic biology,
among others.

Given cellular heterogeneity, assessing the evolution of extracellular microenviron-
ments at the single cell level is a promising way to precisely diagnose diseases and further
our understanding of interactions between drugs and cells. Ben et al. and Zhang et al.
distinguished circulating tumor cells (CTCs) and healthy cells captured in droplets by
measuring the pHe in the droplets using a fluorescent pH reporter, Seminaphthorhodafluor
(SNARF)-5F [20,21].

Monodisperse aqueous droplets generated in microfluidic devices are stabilized by
surfactants. Currently, many droplet-based biological analysis systems rely on fluorinated
oils containing nonionic fluorosurfactants composed of perfluoropolyether-poly(ethylene
glycol)-perfluoropolyether triblock copolymer (PFPE-PEG-PFPE triblock copolymer, EA
surfactant) [22]. However, droplet leakage and cross-contamination between aqueous
droplets have been observed, which may affect the accuracy of the assays [23]. Pickering
emulsions are stabilized by solid particles between two immiscible phases and have been
used in various applications [24]. Fluorinated silica nanoparticles with good amphiphilicity
and biocompatibility have shown good retention at the water–oil interface [25]. Pickering
emulsions stabilized by fluorinated silica nanoparticles effectively prevented droplets from
fusion and leakage, yielding consistent results in applications such as droplet-based digital
PCR and enzymatic assays [26,27]. Furthermore, the surface of silica nanoparticles can be
readily functionalized by chemical modifications.

Silica nanoparticles are a biocompatible material with high stability and low toxic-
ity and are inexpensive. They have been coupled to the surface of cells as a coating for
biomedical applications, including cell therapy or cells-on-a-chip [28,29]. Droplets gener-
ated using amphiphilic silica nanoparticles have been used to culture bacterial cells, but
to the best of our knowledge have not been used for culturing mammalian cells [30,31]. It
has been suggested that a solid-like substrate stabilized by hydrophobic particles at the
water–oil interface could support cell attachment [32]. Pan et al. proved that a fluorinated
nanoparticle-stabilized interface in 96-well plates allowed the adhesion, spreading, and
growth of anchorage-dependent cell lines [25]. This colloidosome-based single-cell encap-
sulation enables the confinement of cells in closely packed shells in a three-dimensional
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morphology and allows for their growth. The monolayer shells provide the substrate for
cell adhesion, and therefore modifying them with reporter molecules offers an attractive
path for a non-invasive, label-free way to detect metabolite secretions. In this work, we
developed a droplet microfluidics method for monitoring pH changes in live cell nanoliter-
sized microenvironments in real time. Amphiphilic silica nanoparticles were doped on
the inside with Ru(phen)3Cl2 and conjugated with fluorescein isothiocyanate (FITC) on
the surface. Fluorinated and FITC-conjugated nanoparticles (F-SiO2-FITC) were synthe-
sized as aqueous droplet stabilizers in fluorinated oil, and also served as pH indicators
for the droplets. Cells were encapsulated in droplets generated by a PDMS microfluidic
chip along with a cell medium and were able to proliferate. The pH change in the cells’
microenvironment could be monitored with the F-SiO2-FITC nanoparticles.

2. Experimental Methods
2.1. Synthesis of Ru(phen)3Cl2 Doped F-SiO2-FITC Nanoparticles

An amount of 3 mL of tetraethyl orthosilicate (TEOS) and 1 mL Ru(phen)3Cl2
(0.3 mg mL−1) was added to a solution containing 60 mL of ethanol (EtOH), 1 mL of
deionized water, and 2.4 mL of NH4OH (28 wt%). The reaction mixture was then stirred
vigorously at 40 ◦C for 6 h, and 0.8 mL TEOS was added for an additional 6-h stirring to
yield the parent SiO2 NPs.

Afterward, a mixture of 1 mL of perfluorooctyltriethoxysilane (FAS, Sigma-Aldrich, St.
Louis, MO, USA) and 10 µL of (3-Aminopropyl)triethoxysilane (APTES, Sigma-Aldrich,
St. Louis, MO, USA) was added directly to every 5 mL of the parent SiO2 NPs dispersion,
followed by vigorous stirring at room temperature for 30 min. Nanoparticles were collected
by centrifugation (Hermle Labortechnik, Baden-Württemberg, Germany) at 10,000 RPM
for 10 min, the supernatant was decanted, and the nanoparticles were resuspended in 5 mL
of EtOH. This washing procedure was repeated two more times. After final centrifugation
at 10,000 rpm for 10 min and the removal of the supernatant, the nanoparticles were
resuspended in 10 mL diethyl ether and ethanol (4:6 v/v). An amount of 1 mL of FITC at
1 mg mL−1 was added followed by stirring for 1 h at room temperature. The nanoparticles
were subsequently centrifugated and washed as before until FITC was no longer detectable
in the supernatant (Figure 1).
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Figure 1. A schematic illustration of the steps of the synthesis of fluorinated Ru(phen)3Cl2-doped
and fluorescein isothiocyanate-conjugated SiO2 nanoparticles (F-SiO2-FITC) and abbreviations for
the steps of conjugation (SiO2, F-SiO2-NH2, F-SiO2-FITC) used throughout the article.
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2.2. Characterization of Nanoparticles

The size and morphology of the nanoparticles were investigated by scanning electron
microscopy (JSM-6700F, Tokyo, Japan). The Ru(phen)3Cl2-doped pristine nanoparticles
were dispersed in EtOH. The F-SiO2-FITC nanoparticles dispersed in HFE-7500 were
precipitated by centrifugation at 10,000 rpm and then washed with 5 mL ethanol, three
times total. Precipitated F-SiO2-FITC nanoparticles were finally redispersed in 5 mL ethanol
by sonification. A total of 10 µL of EtOH with parent nanoparticles and F-SiO2-FITC
nanoparticles were transferred to a small piece of silicon wafer.

The chemical structure of nanoparticles was examined by Fourier Transform Infrared
Spectroscopy (FTIR, Vertex 70 Hyperion 1000 B, Baden-Württemberg, Germany). The syn-
thesized Ru(phen)3 Cl2-doped SiO2, fluorinated SiO2, fluorinated and aminated SiO2 and
F-SiO2-FITC nanoparticles were desiccated overnight, and the powders of nanoparticles
were ground and transferred to the sample stage of FTIR. The transmission spectrum was
obtained by scanning the sample from 400 to 4000 cm−1 at room temperature.

2.3. Microchip Fabrication

The microfluidic chips, containing a flow-focusing structure and incubation chamber,
were designed using AutoCAD software and then transferred to a photomask. The silicon
wafer substrate was patterned by a SU-8 3050 (MicroChem Corp., Westborough, MA, USA)
based lithography process to obtain a master mold with 60 µm high features.

The master mold was replicated onto Polydimethylsiloxane (PDMS, SYLGARD, Dow,
Hayward, CA, USA) by pouring elastomer and curing agent mixed at a ratio of 10:1 (w/w)
and cured at 100 ◦C for 15 min. Then, the patterned PDMS was peeled off and punched
to form two inlets and one outlet. The PDMS and a glass slide were activated by oxygen
plasma treatment at 30 W in a plasma cleanser (PDC-002, Harrick Plasma, Ithaca, NY,
USA), before bonding the patterned PDMS onto a glass slide and sealing the chambers and
channels. After the chip was assembled, 2% perfluorodecyltriethoxysilane in HFE-7500
(3M, St. Paul, MN, USA) (v/v) solution was injected into the channels and dried on an
80 ◦C hot plate for 1 h to obtain fluorinated surfaces.

2.4. Generation of Droplets

The continuous phase (HFE-7500 containing 5% (w/w) Ru(phen)3 Cl2 -doped F-SiO2-
FITC nanoparticles) and the dispersed phase (i.e., cell medium) were injected from two
separated inlets. The monodisperse microdroplets were generated at a flow-focusing
junction according to a fixed flow ratio of the two liquid phases. Droplet sizes were
controlled by adjusting the flow ratios.

2.5. Optical Setup and pH Calibration

The optical setup is shown in Figure 2. The microchip was placed in a custom incubator
assembly which was mounted on an epi-fluorescence microscope (Nikon, Tokyo, Japan)
equipped with a 470 nm LED driven by a DC2100 voltage controller (both from Thorlabs,
Newton, NJ, USA), an Imagex-TGi camera (Photonic Research Systems, Newhaven, UK)
with 4× objective lens (Nikon, Tokyo, Japan), and various filter sets: a band pass (BP)
450/50 nm excitation filter (Chroma, Bellows Falls, VT, USA), a 495 nm dichroic (Chroma,
Bellows Falls, VT, USA), and a 515 long pass (LP) emission filter (Chroma, VT, Bellows Falls,
USA). The incubator temperature was maintained at 37 ◦C, and 95% humidified filtered air
containing 5% CO2 was supplied when the cell culture was incubated.

The pH calibration was conducted using time-domain dual lifetime referencing
(t-DLR) [33,34] which is based on acquiring data from two images: one taken in the
excitation period (Aex) when the light source is on, and the other in the decay period (Aem)
when the light source is off (see also Section 3.2). Two luminophores that are simultaneously
excitable at 470 nm but with different lifetimes were chosen: FITC, which works as the pH
indicator, and Ru(phen)3Cl2, which serves as the reference. The luminescence was recorded
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at various pH levels between 5 and 8, using Britton–Robinson Buffer (BRB) solutions in
monodispersed droplets using time-gated CCD imaging.
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Figure 2. The optical setup with a custom-built live-cell incubator for pH calibration and extracellular
pH detection.

2.6. Cell Culture and Cell Suspension Preparation

Lung cancer cells (A549) and breast cancer cells (MCF-7) were cultured in Dulbecco’s
Modified Eagle Medium (DMEM, Gigbo, Paisley, UK) supplemented with GlutaMAX 10%
(v/v) Fetal Bovine Serum, 1% (v/v) penicillin-streptomycin (100 IU mL−1–0.1 mg mL−1) at
37 ◦C in a humidified atmosphere containing 5% CO2. Human umbilical vein endothelial
cells (HUVECs) were cultured in Endothelial Cell Growth Medium-2 BulletKit (EGM-2,
Lonza, Alps, Swiss). The cells were seeded at an initial concentration of 5 × 104 cells mL−1

on 10 cm diameter culture dishes.
The cells were passaged using 0.25% (w/v) trypsin-EDTA when they reached 80–90%

confluency. For single-cell encapsulation in droplets, the cells in the logarithmic growth
phase were used. The culture medium was removed, and the cells were gently rinsed with
phosphate buffer saline solution (pH = 7.4). The adherent cells were detached with trypsin-
EDTA solution, and the supernatant of the collected cells was discarded after centrifugation.
After that, the cell pellets were resuspended in the medium at various concentrations for
cell encapsulation. The concentration of cells was measured using a hemocytometer.

2.7. Measurement of Extracellular pH in Droplets

Droplets were generated in a PDMS microfluidic chip under 27.6 psi of the dispersed
phase (culture medium with a cell density of 106 cells mL−1) and 29 psi of the continuous
phase (5% v/v F-SiO2-FITC nanoparticles in HFE-7500). Single cells were encapsulated in
droplets while the remaining nanoparticles in HFE-7500 were flushed using FC-40 (Aldrich,
St. Louis, MO, USA). The cells suspended in the medium were held at 4 ◦C to slow their
metabolism before starting measurements. The microchip with generated droplets in the
PDMS chamber was placed in a custom-made incubator. The luminescent intensities of the
droplets were measured every 20 min in the first hour, and every two hours after the first
two hours.

3. Results and Discussion
3.1. Synthesis and Characterization of Silica Nanoparticles

Ru(phen)3Cl2-doped silica nanoparticles were synthesized by means of a modified
Stöber method [35]. Figure 1 illustrates the procedure for preparing these nanoparticles
and subsequent modifications. As monodispersed nanoparticles were generated, the dye
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was incorporated into the nanoparticles by electrostatic adsorption. The resulting SiO2
nanoparticles were hydrophilic and dispersible in the aqueous phase. By reacting with FAS
and APTES, the hydrophobicity of nanoparticles was increased since the silanol groups on
the surface of particles were partially derivatized to perfluoroalkyl and alkylamine groups.
Through the formation of a covalent bond between an amino group and an isothiocyanate
group, the reactive fluorescein derivative FITC was conjugated onto the surface of the
silica nanoparticles.

The morphology and structure of nanoparticles were characterized with a scanning
electron microscope (SEM) and FTIR spectroscopy. As shown by the SEM images, both
Ru(phen)3-doped silica nanoparticles and F-SiO2-FITC nanoparticles were approximately
100 nm in diameter (Figure 3). The final sizes of the F-SiO2-FITC nanoparticles were
comparable to the initial nanoparticles, indicating that the modification process did not
change the size of the particles considerably. FTIR spectroscopy was able to confirm that
silica nanoparticles were successfully functionalized with amino groups and fluoroalkyl
groups. In the IR spectrum (Figure 4), a band in the 1100 cm−1 region was observed in
SiO2, fluorinated SiO2, fluorinated and aminated SiO2, and F-SiO2-FITC nanoparticles,
corresponding to the Si–O–Si band in the SiO2. The introduction of fluorosilane was
confirmed by the peak at 1186 cm−1 corresponding to the symmetric stretching of C–F,
while the peak at 1234 cm−1 was the antisymmetric stretching vibration peak of –CF3,
indicating that the silica nanoparticles were successfully modified with fluorosilane [36].
Amino group modification was indicated by a peak at 1593 cm−1 corresponding to the
asymmetric bending of the N–H bond in the primary amine [37].
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and (b) Ru(phen)3 doped fluorinated FITC-conjugated nanoparticles (F-SiO2-FITC). The average
diameters of SiO2 and F-SiO2-FITC are around 100 nm.
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nated and aminated SiO2 nanoparticles (F-SiO2-NH2), and fluorinated FITC-conjugated nanoparticles
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3.2. pH Measurement and Characterization

FITC is a reactive form of the commercial pH probe fluorescein with high biocom-
patibility and good reactivity for conjugation. Silica nanoparticles were chosen as the
matrix since they are easily modified with silanol groups, which in turn are easily modified
with amino groups. These amino groups are used for coupling to isothiocyanate groups,
as found in FITC. The emission spectra of Ru(phen)3Cl2-doped nanoparticles, FITC, and
Ru(phen)3Cl2-doped F-SiO2-FITC nanoparticles excited at 470 nm are shown in Figure 5.
The parent nanoparticles were dispersed in ethanol while the F-SiO2-FITC nanoparti-
cles were dispersed in HFE-7500. FITC was dissolved in ethanol to a concentration of
0.1 mg mL−1. The Ru(phen)3Cl2-doped nanoparticles had a maximum emission from
550 nm to 750 nm while FITC had a maximum emission intensity at around 515 nm.
The Ru(phen)3 Cl2-doped F-SiO2-FITC nanoparticles exhibited a strong emission peak at
515 nm and another shoulder centered at around 615 nm, with similarities to the emission
spectra of Ru(II)(phen)3 Cl2-doped nanoparticles and FITC. This indicated that the two
dyes on the silica nanoparticles could be excited at 470 nm simultaneously.
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Figure 5. Emission spectra of the synthesized multifunctional nanoparticles. (a) Emission spectra of
Ru(phen)3 Cl2-doped nanoparticles (SiO2), Fluorinated and FITC-conjugated Ru(phen)3 Cl2-doped
nanoparticles (F-SiO2-FITC), and dissolved FITC for comparison. Photos of (b) SiO2 nanoparticle
dispersion, (c) FITC, and (d) F-SiO2-FITC nanoparticle dispersion illuminated by a 365 nm UV lamp.

The F-SiO2-FITC nanoparticles retained at the interface of the emulsified droplets
exposed their hydrophobic fluoroalkyl chains to the continuous phase while the hydrophilic
sides with amino groups and conjugated FITC molecules faced the aqueous interior. This
decreased the surface tension of the aqueous phase and stabilized the droplets (Figure 6).

In the t-DLR method, the short-fluorescence lifetime pH indicator (fluorescein) and
long-luminescence lifetime phosphor (Ru(phen)3) were excited simultaneously at 470 nm
with light-emitting diodes (LEDs). The luminescence during and after illumination was
integrated into two time-gates: one was in the excitation period (LED on, Aex) while the
other was in the emission period (LED off, Aem). The combined luminescence of FITC and
Ru(phen)3 (Aex) was detected during the excitation period, and only the luminescence of
Ru(phen)3 (Aem)was detected during the emission period. The signal of pH-dependent
fluorescein was referenced to that of pH-independent Ru(phen)3. After turning the LED
off, the fluorescence of FITC would quickly decay so that only the phosphorescence signal
would be detected. Therefore, Aem would correspond to the emission intensity signal
of Ru(phen)3 and the ratio Aex/Aem denoted a referenced intensity of integrated signals
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(Equation (1)). This allows for the normalization of irregularities in particle distribution
and illumination of the droplets.

r =
Aex

Aem
(1)

r = A2 +
A1 − A2

1 + e
pH−pka

∆pH

(2)
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To calculate the pH based on the r value, the aqueous droplets stabilized by F-SiO2-
FITC were calibrated with various pH buffers, and a sigmoidal fit was applied accordingly
(Equation (2)). From the calibration curve, pH is calculated by substituting the value for
r (Figure 7b). The negative logarithm of dissociation constant (pKa) at which value it
may change its optical properties presented at the pH value with largest derivative in the
calibration curve.

The emission intensity of the nanoparticles would therefore be suitable for measuring
the pH values of the droplets, using FITC as a pH indicator and the Ru(phen)3 as a reference
dye. To obtain pH values from 2D fluorescence images of the droplets, the time domain
dual lifetime referencing (t-DLR) method was implemented (Figure 7a), which obviated the
need to separate the signals with an image splitter [33,34]. Monodispersed droplets with
pH values between 2 and 10 were collected in 1.5 mL centrifuge tubes and illuminated with
a 365 nm UV lamp (inset in Figure 7b). Emission color visibly transitioned from orange
to green as the pH increased. The emission intensity of FITC varied with the pH of the
solution, while Ru(phen)3 showed consistent emission intensity independent of changes in
pH [38].

The calibration curve showed sigmoidal behavior and reliable pH measurements within
the region of interest which we defined as from pH 5.0 to 8.0, allowing cell pHe monitoring
(Figure 7b). Within a pH range of 5 to 8, equation 2 was found to describe the calibra-
tion curve very well using the following parameters: A1 = 4.70 ± 0.48, A2 = 9.33 ± 0.34,
pKa = 6.33 ± 0.12, ∆pH = 0.55 ± 0.16, indicating a strong response of the sensor to pH
change. Calibration plots in droplet calibration yielded lifetime ratio values with small
standard deviations of pH values, which were 0.05 pH units on average. The dynamic
range was defined as larger than 1% signal change within 0.1 pH units and determined to
be from pH 4.91 to 7.47.
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Figure 7. pH measurement in droplets. (a) Schematic illustration of time domain dual lifetime
referencing (t-DLR). (b) The calibration curve of the nanoparticle pH probe (r2 = 0.993). pH values
were calculated from the measured ratio r (Aex/Aem) of integrated signal intensities. Insert: dispersed
droplets stabilized by Ru(phen)3 doped F-SiO2-FITC nanoparticles with different pH illuminated at
365 nm. (c) Raw emission images of excitation period (Aex) and emission period (Aem) of droplets
with buffer solution at various pH values, (d) Raw data of emission intensities during the excitation
period, (e) Raw data of emission intensities during the emission period. The fits in (d,e) are just for
visualization and were not used in any evaluations.

3.3. Cell Encapsulation and Cell Culture in Droplets

The droplets used to encapsulate cells were produced with a flow-focusing junction
and conveyed to a downstream PDMS chamber. To validate this approach, a suspension of
lung cancer cells (A549) was encapsulated in droplets in the presence of a culture medium.
The cells were originally suspended in a culture medium at concentrations of 104, 105, and
106 cells per mL, respectively, and dispersed in the continuous phase in droplets that were
50 µm in diameter. The cell capture distribution was tabulated, as shown in Figure 8. The
percentages of droplets containing cells increased when the cell density increased. The
portion of droplets containing single cells reached 21.7 ± 0.2% when a cell concentration of
106 cells mL−1 was used. This was determined to be the optimal live cell concentration for
occupancy and observation through the CCD camera during measurements in the PDMS
chamber. There were a few droplets containing more than one cell which had minimal
influence on the detection and observation of single cells.

The droplets were generated by Pickering emulsions stabilized by Ru(phen)3 Cl2-
doped F-SiO2-FITC nanoparticles. The cells and medium were encapsulated in the droplets
and maintained in the PDMS chamber for incubation (Figure 9a). In Figure 9b, an SEM
image showed an evaporated droplet with two cells that the nanoparticles covered com-
pletely. The uniformity of the nanoparticles in the evaporated droplet confirmed that the
F-SiO2-FITC NPs had completely encapsulated the cell medium and the cells, even during
the transfer from the microfluidic chip to the silica substrate for imaging.
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illustration of droplet generation by a flow-focusing nozzle. (b) SEM image of an evaporated droplet
containing two cells. (c) Illustration of cell growth in the droplets by incubation.

After capturing the drops into a PDMS chamber, the HFE-7500 continuous phase
containing the F-SiO2-FITC NPs was replaced with FC-40, which is a fully fluorinated
hydrocarbon liquid with a high boiling point, by carefully injecting from the same inlet of
the HFE-7500 continuous phase. This helped remove the excess nanoparticles, prevented
droplets from coalescing, and mitigated evaporation of the continuous phase during
cell incubation.

The cells in the droplets were incubated in a custom-made incubator in a humidified
atmosphere with 5% CO2, maintained at 37 ◦C. Culture conditions were similar to those
used in conventional tissue culture, and therefore the cells in the droplets were able to
adhere and proliferate (Figure 9c). After a 12-h incubation, it could be observed under
the microscope that around 60% of the cells had adhered to the interface of the droplets
while some of the cells became mammospheres. To monitor the growth of single cells
in their droplets, the adherent cell lines (MCF-7, A549, and HUVEC) were encapsulated
in the droplets and observed using an imaging platform comprised of a microscope and
custom-made incubator (Figure 10).
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Figure 10. Observation of cells grown in Pickering emulsified droplets, demonstrating division
and adhesion.

MCF-7 cells were encapsulated into 50 µm droplets. They tended to spread after 8 h,
divide by 10 h, and fully adhere after 12 h. The A549 cells divided after an 8-h incubation.
HUVEC cells were incubated in 30 µm droplets, spread within one hour, and shrunk after
12 h, which may indicate apoptosis. To investigate the effect of the droplets on cell adhesion,
100 µm droplets with MCF-7 cells were incubated. It was observed that the cells started
spreading at the 6th hour and adhered after incubating for 12 h.

Cells exert contractile forces on their substrates as they spread and adhere, and the
substrates must be able to withstand these contractions. The F-SiO2-FITC nanoparticles
retained at the interface of an aqueous phase and fluorous phase stabilized the dispersed
aqueous droplets and formed a solid-like substrate for cell adhesion, which could withstand
the forces generated by cells. Coalescence or leakage of droplets caused by cell growth
was not observed during incubation and measurements. Moreover, these nanoparticles
and PDMS were gas permeable, allowing air and CO2 in the incubator to diffuse to cells in
the droplets. Supplied with a culture medium and anchored on the solid-like nanoparticle
interface, cells were able to grow in the droplets.

In the majority of previous studies, droplet cell culture has utilized suspension cells or
cell lines capable of aggregating into spheroids, due to the low rigidity of the surfactant-
stabilized interface [39]. Conventionally, a matrix such as collagen or matrix gel was
used to derive a scaffold system for 3D cell cultures to promote and maintain normal cell
morphology [40]. The droplets stabilized by the rigid colloidal surfactant in this work
can provide new opportunities for culturing adherent cells and exploring the interaction
between the ECM and single cells.

3.4. Real-Time Monitoring of Extracellular pH in Droplets

For respiration monitoring, human breast carcinoma MCF-7 cells and human lung
carcinoma A549 cells were utilized as cancer cell models, and human umbilical vein
endothelial cells (HUVECs) were used as a healthy cell model. As the cells consumed
nutrients while in the droplets, FITC coupled onto the nanoparticles was able to detect
pH changes associated with metabolic products, such as carbon dioxide and lactic acid
generated by cellular respiration and dissolved in the ECM.

The pHe value for the different cell lines was observed to decrease to different ex-
tents: the pHe of cancer cells decreased to a much larger degree than that of healthy cells
(Figure 11). For MCF-7 and A549 cells, the extracellular pH in the microenvironment within
the droplets dropped rapidly in the first hour from 7.40 ± 0.05 to 6.90 ± 0.04 (MCF-7)
and from 7.40 ± 0.05 to 6.90 ± 0.04 (A549), then decreased gradually to 6.84 ± 0.04 and
6.81 ± 0.04 in the remaining 9 h of incubation, respectively. This result was slightly higher
than the reported extracellular pH of cancer cells, which should be below 6.8 [41,42]. This
may be explained by the lower cell density in the droplets, compared to densities in cancer
tissue or conventional cancer cell tissue cultures [16]. The increased extracellular acidifi-
cation of the cancer cell lines was most likely due to their increased reliance on anaerobic
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glycolysis (Warburg effect) to yield adenosine triphosphate (ATP). This means they release
more lactic acid, resulting in a more pronounced decrease in pH around the cancer cells.
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Figure 11. Measurement of pH changes for each cell line in droplets using F-SiO2-FITC nanoparticles.
The pH values of (a) MCF-7 cells, (b) A549 cells, (c) HUVEC, and (d) DMEM (culture medium) over
time were calculated from the ratio intensity by the t-DLR method.

Incubating for 10 h, the pHe of HUVECs declined slightly from 7.40 ± 0.03 to
7.36 ± 0.03. The pH value in the medium alone decreased from 7.40 ± 0.05 to
7.35 ± 0.05 during the first 60 min, and maintained a pH of around 7.36 ± 0.06 for the re-
mainder of the incubation. The initial pH decrease is likely due to carbon dioxide dissolving
into the medium from the incubator.

The acidosis of the extracellular medium is a feature of cancer cells that distinguishes
them from normal cells. The decrease in pH due to the metabolic processes of cancer cells
was clearly detectable, whereas healthy cells did not show any pH decrease larger than the
margin of error. This differential acidification could enable distinguishing cancer cells from
healthy cells at a single-cell level.

4. Conclusions

In summary, we developed, characterized, and applied fluorescein-conjugated and
Ru(phen)3 Cl2-doped fluorinated silica nanoparticles as droplet-forming colloidal surfac-
tants which can monitor pH changes of single cells. The pH could be calculated based
on a time-domain lifetime referencing measurement method. The Ru(phen)3 Cl2-doped
F-SiO2-FITC nanoparticles can not only facilitate the generation of microdroplets with good
stabilities but can also function as a solid-like substrate for adherent cell culture in droplets
without needing additional scaffolds.

The main advantages of these nanoparticles are their stability and non-invasive mea-
surements of droplet and cell culture medium pH in real-time, which creates an opportunity
for integrated optical sensing in droplet-based diagnostic screening. The described method
could be developed and refined further by optimizing the choice of fluorochrome with
respect to the desired pH range, photostability, spectral range, and other properties as well
as the optical and electronic setup similar to commercial equipment for larger formats such
as microplates.
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Coupled with an automated setup, such as laser-equipped microscopes with field
programmable gate arrays, the droplets generated with these nanoparticles may be used
to develop high-throughput applications, such as screening for circulating tumor cells or
anti-cancer drugs.
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