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Abstract: Psychrotrophic bacteria, commonly called spoilage bacteria, can produce highly toxic
hydrogen sulfide (H2S) in meat products. Thus, monitoring the presence of hydrogen sulfide in
meat samples is crucial for food safety and storage. Here, we report a unique chemical sensor based
on supramolecular nanorods synthesized via copper ion induced self-assembly of N,N-bis[aspartic
potassium salt]-3,4,9,10-perylenetetracarboxylic diimide (APBI-K). The self-assembled nanorods can
specifically detect sulfide with a detection limit of 0.181 µM in solution. The nanorods suspended in
pure water show a turn-on fluorescence sensing behavior along with color change, acting as a dual
fluorometric and colorimetric sensor. Spectroscopic investigation confirms the sensing mechanism
due to copper ion displacement induced by the association with sulfide. Based on the high selectivity
and sensitivity, supramolecular nanorod sensors were successfully employed to detect H2S in spoiled
meat sample as well as dissolved H2S in water.

Keywords: perylene tetracarboxylic dimide; metal induced self-assembly; self-assembled nanorod;
H2S sensor; fluorescence sensor; meat spoilage; food safety

1. Introduction

Hydrogen sulfide (H2S), being nearly as toxic as carbon monoxide gas, can cause
severe health damage and even death [1]. The endogenous H2S is primarily produced
by enzyme-catalyzed reactions from various sulfur-containing amino acids which include
cysteine, homocysteine, and methionine in the metabolic pathway [2]. Under standard
conditions, 70% of H2S is generated from cysteine and the residual 30% is produced from
homocysteine [3]. Highly water soluble H2S exists primarily in three different forms,
namely: S2−, HS− and H2S. The form of the sulfide is dependent on the pH of the aqueous
medium [4,5]. Serious physiological problems, like Down syndrome [6], diabetes [7], liver
cirrhosis [8], and Alzheimer’s [9], can arise from excess sulfide exposure. In addition to
the industrial sources of H2S, the illegal use of sulfide additives in food such as sulfites,
rongalite, and sodium sulfide can cause harmful effects on human health [10]. Nevertheless,
sulfide is overly formed in the process of food rot. Meat and meat-based foods are very
susceptible to spoilage. The Gram-negative bacteria, Shewanella putrefaciens, and Citrobacter
freundii present in meat can be active at low temperatures and can rapidly produce sulfides
when growing [11,12]. Thus, sulfide can act as a marker of meat spoilage. According to the
World Health Organization (WHO), food containing harmful bacteria, pathogens, viruses,
parasites, or toxic chemical additives cause more than 200 different diseases in humans [13].
Detection of sulfides in food is still a challenging task because of the complexity of food
compositions and the presence of interfering ingredients. Thus, a sensitive and effective
sulfide detection method is in great demand to ensure food safety and human health.

Several traditional detection techniques such as chromatographic assays [14,15], elec-
trochemical analysis [16,17], metal-oxide–semiconductor-based electronic nose [18,19], and
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visible light colorimetric technology [20,21] have been employed for detecting levels of
sulfides. However, most detection techniques are time-consuming and need to be con-
ducted in specialized laboratory settings by highly trained individuals. Spoilage of food,
especially meat, is very time dependent. Because of this, on-site detection of sulfides by
simple instrumentation is highly desirable for real-time monitoring of food substrates.
In recent years, naked-eye detection of sulfides, using either colorimetric or fluorometric
probes, got enormous attention from the scientific community due to its simplicity, high
selectivity, sensitivity, and fast response time [22–29]. An ideal sensor should feature flu-
orescence turn-on performance, fast response time, high sensitivity, and selectivity over
interfering components. A color change with target analyte exposure is also desired. Unfor-
tunately, a large number of sensors work only in pure organic solvents or in mixed aqueous
solvents [2,30–32]. The use of toxic organic solvents restricts the materials’ applications as
useful sensors in the field, especially in a food industry setting. Therefore, the development
of a simple sensing platform that can detect sulfide contamination on-site without using
complex instrumentation is still necessary.

Herein, we report a new, dual fluorometric and colorimetric probe using nanorods
made by the coordination induced self-assembly of Cu2+ ion and N,N-bis[aspartic potas-
sium salt]-3,4,9,10-perylenetetracarboxylic diimide (APBI-K) [33]. The potassium salt of
tetracarboxylic acid increases the water solubility of the perylene diimide (PDI) core and
helps nanorods assemble via rapid complex formation with Cu2+ ion. These coordinat-
ing self-assembled nanorods (APBI-Cu) were made by mixing the aqueous solutions of
Cu(NO3)2 and APBI-K. Spectroscopic investigation suggests that APBI-Cu nanorods were
formed via intermolecular intrinsic π-π stacking driven by Cu2+-APBI-K complexation
accompanied by fluorescence quenching. Sulfides have a strong binding affinity for Cu2+

ions, consistent with the extremely low solubility product constant of CuS, 7.9 × 10−37 [34].
Thus, Cu2+ present in nanorods acts as an active metal center towards sulfides. The pres-
ence of sulfide ions triggers the competitive binding with the Cu2+ ion, resulting in the
disassembly of APBI-Cu nanorods. Consequently, in the presence of Na2S (commercially
available H2S donor) [35], a turn-on fluorometric and colorimetric response from APBI-Cu
nanorods was observed.

2. Materials and Methods
2.1. Materials and Instrumentations

N,N-bis[aspartic potassium salt]-3,4,9,10-perylenetetracarboxylic diimide (APBI-K)
was synthesized by following a previously published procedure [33]. Reagent grade
starting materials were used as received from the commercial suppliers. Ultrapure Milli-Q
water (Millipore) was used during all experiments. Fresh chicken mince was acquired from
a local market (Salt Lake City, UT, USA).

UV–Vis spectra were obtained by using an Agilent Cary 100 spectrophotometer. Emis-
sion spectra were recorded by using an Agilent Cary Eclipse fluorescence spectrophotome-
ter. Attenuated total reflectance-infrared (ATR-IR) spectra were measured on a Nicolet iS50
FTIR Spectrometer at room temperature. Scanning electron microscopy (SEM) images were
obtained on the FEI Nova NanoSEM™ scanning electron microscope. 1H NMR spectrums
were carried out on a Varian Mercury 400 MHz spectrometer.

2.2. Synthesis of APBI-Cu Nanorods

An aqueous solution of Cu(NO3)2 (2 mL, 10 mM) was slowly mixed with an aqueous
solution of APBI-K (2 mL, 1 mM). The mixture was aged overnight to complete the self-
assembly process. The nanorods were collected by centrifugation, washed thoroughly with
water and dried in an air oven. Dried samples were used for experimentation.

2.3. Fluorescence Sensing Experiment in Water

5 mg APBI-Cu nanorods were dispersed in water by sonication. 50 µL of APBI-Cu
nanorod suspension was diluted in 2 mL water. Fluorescence emission was monitored
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at 547 nm, using an excitation wavelength of 490 nm upon incremental addition of Na2S
solution. Similar experiments were carried out by substituting Na2S with other interfer-
ing analytes. The sensitivity was examined by adding 100 µM of Na2S to the nanorod
suspension containing other interfering analytes.

For paper-based test-strip fabrication, 10 cm × 10 cm clean Whatman filter papers
were immersed in 1 mM aqueous solution of APBI-K solution. The paper was dried in an
oven and then immersed in 10 mM aqueous solution of Cu(NO3)2. Then, the paper was
washed with water to remove the loosely bound complex on the surface. The APBI-Cu
coated paper was dried under vacuum and stored in a dark environment prior to use.

2.4. Detection of Sulfide in Chicken Sample

Fresh chicken mince (~5 g) was placed in two separate 250 mL round bottom flasks
and sealed with septa. One flask was kept refrigerated at −4 ◦C and the other was kept at
room temperature (~25 ◦C). Gas was collected from the headspace of the round bottom
flask using a 25 mL syringe with 24 h intervals. The collected gas was then slowly bubbled
in the aqueous suspension of APBI-Cu nanorods.

3. Results and Discussions
3.1. Design and Synthesis of APBI-Cu Nanorods

The designed fluorophore molecule, APBI-K, is highly water soluble due to its salt
form (Scheme 1). Such high-water solubility is essential for the sensor to be used in a pure
water system. The optical properties of free APBI-K were studied by measuring absorption
and emission spectra in water at room temperature. As shown in Figure 1, the normalized
spectra of APBI-K show two strong absorption bands near 532 nm, 495 nm along with
a broad shoulder peak around 465 nm. This typical characteristic absorbance could be
assigned to the 0–0, 0–1, and 0–2 transition energy [36–38]. The emission spectra of the same
solution portray the similar structural features with nearly mirror images of the absorption
spectra, and the emission peaks appear at 547 nm, 587 nm, and a weak shoulder peak near
638 nm.
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Scheme 1. Synthesis pathway of APBI-K. (a) DL-Aspartic Acid, imidazole, N2 atm., 6 h, 120 ◦C.
(b) KOH (excess), H2O.

Coordination induced self-assembly was studied by using aqueous solutions of APBI-
K and Cu(NO3)2. When Cu2+ was introduced into the APBI-K solution at a 10:1 molar
ratio, a rapid precipitate formation was observed, which confirms the water-soluble fluo-
rophore molecules undergo a fast coordination complex formation with Cu2+ ion. A clear
supernatant solution was observed after standing overnight, confirming the completion
of the process (Figure 2a,b). The SEM imaging confirms the nanorod morphology of the
self-assembled APBI-Cu precipitates (Figure 2c,d). Another set of self-assembled precipi-
tates was obtained from the same APBI-K solution by evaporating the solution without
adding any Cu2+ ion solution. No distinct morphology was found for only APBI-K material
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(Figure S1, Supplementary Materials). This result suggests that Cu2+ ion coordination is
important to obtain monodispersed nanorods.
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Figure 2. (a) The digital image of the 1 mM APBI-K aqueous solution. (b) The digital image of the
nanorod synthesized by addition of Cu(NO3)2 into the aqueous solution of APBI-K. (c) SEM image
of the APBI-Cu nanorods. (d) Enlarged SEM image of APBI-Cu nanorods.

Copper coordinating self-assembly was further investigated spectroscopically. A
10:1 equivalent of Cu2+ ion was incrementally added in APBI-K solution, and both ab-
sorption and emission spectral changes were monitored. The aqueous solution of APBI-K
shows the absorption ratio of 0–0 and 0–1 band (A0–0/A0–1) as nearly 1.52 (Figure 3a). It is
worth mentioning that the A0–0/A0–1 ratio obtained from absorption spectra is considered
a tool to monitor the aggregation behavior of perylene diimides (PDIs). Franck-Condon
progression with a ratio A0–0/A0–1 of ~1.6 is considered for free monomeric PDIs [39]. Thus,
APBI-K solution primarily exists in monomeric form in solution. The ratio of A0–0/A0–1
changed rapidly with the addition of Cu2+ and shows A0–0/A0–1 value of ~0.94. This result
indicates the formation of an aggregated state in the presence of Cu2+ ion [40]. A new broad
shoulder near 570 nm was also observed with increasing Cu2+, which also suggests the
formation of a new species via coordinating self-assembly of APBI-K molecules [41,42]. A
clear isosbestic point was observed at 550 nm, indicating quantitative conversion of APBI-K
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from free molecular state to the aggregate. The emission behavior of nanorods is also
drastically different compared to the free APBI-K molecules (Figure 3b). A 98% quenching
was observed upon formation of a self-assembled compound. These results suggest that the
addition of Cu2+ ions boost the π-π stacking among PDI core and facilitates the formation
of coordinating self-assembled nanorods.
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formation of coordination induced self-assembly with incremental addition of Cu2+ ion.

To obtain further structural information of APBI-Cu nanorods, ATR-IR spectra were
also recorded (Figure S2, Supplementary Materials). Free APBI-K displays strong ab-
sorption bands in the areas of 1570 and 1343 cm−1. These bands can be assigned to the
asymmetric and symmetric CO2 stretching vibrations of the potassium coordinated APBI-K
fluorophore [33,43]. The peak corresponding to CO2 stretching vibrations diminished in
intensity and broadened upon nanorod formation. This result validates the coordination
bond formation between Cu2+ and APBI-K via the carboxylate functional group during
self-assembly [44,45].

3.2. Detection of Sulfide in Water

It is well known that copper has stronger affinity to sulfides compared to carboxylates [46,47],
consistent with the dramatically different solubility product constants of CuS (7.9 × 10−37)
and CuCO3 (1.4 × 10−10) [34,48]. Based on this metal ion displacement approach (MDA),
various colorimetric and fluorometric probes have been reported [2,30,49–55]. However,
the use of perylene diimide (PDI) based metal coordinated self-assembled materials as a
sulfide sensor is rare. Recently, Yao et al. reported H2S sensing using a similar mechanism
with a 0.41 µM detection limit [53]. However, the use of highly toxic cadmium metal
could restrict the sensor application in real world applications. Thus, the self-assembled
APBI-Cu nanorods could be a better option for sulfide sensing considering their real-world
application potential.

To test the sulfide sensing ability of APBI-Cu nanorods, the nanorods were dispersed
in water and an aqueous solution of Na2S was added incrementally. As depicted in
Figure 4a, a rapid turn-on fluorescence signal was observed in the presence of sulfide in the
system. The spectral pattern is the exact same as free APBI-K molecules. A time-dependent
study shows that the turn-on signal gets saturated within 120 s (Figure S3, Supplementary
Materials). Such a fast response is desirable for rapid onsite sensor development. In the
presence of sulfide, the color of the solution also changes to red with the reappearance of
typical 0–0 and 0–1 transition peaks in UV-Vis spectra (Figure S4, Supplementary Materials).
A change of pH was also observed during the sensing experiments. The pH of the system
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changes from 5.4 to 7.8. Thus, to stabilize the pH of the system, a same experiment was
carried out in 10 mM HEPES buffer at pH 7.4. As shown in Figure S5, APBI-Cu nanorods
can detect the sulfide in buffer medium efficiently. Hence, the spectral study in both water
and buffer medium confirm the sulfide sensing ability of APBI-Cu nanorods.
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0–100 µM) in pure aqueous medium. (b) Relative fluorescence intensity change APBI-Cu nanorods
toward various competitive analytes (100 µM) (1) Na2S, (2) cysteine, (3) homocysteine, (4) glutathione,
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Different thiol-containing amino acids are one of the main sources of sulfide con-
tamination in food and other biological samples [56–58]. In addition, the affinity of
such thiol-containing amino acids towards copper ion is also high [59–61]. Thus, thiol-
containing amino acids and other thiol containing biomolecules could show false posi-
tive responses. To test the selectivity towards sulfide over other interfering substances,
APBI-Cu nanorods were treated with different thiol-containing biomolecules (cysteine
(Cys), homocysteine (Hcys), glutathione (GSH)), various anions (NaF, NaCl, NaBr, NaI,
NaNO3, NaNO2, NaHSO3, NaS2O3, Na2SO4, NaHCO3 and Na3PO4) and meat spoilage-
associated volatile organic compounds (ethanol, hexanol, phenol, acetic acid, butanoic acid
and hexanal) [62]. Figure 4b and Figure S6 and Supplementary Materials show that no
strong response was found from other interfering substances. Concentration dependent
fluorescence studies show that the APBI-Cu nanorods are capable enough to distinguish
among sulfide and other interfering molecules and anions (Figure S7, Supplementary
Materials). Thus, APBI-Cu nanorods are highly selective towards sulfide over common
thiol containing biomolecules and various anions.

An efficient sensor must work in a complicated system where the target analyte
coexists with other interfering substances. To check the sensitivity of APBI-Cu nanorods,
another set of experiments was designed. Here, the interfering molecules and anions
were added to an equal amount of sulfide. As shown in Figure 5 and Figures S8–S27,
Supplementary Materials, a similar turn-on signal was observed from APBI-Cu nanorods
and no strong interference was noticed even with other molecules present. Based on
these results, we can conclude that the self-assembled APBI-Cu nanorods are not only
selective towards sulfide, but also highly sensitive. Further, the limit of detection was
calculated in the concentration range of 0–12 µM and the plot of the fluorescence intensity of
APBI-Cu nanorods vs. the concentration of Na2S revealed a linear relationship (Figure S28,
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Supplementary Materials). The LOD for the detection of sulfide was calculated at a signal-
to-noise (S/N) ratio of 3 and has been estimated to be 0.181 µM.
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Figure 5. Bar plot showing relative fluorescence intensity change of APBI-Cu nanorods toward
Na2S in presence of various competitive analytes (100 µM) (1) no competitive analyte, (2) cysteine,
(3) homocysteine, (4) glutathione, (5) NaF, (6) NaCl, (7) NaBr, (8) NaI, (9) NaNO2, (10) NaNO3,
(11) NaHSO3, (12) Na2SO3, (13) Na2SO4, (14) NaHCO3, and (15) Na3PO4, (16) ethanol, (17) hexanol,
(18) phenol, (19) acetic acid, (20) butanoic acid and (21) hexanal.

Metal ion displacement approach (MDA) is a common mechanism for sulfide
sensors [63–65] (Table S1, Supplementary Materials). In the presence of sulfide, metals
convert to metal sulfides. The fluorophore then shows turn-on signals as it is released in
solution. As discussed earlier, we observed similar emission and absorption signals from
APBI-Cu nanorods in the presence of sulfide. In addition, 1H-NMR of APBI-Cu nanorods
were recorded before and after the treatment of Na2S in D2O (Figures S29–S31, Supplemen-
tary Materials). No obvious peaks were found in 1H-NMR for only APBI-Cu nanorods
as they are insoluble in water. On the other hand, Na2S treated APBI-Cu nanorods show
a similar 1H-NMR signal compered to free APBI-K [33]. The peaks at 7.96 and 8.02 ppm
could be assigned to aromatic protons of the PDI core of APBI molecules. The peak around
3.14 ppm shifted to 2.65 ppm, which might occur from the different metal environments
around the carboxylate functionalized molecule [66,67]. The SEM images of APBI-Cu
nanorods were taken after the treatment of Na2S to observe any changes in morphology.
Figure S32, Supplementary Materials confirms that the nanorods lost their shape after the
sensing event, which also supports the copper ion displacement mechanism. The detection
mechanism is shown in Scheme 2.
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3.3. Detection of Sulfide in Water and Meat

‘Sulfur bacteria’ can produce toxic sulfide in groundwater, wells, and even
plumbing [68,69]. Use or consumption of sulfide contaminated water is bad for human
health. Considering the possible use of the APBI-Cu nanorods for on-site detection of
sulfide without using any complex device, a paper test strip (~3 cm × 5 cm) was utilized.
Paper strips were dipped in various concentrations of Na2S solution made by laboratory
tap water. The APBI-Cu nanorods-coated paper test strip showed gradually enhanced
emission under UV lamp with increasing concentration from 0 µM to 100 µM (Figure 6).
These observations indicate that the APBI-Cu nanorods coated paper can be used for the
on-site detection of sulfide in water.
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Figure 6. Digital images of paper strips coated with APBI-Cu under UV-lamp after the treatment of
various concentrations of Na2S made in tap water.

As it spoils, meat produces a high amount of sulfides via the degradation of
proteins [70,71]. In such cases, sulfide can act as a marker of meat spoilage [72]. Chicken
mince was kept at room temperature and another set of meat was stored at −4 ◦C. The
collected gas from the headspace of the flask was slowly bubbled in the aqueous suspension
of APBI-Cu nanorods. Emission spectra were then recorded. No remarkable turn-on signal
was observed in the initial 2 days from both samples. A detectable turn-on signal was
observed from the meat stored at room temperature after 3 days. As shown in Figure 7
and Figure S33, Supplementary Materials, the turn on signal increased with time. On the
other hand, no turn-on signal was observed for the gas collected from the headspace of the
chicken-containing flask stored at −4 ◦C, which indicates that the meat remained fresh and
was not undergoing spoilage. No turn-on signal was observed when only air was bubbled
in the aqueous suspension of APBI-Cu nanorods as a control experiment. In addition,
when APBI-Cu nanorods coated paper was placed on fully spoiled meat, a rapid color
change was observed with an enhanced fluorescence signal under UV-lamp (Figure S34,
Supplementary Materials). These observations suggest that the APBI-Cu nanorods can be
utilized as an indicator of raw meat freshness via monitoring the released sulfide from the
meat sample.
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toward sulfide during a 6-day period of chicken meat spoilage process. Inset showing the round
bottom flask used for storage of meat samples.

4. Conclusions

In short, an APBI-Cu nanorod based colorimetric and fluorometric probe was devel-
oped. The APBI-Cu nanorods can selectively detect the toxic sulfide without interference
from common thiol-containing biomolecules like cysteine, homocysteine, and glutathione.
Water soluble APBI molecules undergo controlled coordination-induced self-assembly
with copper and show a fluorescent turn-off signal. In the presence of sulfide, APBI-Cu
nanorods begin disassembling. This phenomenon was made evident by spectroscopic
investigation, morphology evaluation, and observation of a distinct turn-on signal. The
APBI-Cu nanorod probe showed sensitive and selective detection of sulfide with a low
detection limit of 0.181 µM in a purely aqueous medium, which is significantly lower than
those reported recently with other perylene diimide fluorescent probes. Finally, it has been
successfully utilized to detect sulfide in both water and meat samples. Hence, this newly
developed colorimetric and fluorometric sulfide sensor has great potential in the fields of
water and meat spoilage monitoring.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10120500/s1, Figure S1: SEM image of the APBI-K;
Figure S2: ATR-IR spectra of APBI-K and APBI-Cu nanorods; Figure S3: Time dependent relative
changes of emission intensity of APBI-Cu nanorods with Na2S; Figure S4: Change in absorption
spectra of APBI-Cu nanorods in presence of Na2S. Inset showing corresponding change in color of
the solution; Figure S5: (a) Change in emission spectra of APBI-Cu nanorods in presence of Na2S
in HEPES buffer medium at pH 7.4. and other competitive molecules and anions. (b) The bar plot
showing the relative change in emission spectra of APBI-Cu nanorods in presence of Na2S in pure
water and HEPES buffer medium; Figure S6: Change in emission spectra of APBI-Cu nanorods in
presence of Na2S and other competitive molecules and anions. Inset showing the enlarged view
of the spectral change for other analytes; Figure S7: Concentration dependent change in emission
spectra of APBI-Cu nanorods in presence of Na2S and other competitive analytes (final concentration:
100 µM); Figure S8: Competitive detection of Na2S by APBI-Cu nanorods in presence of Cysteine;
Figure S9: Competitive detection of Na2S by APBI-Cu nanorods in presence of Homocysteine; Figure
S10: Competitive detection of Na2S by APBI-Cu nanorods in presence of Glutathione; Figure S11:
Competitive detection of Na2S by APBI-Cu nanorods in presence of NaF; Figure S12: Competitive
detection of Na2S by APBI-Cu nanorods in presence of NaCl; Figure S13: Competitive detection of
Na2S by APBI-Cu nanorods in presence of NaBr; Figure S14: Competitive detection of Na2S by APBI-
Cu nanorods in presence of NaI; Figure S15: Competitive detection of Na2S by APBI-Cu nanorods in
presence of NaNO2; Figure S16: Competitive detection of Na2S by APBI-Cu nanorods in presence of
NaNO3; Figure S17: Competitive detection of Na2S by APBI-Cu nanorods in presence of NaS2O3;
Figure S18: Competitive detection of Na2S by APBI-Cu nanorods in presence of NaSO4; Figure S19:
Competitive detection of Na2S by APBI-Cu nanorods in presence of NaHSO3; Figure S20: Competitive
detection of Na2S by APBI-Cu nanorods in presence of NaHCO3; Figure S21: Competitive detection
of Na2S by APBI-Cu nanorods in presence of Na3PO4; Figure S22: Competitive detection of Na2S by
APBI-Cu nanorods in presence of Ethanol; Figure S23: Competitive detection of Na2S by APBI-Cu
nanorods in presence of Hexanol; Figure S24: Competitive detection of Na2S by APBI-Cu nanorods in
presence of Phenol; Figure S25: Competitive detection of Na2S by APBI-Cu nanorods in presence of
Acetic Acid; Figure S26: Competitive detection of Na2S by APBI-Cu nanorods in presence of Butanoic
Acid; Figure S27: Competitive detection of Na2S by APBI-Cu nanorods in presence of Hexanal; Figure
S28: Liner turn-on response of APBI-Cu nanorods in presence of Na2S; Figure S29: 1H NMR spectra
of APBI-K in D2O; Figure S30: 1H NMR spectra of APBI-K after complexation with Cu2+ ion in
D2O; Figure S31: 1H NMR spectra of APBI-Cu nanorods after treatment of Na2S in D2O; Figure
S32: SEM images of APBI-Cu nanorods after the treatment of Na2S; Figure S33: Change in emission
spectra of APBI-Cu nanorods after bubbling the gas collected from meat sample stored at (a) −4 ◦C
and (b) room temperature; Figure S34: Digital images of paper strips coated with APBI-Cu under
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Chemosensors 2022, 10, 500 10 of 13

(a) daylight and (b) UV-lamp before and after the contact with spoiled meat; Table S1: List of few
recently reported sulfide sensor material works with similar metal ion displacement mechanism.
References [2,30–32,49–55,73–80] are cited in the supplementary materials.
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