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Abstract: There is significant demand for portable sensors that can deliver selective and sensitive
measurement of ethanol on-site. Such sensors have application across many industries, including
clinical and forensic work as well as agricultural and environmental analysis. Here, we report a new
graphene–indium oxide electrochemical sensor for the determination of ethanol in aqueous samples.
Graphene layers were functionalised by anchoring In2O3 to its surface and the developed composite
was used as a selective electrochemical sensor for sensing ethanol through cyclic voltammetry. The
detection limit of the sensor was 0.068 mol/L and it showed a linear response to increasing ethanol in
the environment up to 1.2 mol/L. The most significant parameters involved and their interactions
in the response of the sensor and optimization procedures were studied using a four-factor central
composite design (CCD) combined with response surface modelling (RSM). The sensor was applied
in the detection of ethanol in authentic samples.

Keywords: electrochemical sensor; ethanol detector; 2D materials; multivariate optimization;
indium oxide

1. Introduction

There are numerous techniques for the measurement of ethanol, including chromato-
graphic techniques such as high-performance liquid chromatography (HPLC) [1,2] and
gas chromatography (GC) [3,4]; spectroscopic techniques including Fourier transform
near infrared (FT-NIR) and Raman spectroscopy [5–7]; and sensor technologies including
semiconductor metal-oxide-based sensors [8–12], biosensors and immunosensors based
on enzymes and antibodies [13–15]. The chromatographic techniques suffer from lack
of portability, complicated preparation, time consumption and response to various com-
pounds (lack of selectivity) [13]. Biosensors offer high selectivity, yet they suffer from poor
stability, high costs, critical operational conditions such as limited working temperature and
complicated fabrication procedure [16]. Spectroscopy methods may not always respond
well to real samples [7] or may need different preparation procedures for different real
samples [17]. Previously reported metal-oxide-based sensors have been used for detecting
volatile alcohols; however, because of their sensing mechanism, which is based on changing
resistance of the sensor, they might also respond to any other compound that affects their
resistance [9,18–20]. Due to the importance of alcohol measurements for clinical, biomedi-
cal, environmental, forensic, chemistry and food studies [21–26], there is always a demand
for portable sensors with relatively fast, sensitive, and selective response that can work in
different media.

Over time, graphene has proved to be a good candidate for developing sensors and
biosensors by offering large surface area, high electrical and thermal conductivity, mechan-
ical strength, and flexibility [27–29]. These characteristics along with its reasonable cost,
draw the attention of various sensor development industries where among commercially
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available sensors, glucose, lactate, glutamate, creatinine and cholesterol sensors have been
developed [30,31]. Despite the fact that graphene can work as a base material or substrate,
there is always a need for further modification to tune its properties and make it more se-
lective toward specific analytes [32]; among previously studied functionalisation methods,
various coatings, doping, using molecular imprinted polymers and trying to form a direct
bond to another bio-organic molecule have been attempted [33–38].

While semiconducting metal oxide sensors are currently one of the most studied
groups of gas sensors [39], few papers have suggested the sensory applications of metal
oxides in aqueous samples [40–42]. Some studies suggested that not only is indium oxide
sensitive to ethanol vapours [43], but its gas sensitivity can also be enhanced significantly
when it is used in composites along with other materials such as metals oxides [44],
transition metal dichalcogenides [45] or different doped metals [46,47]. Previous studies
on developing and utilizing a composition of indium to graphene used synthesis methods
including hydrothermal reaction [48], direct laser writing (DLW) [49], chemical vapor
deposition (CVD) [50,51] to grow graphene over an indium tin oxide electrode; however,
those methods suffer from problems such as complicated operation, time consumption
and difficult pre-synthesis [49]. Gunasekaran and his co-workers suggested the direct
electrochemical reduction in graphene oxide on the surface of indium tin oxide-coated glass
electrode [52] and Lei et al., suggested using ascorbic acid to reduce the graphene oxide
in the presence of previously synthesised In2O3 nanoparticles [53]. Here, we investigate
the application of indium oxide nanoparticles directly bonded on the graphene layers for
sensing trace amounts of ethanol in aqueous samples.

In order to optimize the developed sensor, design in response surface methodology
was employed. The technique assists with optimization of the outcome response though
analysing the results of a set of specific and advanced modelled experiments. Basic exper-
iments showed that the developed electrode can work as an ethanol senor, but to study
the magnitude of ethanol effects on the response of the sensor and to study the possible
effects of other variables including diffusion effects (can be monitored by changing the
rate of scan), binder and aging on the sensor simultaneously, regular central composite
design (CCD) with five levels were applied for each factor [54,55]. The effects of important
variables including scanning rate, ethanol concentration, amount of binder and age of
the sensor on the function of the sensor were investigated and optimized through cen-
tral composite design (CCD) combined with response surface methodology (RSM). This
method allowed the study of the interactions of all variables simultaneously, which not
only offers less treatment time and cost benefit, but increases the accuracy and precision
of the results [56]. The optimizations other than specifying the best reaction setups, have
enabled us to develop a durable and long-lasting sensor which can accurately and precisely
detect ethanol in aqueous solutions at very low concentrations.

2. Experimental
2.1. Materials

All chemicals were purchased from Fisher Scientific, UK, and were analytical reagent
grade. All aqueous solutions were prepared using double distilled water. RVFM A3
copper sheet with 0.1 mm thickness was used as the substrate for the sensor. While using
pure reagents, oxygen removed from the samples to minimize its interference with the
electrochemical experiments. Beer (about 5% alcohol; made of barley malt, rice and hops)
and American-style whisky (about 35% alcohol; made of corn, barley, rye and natural
honey) were used as real industrial samples.

2.2. Instrumentation

IviumStat.h (Ivium Technologies, Eindhoven, The Netherlands) was used as a po-
tentiostat for cyclic voltametric measurements in a 1.5 mL cell with a triple-electrode
configuration at room temperature and controlled by Iviumsoft. The counter electrode
was platinum and the reference electrode was made of Ag/AgCl, which was developed by
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heating a thin silver wire (0.8 mm diameter) in a container filled with KCl at 300 ◦C for 24 h.
The developed sensor made contact with the samples through a hole (12 mm diameter) at
the bottom of the cell. Fourier-transform infrared (FTIR) spectra were recorded on Platinum
ATR–Alpha II FTIR spectrophotometer (Bruker, Billerica, MA, USA). Scanning electron
microscopy (SEM) measurements were carried out using a JEOL (Tokyo, Japan) JSM-6010
tungsten cathode scanning electron microscope. A U500H Ultrasonic Bath (Ultrawave,
Cardiff, UK) used for sonication and Jeio Tech’s OV-11 vacuum oven (Daejeon, Korea) was
used to dry printed sensors. Design Expert software version 11 (Stat-Ease, MN, USA) was
used to design experiments and analyze the data. X-ray photoelectron spectroscopy (XPS)
analyses were performed using ThermoFisher Scientific Instruments (East Grinstead, UK)
K-Alpha+ spectrometer, where XPS spectra were acquired using a monochromated Al Kα

X-ray source (hν = 1486.6 eV).

2.3. Synthesis Procedure

Jagannadham also suggested that there is reduction in graphene oxide in the presence
of indium, and added a suspension of graphene oxide inside indium foil and applied
annealing over the folded foils [57]. Graphene oxide–Nafion–In2O3 printed mixture for
sensing humidity is another example of an indium–graphene combination, where each part
is synthesised separately and mixed together for casting an electrode [58].

The use of metal and acid mixtures for reducing graphene oxide, because of its fast and
efficient reduction abilities, has garnered much attention in recent years [59]. The general
mechanism is still unclear, but two of the suggested mechanisms are rapid electron transfer
between graphene oxide and metals and production of hydrogen to work as the active
reducing agent [59]. The common factor among previously studied metals–acid reduction
procedures, such as aluminium [60], iron [61] or zinc [62,63], was that the reduction of
graphene oxide never happened in the absence of acids. On the other hand, indium is
known for its ability as reducing agent in organic synthesis [64,65].

Here, we used a simple reduction and functionalisation method after developing
graphene oxide through modified Hummer’s method to reduce freshly exfoliated graphene
oxide layers and then functionalise graphene with indium oxide in a follow up step. Briefly,
the modified Hummer’s method is employed to turn graphite into graphene oxide [66,67],
though at the final stages a simple treatment with a solution of indium and sulfuric acid
eliminated the oxygen bonds on the surface of graphene oxide to forms reduced graphene
oxide; then, a second batch of indium reagent formed indium oxide along with a direct
bond to the surface of graphene.

The procedure started with the addition of 90 mL sulfuric acid to 2.5 g graphite. Then,
2.3 g NaNO3 was added to the mixture and left to react, before transferring the container
into an ice bath. Next, 12.5 g KMnO4 was slowly added to the solution while it was in the
0 ◦C bath, to produce a dark-green mixture. The mixture was diluted further with 500 mL
water. Finally, 15 mL H2O2 (30%) was added to the mixture dropwise. The graphene oxide
can be obtained by washing and purifying sample through multiple centrifugations at this
point and can be dried either by freeze dryer or by normal heating.

To reduce the oxygen functional groups and improve the conductivity of graphene
sample [29], a solution of 1 g indium acetate dissolved in diluted sulfuric acid solution
(200 mL H2O: 8 mL H2SO4), prepared separately and slowly, was added to the graphene
oxide and left to stir at room temperature (pH~1.5). Then, 10 mL diluted hydrogen peroxide
(10%) was added and left to stir for 12 h. Finally, 500 mL of water was added to the mixture
to dilute further. The purification was carried out by washing with water with the help of
centrifuge, until the pH reached neutral (pH~7).

In order to functionalise the reduced graphene oxide, first 1 g indium acetate followed
by 10 mL H2O2 (30%) were added to the developed mixture and left to stir for more than
12 h while the temperature of the mixture increased and maintained at about 45 ◦C. The
final product was processed in a similar way to previous ones and washed with water
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through multiple centrifugations until the pH of the sample reached neutral; then it was
dried at 65 ◦C.

2.4. Electrode Fabrication

Initially, a composite was prepared by mixing dried graphene–In2O3 (80 mg) with
polyethylene terephthalate (PET, 5, 7.5, 10, 12.5, 15 wt%) and a 2.5 mL dimethylformamide
solution (DMF 2:1 water) in an agate mortar to obtain a homogeneous ink. This was
manually printed over a thin layer of copper, where polyimide tapes were used to form a
temperature tolerant frame and prepare the copper into distinct sections. It was left to dry
inside a vacuum oven at 80 ◦C for two hours and then at 130 ◦C for 22 h. After removal of
the polyimide tape, the electrodes are separated for further study. The final dried printed
electrodes had on average approximately 9.23 mg composite per 1 cm2.

2.5. Experimental Design and Data Analysis

The simultaneous optimization technique which was used (CCD under response sur-
face methodology, RSM), is a package of experimental design, modelling, and optimization,
which provides relatively fewer combinations of variables for studying complex response
function [54,56,68,69]. Here, CCD in the form of a 24 full-factorial design was used to de-
velop mathematical equations to provide quantitative evaluation of the sensors’ behaviour
by changing different variables. Ethanol concentration, scanning rate, amount of binder
and age of the sensor—the key parameters affecting the resulting electrical current—were
studied in this evaluation.

Table 1 shows a five-level CCD which was applied to study the effects of listed
variables on an electrical current, which resulted in 30 runs for the optimization process.
Table 2 shows the design matrix and the results of the central composite full factorial design,
where reproducibility and errors were investigated using its central points. Factorial points
(2k points, k = 4 factors) help with estimating first-order and two-factor interactions, while
axial points (2k points, k = 4 factors) estimate pure quadratic effects.

Table 1. Experimental factors and levels in the central composite design.

Notation Factor Unit
Range and Levels

−α −1 0 +1 +α

A Scan Rate mV/s 10 40 70 100 130

B Ethanol
Concentration mol/L 0.1 0.3 0.5 0.7 0.9

C Amount of Binder wt% 5 7.5 10 12.5 15
D Age of the Sensor days 7 14 21 28 35

Table 2. Design matrix and the results of the central composite full factorial design.

Run A B C D Response (Current) Space Type

1 100 0.3 12.5 14 2.335 Factorial
2 100 0.3 7.5 14 2.613 Factorial
3 40 0.7 12.5 14 3.859 Factorial
4 40 0.3 12.5 28 2.981 Factorial
5 40 0.7 12.5 28 4.392 Factorial
6 100 0.7 12.5 28 4.196 Factorial
7 40 0.3 7.5 14 2.798 Factorial
8 70 0.5 10 21 2.284 Centre
9 100 0.7 12.5 14 3.975 Factorial

10 100 0.3 7.5 28 2.786 Factorial
11 40 0.7 7.5 28 3.177 Factorial
12 40 0.7 7.5 14 3.513 Factorial
13 70 0.5 10 21 2.742 Centre
14 70 0.5 10 21 2.556 Centre
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Table 2. Cont.

Run A B C D Response (Current) Space Type

15 70 0.5 10 21 2.747 Centre
16 40 0.3 7.5 28 2.688 Factorial
17 40 0.3 12.5 14 2.893 Factorial
18 100 0.7 7.5 28 4.087 Factorial
19 100 0.3 12.5 28 2.795 Factorial
20 100 0.7 7.5 14 4.157 Factorial
21 70 0.5 5 21 2.501 Axial
22 70 0.5 10 21 2.705 Centre
23 70 0.9 10 21 3.976 Axial
24 130 0.5 10 21 2.905 Axial
25 10 0.5 10 21 3.435 Axial
26 70 0.5 10 7 2.934 Axial
27 70 0.5 10 35 2.876 Axial
28 70 0.5 10 21 3.371 Centre
29 70 0.5 15 21 3.231 Axial
30 70 0.1 10 21 2.356 Axial

3. Results and Discussion
3.1. Characterization

The surface composition of the developed graphene-In2O3 composite on an area
of approximately 400 µm in diameter of the sample was analysed by XPS and results
illustrated in Figure 1. C 1s XPS spectrum of the sample (Figure 1a) contains three peaks
at 285.01, 286.99 and 287.71 eV which represent sp2 carbon (graphene), C-O-In and C=O
bonds, respectively [48,70–72]. It was suggested that the generation of a C-O-In bond
can change carbon rings’ π* orbitals structure and cause a decreased peak in the range of
285–286 eV [48,73].

Figure 1b shows that in the In 3d region of the XPS spectra, two main peaks at 445.6
and 453.13 eV represent In 3d5/2 and In 3d3/2; these represent both C-In3+ and the presence
of indium–carbon bonds [74]. At the same time, both of those peaks are in a +3 oxidation
state of indium and can overlap with In–O bonds in In2O3 [75]. The indium–oxygen bond
can also be found in the O 1s spectrum (Figure 1c) at 530.32 eV [76–78] along with the
O-H bond at 532.26 eV and the O-C at 533.28 eV in that region [75,79,80]. A closer look
at XPS results suggests that indium oxide developed on the surface of graphene, possibly
anchored to the graphene through both In–C and In–O–C bonds.
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Figure 1. XPS spectra of (a) C 1s, (b) In 3d and (c) O 1s.

A comparison of the FTIR spectrum of graphene oxide with reduced graphene oxide
(Figure 2) demonstrates the noticeable reduction in the intensity of oxygen functional
groups, mainly the broad O-H stretching at 3168.58 cm−1, which confirms the successful
reduction [81–83]. During the functionalisation procedure, the addition of hydrogen perox-
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ide to the mixture indium and graphene not only helped with the development In2O3 from
indium acetate among graphene layers, but also resulted in the generation and addition
of extra alcoholic groups to the surface of graphene and led to the re-appearance of the
hydroxyl stretching peak. The FTIR spectrum of the functionalised sample shows a slight
increase in the alcoholic peaks, which could have been caused by hydrogen peroxide during
the functionalization process, in which some -OH groups were attached to the graphene.
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Figure 2. FTIR spectra of graphene oxide, reduced graphene oxide and indium-functionalized graphene.

The Raman spectra were obtained with a 50×magnification objective, allowing us to
focus the laser spot properly on the surface of the graphene-based samples; the results are
shown in Figure 3. The G band, which appeared around 1576 cm−1 for studied samples,
represents the C=C bond [84–86], while the D band, which its intensity is associated with
the number of defects in the graphene plane, appeared at about 1337 cm−1 in our sam-
ples [85,87]. In the wavelengths above 2300 cm−1, the second-order bands were present for
rGO and rGO–In2O3 samples. The 2D band, which appeared at approximately 2670 cm−1,
is the overtone of the D band activated by a double-resonance process which was similar to
the D band, but does not require the presence of defects like the D band to fulfil the momen-
tum conservation law and will be visible for any sp2 carbons including graphene [88,89].
The remaining two highlighted bands in Figure 3 are the D + G bands at about 2896 cm−1,
which is the combined overtone of both the D band and G band, and the 2G band at
3188 cm−1 which, similarly, is the overtone of the G band [90,91]. After functionalisation,
the intensity of the G band increased, and peaks also have been slightly shifted compared to
the pure rGO, which shows the structural changes on the surface of graphene. The intensity
ratio of the D and G bands (ID/IG) for developed graphene oxide, reduced graphene oxide,
and functionalised graphene are 1.24, 1.67 and 1.19, respectively. A higher ID/IG ratio
ensured that there were more defects on graphene [92]. The ratio I2D/IG is dependent
on the number of graphene layers. Ratios above 1 represented bilayer and monolayer
graphene, while an I2D/IG ratio lower than 1 demonstrated multilayer graphene [93–95].
The I2D/IG ratio for reduced graphene oxide before and after functionalisation was found
to be 0.36 and 0.64, respectively, where both show multilayer graphene structure.
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While SEM analysis can be used to determine the morphology, dispersion and size
of the nanoparticles, EDS can deliver qualitative analysis, which can provide information
about the elemental composition of our samples. Figure 4a shows the typical graphene
oxide 2D morphology. After the first treatment with indium and acidic solution (Figure 4b),
reduction caused graphene layers to aggregate on top of each other. Figure 4c clearly shows
indium oxide nanoparticles completely covered graphene layers through a successful
functionalisation. EDS also shows how a first treatment with indium and acidic solution
helped with increasing the C/O ratio and eliminating other impurities; it also confirms that
indium did not remain on the graphene after the reduction procedure (Figure 4b). The EDS
graph in Figure 4c confirms the presence of indium on the surface along with a spike in the
amount of oxygen found on the surface, which could have been caused mainly by In2O3
and partially by the addition of few alcohol groups to the graphene itself, as previously
discussed with FTIR graphs.

SEM images in Figure 5 studied the surface of the printed electrodes on the copper
substrate. It illustrates how well the printed sensor can hold its structure after experiencing
mechanical tensions (cutting and bending) where the printed composite did not show any
significant change after going through multiple mechanical tests.

Cyclic voltammetry measurements (CVs) were obtained for the electrochemical sensor
in pure water and various ethanol standards (concentrations ranged from 0.1 mol/L to
1.4 mol/L). The potential range used for all solutions was from −1.50 to +1.50 V vs.
Ag/AgCl at a various scan rate between 10 and 130 mV/s (E step: 10 mV). For each one
of the measurements reported in this paper, a new electrode was used. Scans showed an
oxidation peak at the presence of ethanol. The significance of ethanol affects the response
of the electrode and the intensity of the mentioned peak; the importance of other possible
variables was studied using RSM.
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tensions including bending and cutting. Both SEM scale bars are 500 µm.

3.2. Optimization of Sensor Efficiency Using Response Surface Methodology

The optimization of sensor efficiency was accomplished using response surface method-
ology. Analysing the variances (ANOVA) in the standard response surface design (i.e., CCD),
was conducted on Design Expert 11.0 software to study effective parameters in the per-
formance of an electrochemical sensor. A quadratic model was selected for this study,
which offers the highest order polynomial where the additional terms are significant, and
the model was not aliased. The ANOVA results in Table 3 provide information on the
importance of each variable. The model F-value of 6.11 implies the model is significant
and there is only a 0.09% chance that an F-value this large could occur due to noise, while
p-values less than 0.05 indicate the significance of model terms [96,97] (here, B, A2, and
B2 are significant terms). Values greater than 0.10 indicate the model terms are not signifi-
cant. If there are many insignificant model terms (not counting those required to support
hierarchy), model reduction may improve the model.

The Lack of Fit (LoF) F-value of 1.30 implies the LoF is not significant relative to the
pure error and its p-value of about 0.43 confirms the suitability of the model for well-fitting
of the experimental data and shows that other interactions are not significant with respect
to the pure error.
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Table 3. The ANOVA results of CCD for graphene–indium oxide electrode.

Source Sum of Squares Degree of Freedom Mean Square F-Value p-Value

Model 9.46 14 0.6757 6.11 0.0009 Significant
A 0.0072 1 0.0072 0.0656 0.8016
B 6.73 1 6.73 60.88 <0.0001
C 0.3919 1 0.3919 3.55 0.0806
D 0.0296 1 0.0296 0.2680 0.6128

AB 0.3321 1 0.3321 3.01 0.1050
AC 0.3280 1 0.3280 2.97 0.1069
AD 0.0232 1 0.0232 0.2098 0.6540
BC 0.1171 1 0.1171 1.06 0.3207
BD 0.0043 1 0.0043 0.0391 0.8460
CD 0.1691 1 0.1691 1.53 0.2364
A2 0.6946 1 0.6946 6.29 0.0251
B2 0.6859 1 0.6859 6.21 0.0259
C2 0.1896 1 0.1896 1.72 0.2114
D2 0.2366 1 0.2366 2.14 0.1654

Residual 1.55 14 0.1105
Lack of Fit 1.18 10 0.1183 1.30 0.4310 Not significant
Pure Error 0.3641 4 0.0910
Cor Total a 11.16 29

a Totals of all information corrected for the mean.

The high values of R2 (0.86) and adjusted R2 (0.72) obtained from this design and
modelling illustrate the high correlation between the recorded and the predicted response
values. An equation is provided for sensor response, based on the data analysis (Equation
(1)), that can be used to make predictions about the response for given levels of each factor.

Current = 2.71 −(0.0174 ∗ A) + (0.5295 ∗ B) + (0.1278 ∗ C) + (0.0351 ∗ D)
+(0.1441 ∗ AB)− (0.1432 ∗ AC) + (0.381 ∗ AD) + (0.0856 ∗ BC)
−(0.0164 ∗ BD) + (0.1028 ∗ CD) +

(
0.1591 ∗ A2)+ (

0.1581 ∗ B2)
+
(
0.0831 ∗ C2)+ (

0.0929 ∗ D2) (1)

Normal probability plots assess the distribution of the data and indicate whether the
residuals (difference between experimental and predicted value from regression) follow a
normal distribution (the straight line) or not [97,98]. The normal probability plot in Figure 6
shows a satisfactory normal distribution where there are almost no serious violation of the
predictions plotted, which suggests that the data are distributed normally.

The ANOVA was then plotted in 3D graphs which leads to a surface response, cor-
responding to a sensor response and can be used to predict optimum points. Figure 7
outlines the relevant fitted response surfaces for the design and plots the current versus
other variables. Curvatures is a sign of interactions among variables and, as seen in Figure 7,
the most important variable that significantly affects the electrodes produced current is
the concentration of ethanol. However, other variables could also change the strength
and magnitude of sensor’s response at a certain ethanol concentration; for instance, from
Figure 7a, it can be seen that for low concentrations of ethanol, a slower scan rate will
generate a stronger response (current), while for higher concentrations, faster scan rates
will generate more electrical current at a specific potential. Figure 7b shows that, despite
the low effects of binder on the response, slightly higher amounts of binder can help with
generating a stronger response. By checking the Figure 7c, the sensor seems to be indifferent
to aging and produced signal at a certain concentration of ethanol. Figure 7d–f are close
to flat panel, which means the interaction of other variables with each other are lower; in
Figure 7d, we can see that for a lower amount of binder, the faster scan rate will respond
better (it is stronger and generates more electrical current), while the electrode with higher
amounts of binder will respond better at slower scans. Figure 7e shows that there are
almost no significant interactions between aging and scan rate. As can be seen in Figure 7f,
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older electrodes with a higher amount of binder will respond better than electrodes with
the same age that had less binder in their composite, which alluded to the effects of binder
on extending the expiry date of the sensor.
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When considering optimization, the desirability scale is from 0.0 (undesirable) to
1.0 (very desirable) and the optimization profile of the same software was used to obtain
solutions. The solution was selected that offers highest desirability level for one-month-old
electrodes, with 10 wt% binder in them and scan rate and ethanol levels within the study
range (Table 1) that will produce maximum current (Figure 8).

From the contour plot (Figure 8), we can see for electrodes with a certain age (30 days)
and fixed amount of binder (10 wt%), the desirability increases by decreasing the scan rate
for low concentrations and by doing fast scans for higher ethanol concentration. Due to the
specific effects of scan rate on the produced current at different concentrations, a scan rate
of 50 mV/s was selected for all further study, which is the fastest rate that can generate
reasonably high current for the studied range of ethanol concentrations.
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Figure 7. The 3D response surface plots for electrical current versus various variables. Graphs studies
the simultaneous effects of (a) scanrate (mV/s) and ethanol concentration (mol/L), (b) binder (wt%)
and ethanol concentration (mol/L), (c) age (days) and ethanol concentration (mol/L), (d) binder
(wt%) and scanrate (mV/s), (e) age (days) and scanrate (mV/s), (f) age (days) and binder (wt%), on
the current (µA) at the oxidation peak potential.
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3.3. Post Analysis and Analytical Figures of Merit

The point prediction method from the confirmation profile of the software was applied
to help with the model’s “well prediction” verification. In this method, a test point inside
the model with specific variable and conditions set to that point will be selected. Then,
the response of the sensor at those specific conditions will be recorded multiple times and
compared with the predicted response; the outcome results at that specific point show the
level of reliability of the suggested quadratic model. A scan rate of 100 mV/s, ethanol
concentration of 0.5 mol/L, 10 wt% PET and 14 days age for the sensor were selected as
a single combination of factors for “confirmation location”, where the average current
responses of three runs at that location is compared to the prediction interval for a sample.
Table 4 shows the resulting information in the confirmation table, where the confidence is
95% and it can be seen that all of the measured responses and also their mean is within the
quadratic model prediction intervals which confirms the model.

Table 4. Model confirmation results.

Response Type Predicted Mean Predicted Median Number of Runs SE Pred a 95% PI b Low Data Mean 95% PI b High

Current (µA) 2.87068 2.87068 3 0.250235 2.33397 2.99267 3.40738

a SE Pred: standard deviation associated with the prediction of observations. b PI: prediction interval.

The closeness of the experimental results with the predicted result by the quadratic
model, as explained in Table 4, proves the model was able to adjust well and take into
account possible errors with the help of centre points (space type). Other than measuring
possible errors, centre points also help with the development of a modelling system that
generates reproducible results; the accurate model and reproducibility of the sensor can
be confirmed when the average of the experimental response of the sensor matches the
average of the predicted response by the model.

With the confidence that the developed electrode is sensitive to a range of ethanol
levels, standard solutions with different concentrations of ethanol were prepared and
the linear range of the sensor was found to be from 0.1 mol/L to 1.2 mol/L (Figure 9a).
The limit of detection (LoD) of the sensor was calculated to be 0.068 mol/L based on
3Sb/m [99] (where m = 0.5885 is the slope of the calibration curve and Sb = 0.0196 is
the standard deviation of three blank measurements); taking into account the standard
deviation minimizes the possible effects of instability of the generated signal. The stability
of the sensor was investigated over a 12-month period via repeat measurements of an
ethanol standard at a fixed concentration. The data are shown in Figure 9b, which shows
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that the sensor will maintain its ability to generate a significant oxidation peak for at least
3 months; however, after several months, it slowly loses its ability to generate a significant
and measurable oxidation peak.
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Figure 9. Graph (a) shows electrical response of the sensor against different concentrations of ethanol
in optimum conditions and the linear range. Graph (b) represents the stability of the sensor over
12 months; the sensor performs well for at least 3 months, and after 12 months its ability to generate a
significant oxidation peak in the presence of the same concentration of ethanol reduces.

3.4. Mechanism of Reaction

In order to investigate the mechanism of sensing response of pure rGO to ethanol
compared with the graphene–In2O3 sensor, where in the presence of ethanol the oxidation
peak appeared only for the latter sample. Indium proved that it has the potential to form a
larger structure despite its limited bonding capacities [100]; one of the possible mechanisms
of sensing that we are suggesting here is based on this potential, which could cause a
catalytic interaction between indium oxide and alcohols as follows:

In2O3 + OH−
 In2O3(OH) + e− (2)

RCH2OH + In2O3 
 In2O3(RCH2OH)ads (3)

In2O3(RCH2OH)ads + In2O3(OH)→ In2O3 + In2O3(R*CHOH)ads + H2O (4)

In2O3(R*CHOH)ads + In2O3(OH)→ In2O3 + In2O3(RCOH)ads + H2O (5)

2In2O3(OH)→ 2In2O3 + 2OH*→ 1⁄2O2 + H2O (6)

Or it could follow a slightly different mechanism:

In2O3 + OH−
 In2O3(OH) + e− (7)

R′CH2OH + In2O3(OH)→ In2O3(OH)(R′CH2OH)ads (8)

In2O3OH(R′CH2OH)ads + In2O3OH→ In2O3 + In2O3OH(R′*CHOH)ads + H2O (9)

In2O3OH(R′*CHOH)ads + In2O3OH→ In2O3 + In2O3OH(R′COH)ads + H2O (10)

3.5. Selectivity of the Sensor and Real Sample Analysis

Regarding the selectivity of the developed sensor, the response of the electrode against
the same concentration of different alcohols was measured. Figure 10a shows that the
oxidation peak only appears in the presence of ethanol, while the other tested alcohols do
not show any peaks and the sensor treats them almost the same as water. The results in
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Figure 10b show how the applied electrochemical sensor offers a response to ethanol that is
almost double that of the other tested alcohols.
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Figure 10. Response of the graphene–indium oxide sensor to various alcohols. While (a) shows
only ethanol has an oxidation peak at the presence of the sensor, (b) measures the response in
terms of numbers; I is the recorded current at the response potential of the sensor (0.5 mol/L
concentration of different alcohols) and I0 is the response of the sensor against blank (water) at the
same study potential.

To establish validity, the fabricated electrochemical sensor based on graphene–In2O3
was applied to detect ethanol in authentic sample. Beer and whisky samples were selected
for this study to monitor the behaviour of the proposed sensor in real samples, where 1.5 mL
of the sample was directly and without any preparation transferred to the cell. As shown in
Figure 11, an obvious response in the form of a significant oxidation peak appeared close to
the same potential demonstrated in ethanol standard solutions was triggered. This proved
the sensitivity and selectivity of the developed electrochemical sensor towards ethanol and
its applications in detecting ethanol in complex aqueous samples. The difference between
the shape of the graph, intensity, and small shifts in the oxidation peak location for each
real sample in comparison with previously tested standards occurs due to the differences
between the electrolyte, as some matrices can offer better conductivity by being saturated
with more ions compared to other samples. That is why the ethanol oxidation peak for
beer is much higher than standards, as the standards only contain water and ethanol. The
tested whisky sample was instead saturated with sugar (honey), which does not dissociate
into ions when dissolved in water and is a non-electrolyte. However, it is important to
note that the sensor can be tuned based on the real sample matrix, by preparing standards
diluted in a similar matrix to that of the real sample and recalibrate based on that. Here, we
demonstrate the selectivity and sensitivity of the sensor to ethanol and show the generation
of an oxidation peak at almost the exact location that it appeared for standards.
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4. Conclusions

In this work, reduced graphene oxide was simply reduced by adding indium and acid,
and the developed rGO was functionalized with indium oxide through a straightforward
procedure. While most of the previous studies suggested metal oxide sensors detect ethanol
in volatile vapours by monitoring the changes in the resistance of the sensor, indium-oxide-
functionalized graphene showed application for sensing ethanol in aqueous media using
cyclic voltammetry. A response surface modelling analysis based on the CCD approach
was applied to evaluate, predict, and optimize the electrochemical sensor. The individual
and interaction effects of four variables, including ethanol concentration, scan rate, amount
of binder and age of the electrode were modelled and optimized. The electrochemical
results show good performance towards ethanol oxidation between 0.1 and 1.2 mol/L
concentrations with a detection limit of 0.068 mol/L. This graphene–In2O3 electrode offers
several substantial advantages, such as the simplicity of synthesis and printing, low cost,
and strong stability, which make it a good choice for the detection of ethanol in a range
of samples.
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