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Abstract: In spite of the wide use of Raman spectroscopy for chemical analysis in different fields,
not any automated identification of Raman spectra is universally adopted. However, the interest in
this field is witnessed by the large number of papers published in the last decades. The problem of
Raman-spectra classification becomes particularly challenging when low irradiation is requested,
either for safety reasons or to avoid target photodegradation. This often leads to spectra characterized
by a low signal-to-noise ratio, where methods based on correlation usually fail. For this reason,
a method based on peak identification through FMFs is presented, discussed and validated over
a large set of samples. In particular, a Monte Carlo simulation has been employed to determine
the best parameters of the fuzzy membership functions based on the analysis of performances of
the classification procedure. The ROC curves have been analyzed, and AUC and best accuracy are
employed as key parameters to evaluate the classification performances on different amounts of
ammonium nitrate (from 300 to 1500 µg) and different laser exposure levels (from 3.1 to 250 mJ/cm2).

Keywords: Raman spectroscopy; fuzzy logic; Monte Carlo simulation; ROC curves

1. Introduction

The problem of automatic identification of substances using spectroscopic data (or
other variables related to their structure as shape or composition) arose when automated
data collection and processing became available. In general, the problem of automatic de-
tection of patterns within a dataset may assume several aspects, according to the nature of
the being under examination (elements, chemical bonds, functional groups, cells, bacteria,
yeasts, algae, but also faces, handwriting, objects and shapes in pictures). Nevertheless,
some common characteristics can be found in all these problems, and they have become, in
the last decades, the object of a specific field of information theory named pattern recogni-
tion. On the other hand, the real-time possibility of detecting specific materials on complex
surfaces assumes great importance in many cases. Security, geology (both terrestrial and
planetary), biology and medicine, environmental and cultural heritage monitoring are
some fields where Raman spectroscopy is largely used for real-time analyses [1–5], where
the need for rapid answers on mixed samples is particularly felt. For example, the task of
detecting traces of dangerous materials on clothes, luggage or sampling filters or identify-
ing the pigments used in a mixed and overlaid paint requires high sensitivity, specificity
and, possibly low operating costs. Moreover, all these cases require the rapid detection of
compounds and analysis of complex targets without sample preparation.

Raman spectroscopy is used in these fields thanks to its high specificity, sensitivity
and low operating cost. Depending on the specific setup employed, no sample preparation
is needed and may be also compliant with laser exposure regulations on people [6]. On the
other hand, Raman spectroscopy needs the detection of low level signals, since in general,
the Raman cross-section is smaller than the elastic one by several orders of magnitude.
This is particularly true for traditional Raman spectroscopy, where no resonance lines nor
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surface enhancement can be exploited; though this is certainly a drawback of this technique
for standoff detection or, in general, when a sample cannot be prepared (e.g., ancient
paintings or frescoes), this approach remains the only option. In addition, sometimes, a
low laser exposure is required to avoid damaging the sample or for safety regulations,
according to IEC 60825-1 and European regulations [7].

The retrieval of sample composition by automated spectrum analysis must then be
robust and reliable also in case of low signal-to-noise (SNR) ratios. For this reason, a long
history of automated detection has been developed in the last few decades. In fact, the
automatic identification of species from specific spectral information is a field that dates
back to the 1960s, when computers started allowing automatic data collection and analysis,
and they were focused on the recognition of peaks in a scintillation spectrum [8]. The
attention on this subject suddenly rose, and the first reviews appeared in the early 1980s [9].

Since then, more sophisticated analyses have been attempted, using multivariate
analysis [10], pattern recognition techniques [11,12], neural networks [13–15] and Linear
Predictive Coding [16]. As observed in [17], multivariate analysis typically has some
disadvantages, from the variations in the spectral background to the need of a fine cal-
ibration of the spectra. For these reasons, alternative approaches that employ relevant
regions of the spectra have been developed. More recently, even organism classification
by cytometric and/or micro-Raman data has been attempted [18–22]. Such problems,
under a mathematical point of view, are related to tree classification from a hyperspectral
fingerprint [23–27].

Again, the same problem was discussed in [28]. In this paper, the authors described
an automated algorithm for the detection of explosives using UV Raman scattering. The
spectra recorded by the system were processed to remove the fluorescence spectrum of the
substrate using a Kaiser filter in the frequency domain. This allowed filtering out both low
frequencies caused by fluorescence and high frequencies due to noise. The classification
is committed to an inner product between the filtered spectrum and the reference ones.
Such a procedure allowed a very good performance in detecting tri-nitro-toluene (TNT)
and ammonium nitrate (AN) down to concentrations of 55 and 27 mg/cm2, respectively.
However, some false positives were detected as well, although a study of the Receiving
Operating Curves (ROC) helps in minimizing the false alarm ratio while keeping a high
true positive detection. However, this approach is not very promising for noisy signals, as
discussed in the following sections. Other recent approaches involve deep neural networks,
machine learning [29], and deep learning [30].

Fuzzy logic has been applied to Raman spectroscopy since 2002 [31]. To enhance
the Raman signal, the authors designed and tested a filter based on fuzzy membership
functions and fuzzy rules to filter out both shot noise and cosmic rays. In the following [32],
fuzzy logic was applied to the out-and-out spectral identification, using a parabolic fit of
overlapping sets in the spectrum. If a number of contiguous sets shows ‘similar’ negative
quadratic coefficients, the peak is considered as a Raman band, trusting that noise-induced
coefficients are independent and vary from one fit to the next. In a subsequent work [33],
fuzzy logic was applied to the identification of species through the similarity between whole
spectra, which is measured by the application of fuzzy rules to the correlation coefficients
among the detected spectrum and the reference ones. However, the correlation coefficient is
not a robust marker of closeness, especially for noisy or overlapped spectra, so this fuzzy
approach was applied in synergy with principal component analysis [34], and since then, it
has been used in combination with multivariate analysis [35] and genetic algorithms [36].

To avoid uncertainties tied to the low reliability of the correlation coefficient, fuzzy
logic was also employed taking into account the positions of the detected peaks and
comparing them with a reference database through suitable fuzzy rules [37]. The use of
fuzzy membership functions allowed avoiding sharp thresholds to decide whether bands
are close enough to be compatible or not. However, the rules employed took into account
only the positions of the peaks and, what is more, they were applied to high SNR signals.
In fact, the authors remind that for good performances, “it is required that the experimental
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conditions of measurement should be as suitable as possible”. In this paper, we will focus
on the problem of the automatic recognition of species through the analysis of their Raman
spectra using fuzzy rules coupled to a Monte Carlo simulation to optimize the parameters
of the fuzzy membership functions. The algorithm, as well as the experimental conditions,
are presented in Section 2, while the discussion and results are reported in Section 3.

2. Materials and Methods
2.1. Algorithm and Performance Evaluation

We can describe the problem of spectral identification in the following way: we need
to recognize some specific features (fingerprint) within a structure, mostly a one-dimension
vector (spectrum). Many types of spectra show narrow peaks, which are related to peculiar
emission or absorption of the material under study (Raman, IR, atomic emission, mass
spectrometry,. . . ), while others, such as fluorescence, are in general observed as broad
bands often overlapping each other. We will refer now to the first kind of spectra, where the
fingerprint is constituted by the position and the amplitude of the observed peaks. Usually,
the algorithms for spectral identification operate in two consecutive steps: first, data are
pre-processed in order to transform the original input variable space into a new one, where
the problem of pattern recognition and classification is easier to solve. This aspect of the
pattern recognition is hence related to the problem of variable reduction and data mining.
However, particular attention must be paid in order not to lose too much information in
such a transformation. This key step requires an accurate selection of the transformation,
both for computational speed and for an easier separation of output variables. The physics
behind the specific problem may help to select the variables in the most efficient way. For
example, it can be possible to discard those zones where the input variable does not carry
effective information (these regions are typically called background: for example, in a
spectrum, it is a range without peaks). The second step of the pattern recognition is the
actual ‘recognition’ of each subject under investigation by comparison with a reference
database. If the reference vectors are known and finite, a classification of the input data into
the output categories is possible. The ‘closeness’ between two spectra is usually evaluated
by means of a metric in the variable space such as the Euclidean distance or the correlation
between the two vectors or subvectors. However, many issues are tied to this approach:
first, the presence of more peaks in case of mixed compounds may alter the distance or
the correlation even in sub-regions of the spectra. Second, the noise contributes to lower
the correlation or raise the distance between two similar spectra. Figure 1 (right) shows
an ideal spectrum S1 (orange) together with the same spectrum added to Gaussian noise
S2 (blue). The SNR of this spectrum is calculated as the maximum of the weakest peak
divided by the standard deviation of the signal in a zone without peaks. As the variance of
the noise increases, the SNR decreases. The correlation coefficient r and the normalized
Euclidean distance D can be calculated as:

r =
n

∑
i=1

(S1i − 〈S1〉)(S2i − 〈S2〉) (1)

and

D =

√√√√ n

∑
i=1

(
S1i −min1:n(S1)

max1:n(S1)−min1:n(S1)

)2

+
n

∑
i=1

(
S2i −min1:n(S2)

max1:n(S2)−min1:n(S2)

)2

(2)

where S1 represents the reference signal and S2 represents the test signal. These quantities
are shown versus the SNR of the spectrum in the right panel: neither of them can be useful
for an efficient identification of the noisier spectra. The question is: how low can the SNR
be for a reasonable detection? Is there a method that performs better?
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Figure 1. Left: Correlation coefficient (red) and Euclidean distance (black) between a reference
spectrum and the same spectrum with added synthetic noise for different signal-to-noise amounts.
Right: The reference spectrum (orange) and the same spectrum with added synthetic noise (blue) for
the case SNR = 9.26. The black dashed box indicates the region where the noise is estimated as the
standard deviation of the signal.

For this reason, in this work, we adopted a different approach. Since noise may also
alter the form and the position of the maximum of peaks, a fuzzy logic approach may
help overcome some issues caused by noise and enhance the identification performances
for weak signals. The algorithm presented here has been developed first for the RAman
Detection of Explosives instrument (RADEX) within the framework of the Standex (STANd-
off Detection of Explosives) project [38] and refined since then. The development of
automated recognition algorithms from Raman spectra started from the identification of
the following critical points:

1. The effects of low SNR on the fingerprint important features (height, width and
position of peaks). As stated before, in many cases, we expect the spectra to be noisy
(i.e., single-shot spectroscopy and/or trace detection), in particular when eye-safe
conditions or when low fluence is requested for preservation of the sample. This
causes weaker peaks to be masked by noise, and it makes the exact position of the
maximum to be not completely reliable also for detectable peaks.

2. Simultaneous strong contribution of fluorescence that can mask the weak Raman
signal. In fact, to enhance the Raman cross-section, the wavelength employed often
falls in the UV region, where the substrate or the compound itself may generate a
fluorescence signal, which is often orders of magnitude higher than the Raman signal.
Although it may happen that a strong fluorescence hides the Raman signal and make
any detection impossible (because of the channel-to-channel variability due to the shot
noise), it is often possible to filter out the contribution of fluorescence using band-pass
filters over the acquired signal. However, a thorough discussion of this topic cannot
be addressed here. In-depth analyses can be found in [39,40].

3. Possibility of overlaid spectra that can interfere with the algorithm. For many sam-
ples, an overlay of more reference (or even unknown) spectra can be expected (i.e.,
identification of pigments in paints or frescoes, mixtures of molecules in pharmacol-
ogy). In all these cases, multivariate analysis of the signal is not expected to lead to
good results, since most of the spectrum cannot be reliably correlated to the reference
spectra unless specific subranges are selected.

The approach used by the authors established hence to avoid both the Euclidean
distance between the spectra (intended as the sum of the squared differences between
correspondent channels) and the correlation between them (intended as the inner product)
because of the strong interference of the many bins carrying only noise or because of the
peaks belonging to other Raman active molecules. Moreover, a strong fluorescence can be
detected together with the Raman spectra because of substrate or ligands or the molecule
itself, and in this case, linear correlation and Euclidean distance become totally misleading
unless an effective pre-processing is performed to filter very efficiently low-frequency
trends in the spectrum. Then, the idea is to exploit directly some important parameters
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associated to the peaks. This reduces the vector dimension (a few parameters for each
peak are retrieved) and eliminates the influence of the baseline and the background noise,
provided that peaks can be identified. More precisely, from the reference spectrum, the
position, amplitude and width of selected peaks are retrieved, so that for each peak, three
parameters are stored. The developed algorithm is then articulated in two steps:

2.2. Recognition of Peaks

This process involves a pre-processing of the data in order to prepare the dataset in the
most efficient way for the recognition (i.e., filtering, transforming, mapping) and extracting
a few parameters that refer to each detected peak (i.e., position, width, amplitude).

Although this step is often directly performed over the whole spectrum, through the
minimization of a kind of distance in a suitable space between the spectrum under recog-
nition and a reference database (in case after the pre-processing), we decided to exploit the
parameters extracted after a fitting procedure over the regions where peaks are expected.

More in detail, a Lorentzian curve with four free parameters has been assumed as a
fitting curve of each peak. The equation employed is of the form:

y = a +
b

1 + x−c
d

(3)

where a represents the offset, b represents the amplitude of the peak, c represents the
modal value and d represents the width. The main advantage of the Lorentzian curve is
that it is an algebraic curve, allowing faster calculation with respect to a Gaussian. The
slowest convergence to zero of the tails did not represent an issue when fitting noisy peaks.
Since the nonlinear fitting procedures critically depend on the initial guess of the parameters,
automated initialization was performed on a subset around the peak of interest. The following
choice of initial parameters was made if X and Y are the bin and the signal values:

a0 = min(Y), b0 = max(Y)−min(Y), c0 = X|max(Y), d = |X|max(Y)− X|90prct(Y)| (4)

where X|max(Y) gives the X value corresponding to the maximum value of Y and X|90prct(Y)
give the X value corresponding to the 90th percentile of the Y values within the considered
fitting subrange. The best value of the percentile depends on the width of the peak with
respect to the resolution of the sampled spectrum; in our data, the 90th percentile performed
well, and all fits converged to finite values. An example is shown in Figure 2.

Figure 2. Peak fitting with a Lorentzian curve in a region where a peak is present (red) and where no
peaks are present (blue). Parameters (a = 501.14, b = 6.74, c = 362.59, d = 0.15) refer to the red curve.
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The offset a depends on the background illumination, dark noise and other unin-
teresting properties of the spectrum, and it is not considered for the analysis. Therefore,
for each peak, the three parameters b, c and d provide all the information needed for
the identification.

2.3. Identification of Species

In order to classify the peak, these parameters can be compared to the same parameters
determined from the sample spectrum. The idea is that the parameter distributions over
a large number of spectra are sufficiently different in regions where no peaks are present
from those obtained in the presence of a peak. Moreover, the strength of considering all the
parameters at the same time relies on the fact that the off-peak fit parameter distributions
are likely uncorrelated, so even if one value matches to a reference, the others will probably
fall outside the acceptable interval. Nevertheless, for a binary classifier based on many
sharp thresholds (i.e., less than, greater than), it may be not straightforward to evaluate
the performances in terms of sensitivity and specificity. To avoid these problems, fuzzy
membership functions (FMFs) were adopted for each parameter so that each parameter
obtains a degree of belonging to the corresponding set. In fuzzy logic, the smooth boundary
of fuzzy sets leads to a continuous belonging degrees (from 0 to 1), so all intermediate
values are possible. In classical logic, on the contrary, only binary classification is possible,
i.e., an item may only belong to a set or not. In a fuzzy approach, once the corresponding
FMF has been defined, it is possible to provide a degree of belonging for each parameter.
Typical FMFs are triangular, trapezoidal, Gaussian, Sigma- or Z- shaped functions; some
examples are shown in Figure 3. The fuzzy AND operator selects the minimum of the
probabilities among the compared variables so that still, a continuous range between 0 and
1 is possible. Finally, a binary thresholding may be employed for classification at this step.
By applying the algorithm to a set of spectra where the appropriate peak is present (1st set)
and to a set without a peak (2nd set), the system is able to calculate the rates of success and
failure of classification (supervised classification). Success is considered when a spectrum
from the first set is classified as positive (True Positives, TP) or a spectrum from the second
set is classified as negative (True Negatives, TN). On the other hand, the algorithm may
wrongly classify spectra from the first set as negatives (False Negatives, FN) or spectra
from the second set as positives (False Positives, FP). The results are usually summarized
in a so-called confusion matrix. Sensitivity (Se) and specificity (Sp) are then defined as:

Se =
TP

(TP + FN)
, Sp =

TT
(TN + FP)

, (5)

while the accuracy (Acc) is:

Acc =
TP + TN

TN + TP + FN + FP
(6)

The advantage of the fuzzy approach is that the sensitivity and specificity of the entire
algorithm may be naturally estimated by varying the last threshold, allowing the construction
of the Receiving Operating Curve (ROC) associated to the adopted FMFs. A typical parameter
used for evaluating the performance of such systems is the Area Under the ROC Curve (AUC).
The larger the area, the better the performance, until achieving 100% success when AUC reaches
the unit. On the contrary, AUC = 0.5 represents a completely random classifier.

It is evident that the choice of shape and parameters of the FMF is crucial for the
performances of the ROC curve. To solve this problem, a variety of methods has been
used so far [41,42]. We decided to employ a Monte Carlo (MC) algorithm, which was
set up to select random parameters for the FMF and test the binary classifier built by
merging together the belonging degrees through a fuzzy AND operator. Then, a collection
of parameters for the MFs represents a specific classifier. This calculates the overall degree
of belonging as the minimum value among the collection of belonging degree of each pa-
rameter to its corresponding FMF. Since interpretation of belonging degree as a probability
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is straightforward [41], the result can be thought of as the probability of belonging for each
sample spectrum to the reference one, so that specificity and sensitivity may be calculated
by varying the threshold of acceptation. After that, the ROC curve related to this classifier
is calculated together with its AUC, which is retained as the performance evaluator of this
classifier. The parameters reaching the best AUC are finally considered and stored as the
best classifier. The aspects concerning the performances of the classifier in relation to the
SNR of the spectrum and the concentration of the target compound will be discussed in
more detail in Section 3. The flow chart of the proposed algorithm is sketched in Figure 4.

Figure 3. Fuzzy membership functions and degree of belonging of the variable P. The value assumed
by the FMF at abscissa P represents the belonging to that set. In this case, while P has belonging 0 in
the classic dataset (red), it shows a belonging of 0.226 to the Gaussian FMF function (blue), 0.300 to
the triangular FMF function, and 0.375 to the trapezoidal FMF (black).

Figure 4. Flow chart of the algorithm for recognition of a single peak. In our case, N = M = 1000 spectra.
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2.4. Experimental Setup

A set of Raman spectra of ammonium nitrate on aluminum substrate at different
concentrations has been acquired. This set is composed by 7500 single-shot profiles. The
raw spectra are shared as Supplementary Materials. In section Supplementary Materials,
file structure and data description can be found. To better rely on the results of the
optimization, the whole ensemble was split in two disjoint sets A and B, each composed by
3750 different spectra. Set A was used to train the MC simulation, while Set B was used to
test the performances of the classifiers that performed the best on Set A. This procedure
ensures the validity of the classifier on independent datasets. In order to consider signals
with different SNR, nine different amounts of spectra have been averaged (n = 1, 5, 10, 15,
20, 25, 30, 40, 50, 60, 70, 80). For each dataset, 1000 averaged spectra have been obtained
after averaging n random spectra 1000 times. This step was necessary, since otherwise,
the quantization error when calculating sensitivity and specificity makes the AUCs and
best accuracies not comparable among the different averages for values of AUC close to 1.
The spectra were acquired using an UV laser on ammonium nitrate (NH4NO3) samples
deposed over aluminum plates at concentrations of 100, 200 and 500 µg/cm2. The samples
have been printed over aluminum plates to avoid fluorescence interference by Fraunhofer
at different concentrations over 2 cm × 2 cm squares. Fraunhofer ICT has manufactured
various test samples of inorganic salts on different substrates by using a GeSim Nanoplotter
NP 2.1. This drop-on-demand-printer is equipped with a single piezo-driven pipette
mounted on a x-y-z stage and delivering droplets of about 300 pL to flat substrates up to
40 × 30 cm. The pipette can be used with multiple inorganic and organic solvents and can
be positioned in 10 µm steps. The spectroscopic system is based on a 355 nm Nd:YAG laser
providing about 10 mJ per pulse at a repetition rate up to 100 Hz (Quantel Centurion+).
The target is set 7 m away from an aspheric mirror of 550 mm focal length, F/2.2 (custom
made). Atmospheric extinction may be neglected at the given distance and wavelength.
The image is focused onto a fiber optic bundle (from CeramOptec) that couples the mirror to
a custom spectrometer (F/2.2) specifically designed and manufactured for this application.
The spectrum is then focused over an Andor intensified Camera (iStar CCD 334 with UV
enhanced photocatode), which is able to intensify the signal only in coincidence with the
laser shots, limiting the background illumination and hence the noise of each spectrum. The
laser beam is expanded to a spot of 2 cm diameter at the target distance so that the energy
density per shot is about 3.1 mJ/cm2. Since the laser pulse duration is τ = 12 ns, the energy
density must be compared to the 5600 × τ4 = 5.8 mJ/cm2 of Maximum Permitted Exposure
for a single shot [6] so that each pulse can be considered as eye-safe. For multiple shots,
however, the total time of deposition must be considered; however, this was not taken
into account, and it was assumed that the entire dose was delivered in a time adequate to
obtain the eye-safe condition, according to the number of average spectra. The size of the
spot was determined to best fit the fiber bundle size. The whole system was designed for
standoff Raman detection under eye-safe conditions: for this reason, understanding the
performances of the system at low SNRs is crucial to tune it for reliable detections with
minimum laser exposure. The best acquisition strategy of spectra accumulated on a CCD
over more laser pulses is discussed in [43,44].

3. Results and Discussion

By averaging n random spectra 1000 times, for each concentration, each compound
and each substrate, 1000 averaged spectra have been obtained. The off-peak set has been
extracted from the same spectra but in a peak-free region in order to use a dataset with
the same conditions of sample substrate, background illumination, temperature, laser
power and geometry. However, a different set of reference empty spectra can be acquired if
needed. Of course, it is important that the acquisition conditions are as similar as possible.
The position indices of the off-peak region were shifted before analysis to match the same
fitting coordinated as the on-peak samples, while its width was retained. For the specific
case under examination, five parameters have been taken into account. Parameters b, c,
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and d of the fit are distributed as shown in Figure 5. Examples of FMF are plotted in a
green dashed line over the distributions of the considered fitting parameters. In the lower
panel, the distributions of fuzzy degree of belonging of each parameter are shown with the
same color code. All distributions are not entirely disjointed, and little overlap is visible in
all histograms, but the fuzzy AND requires all three parameters to fall in an overlapped
region to be considered as a false positive or negative, according to its true nature. This
considerably lowers the probability of wrong attribution. Of course, the choice of the FMF
parameters is crucial to better distinguish between on-peak and off-peak distributions, and
the aim of the Monte Carlo simulation is to find the best performing choice.

Figure 5. Distribution of the parameters B, C, D of the Lorentzian fit together with hypothetic fuzzy
membership functions (top) and distribution of the fuzzy belonging degrees of each parameter
according to the FMFs shown (bottom).

The parameter c indicates the modal value of the peak (i.e., the center wavelength),
while d refers to the peak width. Both parameters are distributed as a bell-shaped distribu-
tion, so a Gaussian membership function was adopted. As for b, related to the amplitude
of the peak, a bell-shaped function is not suitable, since the absolute value of the amplitude
may derive both from the signal collection capabilities (laser energy, optical efficiency)
and from the compound quantity, which is unknown. For this reason, it is not possible to
lower the membership if the signal is high, because a strong signal could derive from a
high quantity of compound; a trapezoidal function has been considered, with very high
values (>50) excluded just to cut off outliers and cosmic rays. The left side of the function is
connected to the limit of detection: moving the edge to the right lowers the sensitivity of
the system, while moving to the left makes the system less selective. Of course, the less the
overlap between the on-peak and off-peak parameters distributions, the better the expected
performances. For this reason, different concentrations and different SNRs have been taken
into account. The Gaussian FMFs can be described by two parameters and the trapezoidal
function can be described by just one parameter. The left edge is vertical and acts as a
classical set. So, a classifier can be represented by the quintuplet of parameters of the FMFs.
Then, the algorithm, as before described, extracted 106 quintuplets (within defined ranges
for each parameter) by a uniform random generator, and the performances in terms of AUC
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and best accuracy were evaluated for each quintuplet. Once the three belonging degrees
have been evaluated, a fuzzy AND selects the minimum of these values and determines the
overall belonging both for on-peak fit and for off-peak fit. A threshold is hence varied from
0 to 1 to calculate the sensitivity and specificity of the classifier according the threshold
and finally the AUC. The best performing classifiers, i.e., those whose AUC exceeded 0.995,
were then tested also over the dataset B.

The accuracy varies according to the threshold, and since it is not necessarily correlated
to the AUC, a best accuracy with respect to the threshold can be found for each classifier as
an independent index. Figure 6 shows that the accuracy and AUC are similar for datasets A
and B. The best accuracy can be estimated as 997.5 ± 0.7‰ on dataset A and 997.3 ± 0.8‰
on dataset B. The performances are similar on the two datasets, so we can conclude that the
algorithm is sufficiently stable to infer the best parameters on any subset. Figure 7 shows
the performances of the best classifiers found at different signal-to-noise ratios, which
were obtained as already explained by averaging different amounts of randomly selected
single-shot spectra. The procedure described so far allows detecting single peaks within
unknown Raman spectra. If this is performed on the most intense Raman line, it allows the
identification of groups of molecules or specific groups [45]. If more peaks are evident in
the acquired spectrum, the spectrum should be sorted according to the peak rank (i.e., the
highest peaks first) and the analysis repeated for each peak, until no attribution is found.
Then, supplementary fuzzy rules can be adopted according to the specific needs of the
experiment. In this case, the way depicted by Perez Pueyo et al. [32] can be adopted once
the positions of the peaks and its degree of belonging have been determined by the fuzzy
method illustrated in this work.

Figure 6. Distribution of the accuracy and AUC for the best 1400 classifiers on dataset A and B.
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Figure 7. AUCs and best accuracies for ammonium nitrate over aluminum substrates for 100, 200
and 500 µg/cm2 and for signal averaged over a different number of single-shot spectra.

Performances with Chemical Contamination

The accuracy of the proposed method was also evaluated when other chemical com-
pounds are mixed with the substance under examination (e.g., mixtures, substrates); peaks
near the expected one may alter the performances of the classifier.

Figure 8 shows the expected performances of the classifier where a second peak is over-
lapped to that under examination. The analysis was conducted by considering the three different
parameters entering the classification scheme: peak amplitude, width and position. As these
parameters change between the peaks to analyze, the results change, and different performances
are expected. For relative peak amplitudes of 0.5, 1 and 2, three different contour plots have
been produced. They show the k-score (i.e., the probability of belonging) of the classifier after
the fitting procedure and the fuzzy belonging calculations for different relative amplitudes and
widths of the peaks. From the figure, it appears that the worst scenario is when the spurious
peak is more intense than the true one, and this is pretty obvious. Less intuitive is the fact
that also wider peaks lead to bad classifications, and that the worst results are when peaks are
shifted by a quantity of about σ/σ0. As demonstrated, a variety of conditions may alter the
result of the classifier. If a peak is expected close to the true one, e.g., by a compound already
observed or awaited under certain conditions, the fitting procedure could be modified ad hoc,
for example, by reducing the fitting region or imposing a different initial guess or by imposing
constraints to the parameters. On the other hand, if the true peak is absent, the possibility
of false positives may be considered: in this case, the fuzzy membership functions directly
provide the probabilities of misclassification according to the amplitude, width and mode of the
detected peak. However, the problem of false attribution of a specific peak is mitigated in the
perspective of a complete spectrum analysis, where the absence of a peak does not invalidate the
classification. This is under study using pigment spectra and will be a subject for future work.
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Figure 8. Performances of the classifier when a spurious peak is overlapped in the fitting region to
the true one. The color refers to the k-score expressing the overall belonging of the peak. Calculations
have been performed after synthetic noise was added to the peak for an SNR of 10.

4. Conclusions

The huge amount of works in the field of automated spectral identification witnesses the
interest in the field and the difficulties in accomplishing this task. In fact, unanimously shared
techniques have not been developed so far and, according to the specific task, many strategies
have been proposed. However, fuzzy logic represents a well-performing approach, and it
looks promising also for the classification of more complex spectra. Nevertheless, the tuning of
FMFs represents a crucial point for the performances of the automated classifier: a Monte Carlo
method has been designed and tested to evaluate the performances of a supervised classifier
based on fuzzy membership functions of the parameters of a Lorentzian fit applied to the region
where a Raman peak is expected. Although the applied laser exposure is so low to maintain the
eye-safe conditions, the classifier reached 997.4 ‰ accuracy on 1.5 mg of ammonium nitrate set
7 m away from the receiver. The proposed procedure seems then very promising in detecting
substances from low signal-to-noise Raman spectra.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors10080295/s1. The authors decided to make available
to anyone who wants real data to train classification algorithms the spectra collected and used for
this work. This material is composed by three files (100, 200 and 500 µg/cm2 of ammonium nitrate
over aluminum substrate), containing 7500 Raman spectra each, collected as described in the paper,
which can be used for comparison and test of different algorithms. The first rows report ancillary
information from the camera. The first column represents the wavelength (uncalibrated), and the
other columns correspond to a different single-shot spectrum. Calibration can be performed on the
laser elastic return and ammonium nitrate main peak, whose Raman shift is reported between 1041
and 1049 cm−1 [38,46,47].
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