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Abstract: Driving safety issues, such as drunk driving, have drawn a lot of attention since the advent
of shared automobiles. We used an electronic nose (EN) detection device as an onboard system for
shared automobiles to identify drunk driving. The sensors in the EN, however, can stray in cold
winter temperatures. We suggested an independent component analysis (ICA) correction model to
handle the data collected from the EN in order to lessen the impact of low temperature on the device.
Additionally, it was contrasted with both the mixed temperature correction model and the single
temperature model. As samples, alcohol mixed with concentrations of 0.1 mg/L and 0.5 mg/L were
tested at (20 ± 2) ◦C, (−10 ± 2) ◦C, and (−20 ± 2) ◦C. The results showed that the ICA correction
model outperformed the other models with an accuracy of 1, precision of 1, recall of 1, and specificity
of 1. As a result, this model can be utilized to lessen the impact of low temperature on the EN’s ability
to detect the presence of alcohol in the driver’s inhaled gas, strongly supporting its use in car-sharing
drink driving. Other ENs that need to function in frigid conditions can also use this technique.

Keywords: electronic nose; low temperature; temperature correction; independent component
analysis; support vector machine; drink driving detection

1. Introduction

The development of vehicle sharing in recent years has made daily travel easier for
people. However, as the car-sharing sector has grown, preventing drivers from operating
shared vehicles while intoxicated has become a critical issue [1]. The majority of the time,
law enforcement personnel test drivers with handheld alcohol detectors by observing how
they are operating their vehicles. However, manual detection to check on drivers’ levels
of intoxication needs a significant amount of manpower, which wastes resources, has low
detection efficiency and a limited range [2] and is easily influenced by other factors [3]. Gas
chromatographs [4], gas chromatograph-mass spectrometers [5], and other instruments
have been frequently used in the past to measure gas composition, but the majority of
them are pricey and have lengthy detection times, making them unsuitable for determining
whether or not drivers have consumed alcohol.

Lightweight and non-contact electronic noses (EN) are of interest to address the
aforementioned issues. The EN primarily consists of three functional components, namely
an odor sampling operator, a gas sensor array, and a signal processing system [6]. These
components work together to swiftly offer an overview of the sample that was detected
using specialized sensors and recognition modules. The EN is well suited for odor detection
in confined places, including space stations [7,8], space shuttles [9,10], and vehicles [11].
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However, the EN might drift due to temperature, and other factors, including hu-
midity [12] and aging components [13], which is a worry. The gas sensor is the main
component of the EN, and the metal oxide type sensor is the most used. The metal oxide
sensor’s working theory is that, at a given temperature, the chemical interaction between
the measured gas reaching the semiconductor surface and the oxygen adsorbed on the
semiconductor surface is accompanied by charge transfer, which further causes the semi-
conductor’s resistance to change. The detection of gas is accomplished by detecting the
change in semiconductor resistance. We know that a semiconductor’s resistance varies
with temperature in a nonlinear manner from the theory of semiconductors. This means
that, within a given temperature range, the resistance of the gas sensor increases when
the environment becomes cold and reduces when the ambient temperature rises [14–16].
In order for metal oxide sensors to function properly, this establishes the requirement for
optimal temperature conditions.

It has been challenging to identify and discard sensor drift caused by temperature
fluctuations brought on by changes in the environment. The accuracy of the model will
be impacted if the drift in the sensor signal is not adjusted [17]. The effect of temperature
interference on the gas sensor is considerably more pronounced when the sensor is mounted
to the e-nose, and the temperature of the sample and the environment in which it is placed
may result in the incorrect categorization of the EN [18]. Winter temperatures may drop to
tens of degrees below zero in numerous places across the world, including northeast China,
where they can fall below −20 ◦C. The impact of temperature becomes more evident if we
wish to assure reliable detection of alcohol gas content in the driver’s exhaled breath when
there are specific weather circumstances.

Heating or cooling the sensor and temperature compensation using algorithms are
two correction techniques to lessen the impact of temperature on the sensor. Jian-Wei
Gong et al. added a temperature control module to the gas sensor circuit to assure the
proper temperature [14,19]; however, this caused the circuit to heat up unevenly. The
influence of temperature disturbances on the mems gyroscope was reduced by Youqi
Jiang et al. using a semiconductor TEC thermostat and a PID control algorithm optimized
using an ant colony algorithm [20]. However, this technique requires more preparation
time. Due to its low cost and excellent accuracy, software methods are frequently utilized
in the sensor temperature compensation problem [21]. To create a model for precise
temperature compensation, Xin Yu et al. collected two typical characteristics of methane
detecting equipment and their connection with temperature [22]. By adjusting the curve
of temperature and pressure sensor resistance to the temperature compensation model,
Liu Xun et al. created a temperature compensation model [23]. Such models, however,
are constrained and only relevant to particular sensors. In order to lessen the impact
of temperature on the sensor, mathematical techniques, such as temperature gradient
field compensation [24], real-time temperature compensation models [25,26], higher-order
Fourier transforms [27], random forests [28], and neural networks [29–32], are frequently
used. These techniques have produced generally positive results and increased sensor
accuracy. Their disadvantage is that they necessitate a lot of experimentation and make
model construction more challenging. Researchers have also developed mathematical
models for e-nose drift compensation, but all of them are difficult to use in EN under
low-temperature conditions [33–35]. The EN may become more popular if a model is
researched and applied to it so that it may work in low-temperature conditions without
having the aforementioned issues and effectively weaken the effect of temperature.

The goal of this study was to reduce the mixed gas alcohol concentration low-temperature
effect for in-vehicle EN identification using a correction model created using an indepen-
dent component analysis (ICA) calibration model with a support vector machine (SVM)
to distinguish driver intoxication while operating a vehicle. By contrasting the single
temperature model and the mixed temperature calibration model, the optimal model to
minimize temperature drift was found.
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2. Materials and Methods
2.1. Samples

Driving after drinking is defined as behavior while operating a vehicle with a blood
alcohol content greater than or equal to 20 mg/100 mL and less than 80 mg/100 mL,
according to standards set forth by China’s State Administration of Quality Supervision,
Inspection, and Quarantine. Driving while intoxicated is defined as having a blood alcohol
concentration of at least 80 mg/100 mL. The threshold for driving after drinking is an
exhaled gas alcohol concentration larger than or equal to 0.09 mg/L and less than 0.36 mg/L,
as calculated by the formula (1) from the relationship between blood alcohol concentration
(BAC) and breathed gas alcohol concentration (BrAC) (Table 1). The legal limit for drunk
driving is 0.36 mg/L of alcohol or more in the driver’s exhaled gas:

BAC = BrAC × 2200 (1)

Table 1. Standard alcohol content for driving after drinking and drunk driving.

Behavior Category Blood Alcohol Content
(BAC) mg/100 mL

Breath Alcohol Content
(BrAC) mg/L

Driving after drinking >20 and <80 >0.09 and <0.36
Drunk driving >80 >0.36

The exhaled gases from the simulated drivers who had consumed alcohol while driv-
ing had an alcohol concentration of 0.1 mg/L, 5% carbon dioxide, 16% oxygen, and the
remainder was nitrogen. The gases were set up to replicate various driving circumstances
after drinking [36]. The exhaled gas of the drunk driver had a simulated alcohol concentra-
tion of 0.5 mg/L and was composed primarily of nitrogen, with just 5% of carbon dioxide
and 16% oxygen. Changchun Juyang Gas Co., Ltd. configured the gas, and following
configuration, the gas was transferred to the laboratory.

2.2. Electronic Nose Detection System

The EN system (Figure 1a) employed in this work was created internally and consisted
of an air pump, a bionic detecting chamber [37,38], a gas sensor array, a signal condition-
ing circuit, a data collector, a computer, etc. In Figure 1b, the hardware composition is
displayed. Due to the fact that human exhalation is a mixture of gases, the sensor array
used 32 metal oxide sensors, each of which had the details listed in Table 2. They work
at an ambient temperature limited to near −10 ◦C to 50 ◦C, and the optimal operating
ambient temperature is about 20 ◦C. Moreover, the sensor cannot operate near the limited
temperature for a long time. The data were recorded using the acquisition software that
was included with the data acquisition equipment after the resistance signal produced by
the sensors was converted into a voltage signal by a signal conditioning circuit and sent to
the computer.
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Table 2. Sensors in the sensor array.

Sensor Target Gases Maker

TGS2612 methane, propane, butane Figaro
TGS2611 methane Figaro
TGS2620 alcohol Figaro
TGS2603 VOC Figaro
TGS2602 VOC Figaro
TGS2610 propane, butane Figaro
TGS2600 cigarette smoke Figaro
GSBT11 VOC Ogam
MS1100 formaldehyde, VOC Ogam
MP135 hydrogen, alcohol, carbon monoxide Winson

MP901 alcohol, smoke, formaldehyde, toluene, benzene,
acetone Winson

MP-9 carbon monoxide, methane Winson
MP-3B alcohol Winson
MP-4 methane, natural gas, biogas Winson
MP-5 propane Winson
MP-2 propane, smoke Winson

MP503 alcohol, smoke, isobutane, formaldehyde Winson
MP801 benzene, toluene, formaldehyde, alcohol, smoke Winson
MP905 benzene, toluene, formaldehyde, alcohol, smoke Winson
MP402 methane, propane Winson

WSP1110 nitrogen dioxide Winson
WSP2110 toluene, formaldehyde, benzene, alcohol, acetone Winson
WSP7110 hydrogen sulfide Winson

MP-7 carbon monoxide Winson
TGS2612 methane, propane, butane Figaro
TGS2611 methane Figaro
TGS2620 alcohol Figaro
MP-3B alcohol Winson
MP702 ammonia Winson

TGS2610 propane, butane Figaro
TGS2600 cigarette smoke Figaro

TGS2618-COO butane, liquified petroleum (gas) Figaro

2.3. Data Collection and Pretreatment

Northeastern China’s distinct geographic location causes the wintertime outdoor tem-
perature to drop as low as −20 ◦C. For a certain amount of time, the temperature inside a
stationary car will be lower than the outside temperature. To imitate a lower temperature,
this experiment was carried out in the open air. A temperature sensor was used to gauge
the outside temperature. The EN was turned on while standing for 20 min, causing the
temperature of two gas mixes with various alcohol concentrations to drop to the outdoor
temperature as soon as the temperature approached the target range. Then, data on gas
composition were gathered using the EN. The sample was put close to the EN’s inlet, and
a rubber hose was used to deliver gas into the device. The responses of 32 sensors in the
e-nose sensor array were recorded while the single acquisition time of the e-nose was set to
60 s and the sampling frequency was 100 Hz. The same process was repeated with forty
sets of measurements taking place for each concentration sample at the same tempera-
ture, with the gas mixture of two concentrations being placed at a room temperature of
(20 ± 2) ◦C, (−10 ± 2) ◦C, and (−20 ± 2) ◦C, in turn. The humidity level during the
experiment was basically constant and the average humidity was 61.9%, which is a more
suitable humidity level.

A total of 32 sensors were tested at various temperatures, yielding a total of 240 sets of
data. The baseline response of the alcohol gas-sensitive sensors was found to be moderate
and steady in the first stage; in the second stage, the response signal initially displayed an
increasing trend before continuing to level out after reaching the maximum value.

The raw data were standardized using z-score to remove the dissimilar dimensions
between various indicators, guarantee the quality of the data, and ensure the dependability
of the results (standard deviation standardization). The acquired standard data were
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distributed normally, with a mean of 0 and a standard deviation of 1 [39]. The equation (2)
was used to calculate the z-score standardization:

yi =
xi − µx

σx
(2)

where, xi is the i rd element of the original vector (input or target). µx is the mean value of
the original vector. σx is the standard deviation of the original vector. yi is the i rd element
of the generated vector data.

2.4. Single Temperature Model

Support vector machine (SVM) is a brand-new classification method built on statistical
learning that has the benefits of little training data, quick processing, and high accuracy [40].
Based on these benefits, SVM was selected as the model’s classifier, and a single temperature
prediction model was created using the experimentally obtained data. In this work, all
radial basis functions were used as the SVM’s kernel function, and a grid-seeking approach
was applied to maximize the regularization constants C and γ. The training for set testing
the prediction outcomes under various temperature samples were chosen to be the data
at (20 ± 2) ◦C temperature. To categorize the alcohol concentration in the gas, the data at
(−10 ± 2) ◦C and (−20 ± 2) ◦C temperatures were utilized as the test set.

2.5. Mixed Temperature Correction Model

SVM was used as a classifier to create a mixing temperature adjustment model using
data from alcohol gas mixtures at temperatures of 0.1 mg/L and 0.5 mg/L at (20 ± 2) ◦C and
(−20 ± 2) ◦C, respectively. The model’s capacity to categorize various alcohol percentages
of gas mixtures at various temperatures was put to the test. The data of (20 ± 2) ◦C and
(−20 ± 2) ◦C were used as the training set, (20 ± 2) ◦C, (−10 ± 2) ◦C, and (−20 ± 2) ◦C
were used as the test set, while the ratio of (20 ± 2) ◦C and (−20 ± 2) ◦C in the training and
test sets was 7:3.

We chose the data under the temperature conditions of (20 ± 2) ◦C, (−10 ± 2) ◦C,
and (−20 ± 2) ◦C and constructed the model in accordance with the above procedure to
develop another mixed temperature correction model, where the ratio of the training set
and test set was 7:3. We compared the two mixture temperature correction models’ abilities
to reduce the impact of temperature on the sensor based on the test results.

2.6. ICA Correction Model

Figure 2 illustrates how Independent Component Analysis (ICA), an efficient blind
source separation technique, divides the data into linear combinations of statistically
distinct non-Gaussian sources [41].
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Suppose there are n independent source signals s1(t), s2(t), ..., sn(t), each with discrete
form s1, s2, ..., sn. x1, x2, ..., xm is the observed m parameters. The purpose of ICA is to
estimate the n independent sources from the m detected parameters. The universal ICA
model can be written as:

X = AS (3)

where X = (x1, x2, ..., xm)
T and x1, x2, ..., xm, respectively, represent the response of EN

to mixed gases with different alcohol concentrations at different temperatures. S =
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(s1, s2, ..., sn)
T . A is a mixed matrix and A =

(
aij

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The only

prior information is that each component of S is statistically independent. When both
S and A are unknown, the goal of ICA is to solve a demixing matrix W and to find the
best estimate Y of S by calculating so that the independence between its components
is maximized:.

Y = WX (4)

Because it offers the advantages of quick convergence and may be used to compute
any non-Gaussian signal, the Fast ICA technique is employed in this research. It is a
negative entropy-based ICA fixed point method. It incorporates negative entropy as an
approximation goal function and, through iterative search, discovers the greatest non-
Gaussian feature of WX.

First, similar to the procedure in Section 2.3, the data with various alcohol concentra-
tions at (20 ± 2) ◦C, (−10 ± 2) ◦C, and (−20 ± 2) ◦C were preprocessed. The data were
then integrated into the ICA model to eliminate the output components of the ICA that
were strongly associated with the interference caused by ambient temperature and found
the ICA output components that were more strongly correlated with the actual odor signal.
Finally, an SVM with a 7:3 training set to test set ratio was used to train and classify the
chosen ICA components.

3. Results and Discussion
3.1. Results of the Single Temperature Model

The accuracy of the training set was 1, the precision was 1, the recall was 1, and
the specificity was 1, according to the SVM model constructed at (20 ± 2) ◦C. The test
set had an accuracy of 0.8438, a precision of 0.7619, a recall of 1, and a specificity of
0.6875. Figure 3 displays the sensor’s response curves at various temperatures. It can be
observed that, within a particular temperature range, the sensor reaction steadily shrinks
as the temperature drops; 20 ◦C is the ideal temperature for the sensor to function; the
sensor response is most pronounced at this temperature condition. At the same time,
the sensor response is more obvious the higher the gas mixture’s alcohol concentration,
and as the temperature drops, the difference between the sensor response to different
gas mixtures’ alcohol concentrations gradually narrows. This is because the EN sensor’s
response includes not only information about odor but also information about temperature,
so the temperature has some bearing on the EN. Low temperatures will affect the model’s
categorization because of the mixed gas’s worsening recognition effect.

3.2. Results of Mixed Temperature Correction Model

The training set for the model constructed from data collected at (−20 ± 2) ◦C and
(20 ± 2) ◦C had an accuracy of 0.9911, a precision of 0.9818, a recall of 1, and a speci-
ficity of 0.9828. The test set had an accuracy of 0.9375, a precision of 0.8919, a recall of
1, and a specificity of 0.8710. In the model training set created from data collected at
(−20 ± 2) ◦C, (−10 ± 2) ◦C, and (20 ± 2) ◦C, the accuracy was 0.9821, the precision was
0.9651, the recall was 1, and the specificity was 0.9647. The test set’s accuracy was 0.9861,
precision was 0.9737, recall was 1, and specificity was 0.9714. The mixed temperature
adjustment approach, as could be observed, lessens the impact of temperature on the
EN’s sensors. The choice of more experimental data at multiple temperature settings for
model training enhanced the amount of data and allowed the model to produce better
results since the results of the model constructed using data at (−20 ± 2) ◦C, (−10 ± 2) ◦C,
and (20 ± 2) ◦C were superior to those built using data at (−20 ± 2) ◦C and (20 ± 2) ◦C.
The mixed temperature correction model lowered the EN’s recognition error at various
temperatures for various concentrations of alcohol gas mixes as compared to the single
temperature model. The samples included in this interval had superior categorization
results because the model was based on sensor data collected at various temperatures.
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3.3. Results of the ICA Correction Model

After ICA processing, the SVM model’s training set had an accuracy of 1, precision
of 1, recall of 1, and specificity of 1. The test set had a precision of 1, recall of 1, specificity
of 1, and accuracy of 1. The outcomes demonstrate that the ICA algorithm calculation in
the preprocessing of the EN information removes the information strongly related to the
temperature interference, reduces the data dimension, and maximizes the compensation
of the low temperature on the effect brought about by the EN. The ICA correction model
greatly lowers the classification error for various concentrations of mixed temperatures
when compared to the single-temperature model, demonstrating the superiority of the
ICA correction model effect. This model minimizes modeling complexity, sample size
eliminates redundant interference information and offers a novel approach for the EN to
recognize gases at low temperatures.
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when compared to the single-temperature model, demonstrating the superiority of the 
ICA correction model effect. This model minimizes modeling complexity, sample size 
eliminates redundant interference information and offers a novel approach for the EN to 
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Figure 3. (a) (20 ± 2) ◦C 0.1mg/L sensor response; (b) (20 ± 2) ◦C 0.5 mg/L sensor response; (c) (−10
± 2) ◦C 0.1 mg/L sensor response; (d) (−10 ± 2) ◦C 0.5 mg/L sensor response; (e) (−20 ± 2) ◦C 0.1
mg/L sensor response; (f) (−20 ± 2) ◦C 0.5 mg/L sensor response.

3.4. Comparison of Model Prediction Results

A single temperature model, two mixed temperature correction models, an ICA
correction model, and a fourth model—a total of four models—were created using SVM as
a classifier. Figure 4 depicts the confusion matrix of the various models, and Table 3 lists the
outcomes. The results of the model show that the EN was impacted by the low temperature.
Because these two models incorporated data from various temperature situations and
produced superior classification results for the samples in this temperature range, they had
better results than the single temperature model. The single temperature model and the two
mixed temperature correction models performed worse in terms of processed results than
the ICA correction model. Additionally, the single temperature model and the two mixed
temperature correction models would need very large samples and quantities in order to
produce the same results as the ICA correction model. The effect of low temperature on the
EN’s ability to detect various quantities of alcohol gas can be successfully mitigated by the
ICA correction model.

Table 3. Results of four models.

Model Type Accuracy Precision Recall Specificity

Single temperature model training set 1 1 1 1
test set 0.8438 0.7619 1 0.6875

Mixed temperature correction model
((−20 ± 2) ◦C and (20 ± 2) ◦C)

training set 0.9911 0.9818 1 0.9828
test set 0.9375 0.8919 1 0.8710

Mixed temperature correction model
((−20 ± 2) ◦C, (−10 ± 2) ◦C, and (20 ± 2) ◦C)

training set 0.9821 0.9651 1 0.9647
test set 0.9861 0.9737 1 0.9714

ICA correction model
training set 1 1 1 1

test set 1 1 1 1
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Figure 4. (a) Single temperature model training set confusion matrix; (b) single temperature model
test set confusion matrix; (c) (−20 ± 2) ◦C and (20 ± 2) ◦C mixed temperature correction model
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4. Conclusions

The EN is a metal oxide semiconductor gas sensor system that uses pattern recognition
algorithms that are cross-sensitive, selectable, and reliable to various odors [42]. In order to
identify the amount of alcohol in the driver’s breath, we suggest an in-vehicle lightweight
EN for shared vehicles that operate well at low temperatures. First, the signal acquisition
hardware was designed, followed by the processing and selection of the sensor array and
conditioning circuit for the EN in-vehicle drunk driving detection system. The drift of the
metal oxide sensor in the EN in low-temperature conditions was then reduced using four
data processing methods. To lessen the impact of low temperature on the system, support
vector machines were used as classifiers to create a single temperature model, a mixed
temperature correction model, and an ICA correction model. The ICA correction model,
which has an accuracy of 1, precision of 1, recall of 1, and specificity of 1, outperforms
the other models in terms of recognition rate. The ICA correction model, which does not
use a large amount of data for training, performed better than the other models. The
EN can be used in long-term low-temperature circumstances with the model suggested
in this research, which can lessen the impact of low temperatures on the electronic nose.
Additionally, this makes the EN-based in-vehicle drunk driving detection system a potential
device for detecting alcohol gas combinations in closed compartments that can continue to
function in cold environments. Other EN systems that require low-temperature operation
can use this technique as well.
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