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Abstract: We built an integrated solid-contact ion-selective electrode (SCISE) system with the func-
tionality of self-calibration. A multiplexed SCISE sensor (K+ and NO3

− vs. Ag/AgCl) was fabricated
on printed-circuit board (PCB) substrates and was subsequently embedded into a microfluidic flow
cell for self-calibration and flow-through analysis. A PCB circuit that includes modules for both
sensor readout and fluid control was developed. The sensors showed a fast and near-Nernstian
response (56.6 for the K+ electrode and −57.4 mV/dec for the NO3

− electrode) and maintained their
performance for at least three weeks. The sensors also showed a highly reproducible response in
an automated two-point calibration, demonstrating the potential for in situ monitoring. Lastly, the
sensor system was successfully applied to measure mineral nutrients in plant sap samples.

Keywords: ion-selective electrode; printed circuit board; in situ measurement; potentiometry;
self-calibration

1. Introduction

Ion-selective electrodes (ISE) are commonly used to develop fast, portable, and cost-
effective analytical devices. Such devices have found wide applications in point-of-care
testing and medicine [1–4], wearables [5,6], agriculture [7], and environmental monitor-
ing [8,9]. In recent years, the development of solid contact (SC) materials as ion-to-electron
transducers has driven the field towards next-generation sensors that are miniaturized,
rugged, and calibration- and maintenance-free [10]. Despite the progress, the majority of
these solid contact ISEs (SCISEs) still need to be calibrated as their conventional counter-
parts with an inner filling solution.

Sensors are calibrated to correct for sensitivity loss, baseline drift, and inter-sensor vari-
ability. Usually, calibration is performed by the user before and/or after each measurement.
Although manual calibration may be sufficient for single-use sensors, it is cumbersome for
recurring and continuous measurements; moreover, it is not feasible for in situ measure-
ments in agricultural, environmental, or geochemical analysis where sensors need to be
deployed in the field and work autonomously. In these scenarios, automatic calibration
at the point of need not only saves time and effort but ensures the accuracy and precision
of measurement.

Only a few potentiometric sensor systems with a self-calibration function have been
reported to date [2,8,9,11]. They typically employ a flow cell that introduces calibrating
reagents to the sensor using fluidic components (e.g., pumps and valves) and corresponding
fluid-control modules. In addition, such flow cell arrangement allows for electrode cleaning
and sample pretreatment and often leads to lower detection limits than the stationary
approach [12,13]. For example, the commercial Abbott i-STAT blood analyzer performs
on-site calibration of the sensor through a series of pumping and valving mechanisms [2];
however, since the sensor was intended for single use, its calibration was limited to once
per test. More recently, Cuatero et al. [8,9] developed a submersive probe based on a
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SCISE-embedded flow cell to monitor seawater in hourly measurements followed by a
one-point calibration. However, the sensor readout and fluid control relied on dedicated
commercial instruments, which significantly increased the cost and complexity of the
system; in addition, the proprietary nature of these commercial systems does not allow
them to be easily transferred into other applications. Therefore, a more integrated, open-
source sensor system is highly desired, especially for long-term, in situ measurements.

In this work, we developed a potentiometric sensor system with self-calibration capa-
bility by integrating a multiplexed SCISE sensor with electronics and fluidic components.
Importantly, both the sensor readout and fluid control modules are combined into a single
PCB circuit, which makes the system cost-effective, portable, and adaptable. Both the
circuit and the multiplexed sensor (K+ and NO3

− sensors and Ag/AgCl reference) were
fabricated using printed-circuit board (PCB) technology [14]. The sensor was further em-
bedded into a microfluidic flow cell and its potentiometric response was characterized
under different flow conditions. To prepare the sensor for future in situ measurements, we
then demonstrated the long-term operation and automated two-point calibration. Finally,
the sensor was validated with plant sap samples.

2. Materials and Methods
2.1. Materials and Reagents

Mesoporous carbon black (MCB, average pore diameter 6.4 nm), potassium ionophore
I (valinomycin), potassium tetrakis(4-chlorophenyl)-borate (KTPB), tridodecylmethylam-
monium nitrate (TDDMA-NO3), polyvinyl chloride (PVC, high molecular weight), tetrahy-
drofuran (THF), and 2-nitrophenyl octyl ether (NPOE) were purchased from Sigma Aldrich
(MA, US). Salts of NaCl, KNO3, KCl were purchased from Fisher Scientific. Silver plating
solution (Technic Silver Cyless RTU) was purchased from Technic Inc. All chemicals were
of analytical or industrial grade. Deionized (DI) water was used to prepare all aqueous
solutions. Double-sided (#9474LE) and single-sided (#9964) adhesive tapes were obtained
from 3M. Tygon tubing (0.02” ID × 0.06” OD) was purchased from Cole-Parmer.

Suspension of mesoporous carbon black (MCB) was prepared by adding 45 mg MCB
and 5 mg PVC as binder into 2 mL THF. Prior to each use, the suspension was vortexed
for 30 s, sonicated for 1 h, and then vortexed again for 30 s to disperse the nanoparticles.
The K+ ISE cocktail was prepared by mixing 22.2 mg K+ ionophore I, 7.0 mg KTPB, 320 mg
PVC, and 660 µL NPOE into 10 mL THF and stirring until all components were fully
dissolved. For the NO3

− cocktail, 10 mg TDDMA-NO3, 330 mg PVC, and 660 µL NPOE
were subsequently added to 10 mL THF and stirred until fully dissolved.

2.2. Sensor System

The potentiometric sensor system consists of the multiplexed SCISE sensor and a
PCB circuit to control fluidics and perform both sensor readout and calibration. This
is schematically illustrated in Figure 1A. A buffer amplifier (LTC6079, Analog Devices,
Wilmington, MA, USA) and a 3-channel, 16-bit ADC (analog-to-digital converter, AD7792,
Analog Devices) were used to read sensor signals. For fluid control, a DC motor driver
based on DRV8830 (Texas Instrument, Dallas, TX, USA) and two DC-DC boost converters
based on LTC3122 (Analog Devices) were used to activate pump and valves, respectively.
The PCB circuit and the sensor were produced following standard PCB workflow. Briefly,
double-sided PCB substrates (FR-4) with connecting traces were designed in CAD software
(EasyEDA) and then sent out to a PCB manufacturer for fabrication (Shenzhen JDB Tech-
nology, Shenzhen, China). An Arduino circuit (Nano33BLE or Nano33IoT) was used for
programming and data transmission (Bluetooth or WiFi) via its microcontroller. The entire
circuit (custom PCB + Arduino) can be powered by battery (4.5-21VDC) or USB (3.3VDC).
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Figure 1. Design of the integrated SCISE sensor system. The system consists of a multiplexed
SCISE sensor and a custom PCB for sensor readout and calibration: (A) Block diagram of the system
illustrates the custom PCB circuit (center) and the supporting fluidic components. Arduino (right
side) was used for device control and data transmission. Solenoid valves (V1, V2) and peristaltic
pump (P) formed the fluidic circuit (left side). (B) Schematic illustration of the multiplexed sensor
showing microfluidic integration, sensor layout, and the cross-sectional view of the sensing layers.
Note the lateral shift of the ion-selective membrane on top of the mesoporous carbon black (MCB)
layer to prevent water layer formation.

Miniaturized peristaltic pump (RP-Q1, H12 × W14 × L30 mm) and solenoid valves
(EXAKN-3, ϕ14.0 × H42.3 mm) were obtained from Takasago Fluidic Systems (Nagoya,
Japan). During operation, the pump was placed downstream of the sensor to pull fluid
across the sensor, with an adjusted output of 0.2–0.45 mL/min. The 3-way solenoid valves
were connected in series and allowed selection of up to 3 reagents.

2.3. Sensor Fabrication

Multiplexed SCISE sensors were prepared based on a process developed previously [14].
The PCB substrates were fabricated using standard PCB technology as described above. In
this case, immersion silver was applied as the surface finish. The K+ and NO3

− SCISEs were
prepared by subsequently drop-casting the MCB suspension (4 µL) and the membrane
cocktails (2.8 µL) onto the sensing areas defined on the PCB substrate, using adhesive
tapes (3M #9964) for patterning. The sensor structure and layer stacking are illustrated in
Figure 1B. The resulting dimensions of the ISEs were 0.06 mm × 1.5 mm (h × w). The ISEs
were left to dry in ambient air at room temperature for at least one day before use.

Silver/silver chloride (Ag/AgCl) reference electrodes were prepared by electroplating
on the original Ag layer of the PCB, using an industrial plating solution (Technic). To avoid
contamination, electroplating was performed before preparing SCISEs. To plate silver, a
DC current (−25 µA) was applied for 40 min with a potentiostat (Gamry Reference 600+)
and a gold disc (BASi) as counter electrode. After plating, the electrode was cleaned with
abundant isopropyl alcohol and DI water to remove organic residues. Then, the electrode
was chloridized in 0.1 M KCl by applying a DC current (+ 25 µA) for 20 min, using the
same cell setup as silver plating.

2.4. Microchannel Fabrication

The sensor was enclosed into a straight microchannel (17 mm × 2.5 mm × 0.17 mm)
constructed by adhesive bonding of a 3D-printed enclosure directly onto the sensor PCB
(Figure 1B). The enclosure contained two through-holes as input/output ports of 1.675 mm
in diameter to match the OD of Tygon tubing. The enclosure was designed in SolidWorks
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and printed using a stereolithography printer (Form 2, Formlabs, Somerville, MA, USA),
with a vertical printing orientation (slightly tilted). The printed part was cleaned with
isopropyl alcohol and cured in ambient air at room temperature overnight. For better
visualization, one side of the printed enclosure was polished using sandpaper (up to
15,000 grit) to produce a transparent surface finish. Bonding of the enclosure to PCB was
accomplished using double-sided tape (3M #9474LE), which was patterned in the shape
of the channel with a laser cutter (HP2436, Boss Laser, FL). The channel was assembled
by hand pressing all the layers with the sensor as the substrate, the tape as the spacer
(sidewalls), and the 3D print as the top. After assembly, leakage test was conducted by
running continuous flow of dye solution through the channel using a syringe pump (New
Era Pump Systems, Inc., Farmingdale, NY, USA), with stepwise increase in flow rate (0.05
to 10 mL/min). At each flow rate, channel integrity was examined visually.

2.5. Sensor Characterization

Potentiometric response of the ISEs was recorded (vs. the electroplated Ag/AgCl) in
the microchannel, using either the custom PCB circuit developed here or a dual-channel
pH meter (Model 225, Denver Instruments). A series of KNO3 (10−7 to 10−1 M) was pre-
pared as the electrolyte standard, with NaCl added to provide constant Cl− background
([Cl−] = 10 mM) for the Ag/AgCl reference. For testing hydrodynamic conditions, a con-
stant flow (0.45 mL/min) was driven across the sensor for about 5 min and then the flow
was stopped for another 5 min before switching to a higher concentration. At each step, the
average sensor response in the last 30 s was used for calibration. For long-term characteri-
zation as well as self-calibration, a programmed sequence consisting of 25 s flow period
and 60 s static period was implemented, while switching between 10−3 and 10−2 M KNO3.
At each concentration, the sensor’s response was taken by averaging data from the last 10 s
of the static period.

Potentiometric response of the electroplated Ag/AgCl electrode was measured against
a commercial Ag/AgCl electrode (MW-2030, BASi) in bulk solution (1 mM KNO3 + 10 mM
NaCl), using either the pH meter (Denver Instruments) or a bipotentiostat (WaveDriver
20, Pine Instrument, PA). Data were processed and visualized in LabVIEW, MATLAB, or
Arduino IoT Cloud in case of WiFi transmission. At the end of each test, the microchannel
was flushed with air and the sensors were stored in dry conditions and against light.

2.6. Plant Sap Test

Xylem sap from maize (Zea mays) was collected following the root pressure method
described previously [15]. Briefly, plants were either well-watered or not watered 2–3 h
prior to collection. Then, an incision was made by surgical blade right above the first
stem node to remove the top part. Silicone tubes were inserted into the cut site to collect
root exudate. The cut site was rinsed with DI water to remove tissue residues and the
first ~100 µL sap was discarded. Collection last for ~4 h, which typically resulted in a sap
volume of 1–5 mL per plant. The collected sap was stored at freezer temperature (−20 ◦C)
until further testing.

During testing, sap samples were pre-diluted 10× with a solution of 1 mM KNO3 +
10 mM NaCl. After an initial conditioning phase (5–10 min), a program of pump and
valve actions was implemented such that the sensor was calibrated before and after
each sap measurement with standard solutions (1/10 mM KNO3 + 10 mM NaCl). The
EMF value at each step was calculated by averaging the last 10 data points at stopped-
flow. Ion concentrations (K+ and NO3

−) from the original sample were calculated by
Cunkown = (Cdilute − 0.9) × 10 (mM), where Cdilute was the concentration of diluted sample.
For testing with commercial K+ and NO3

− ISEs (9319BN, 9307BN, ThermoOrion, Waltham,
MA, USA), the original sap samples were diluted 10–20× and measured following both
‘Direct Calibration’ and ‘Known Addition’ protocols according to the manufacturer [16].
The accuracy of our measurements was calculated by dividing the concentrations measured
with our and the commercial sensors.
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3. Results and Discussion
3.1. System Design

The key feature of the sensor system is the ability to perform automatic sensor calibra-
tions at low cost and in a small form factor. The fully assembled sensor system is shown in
Figure 2A. The 3D-printed enclosure is approx. 8 cm square, and about 5 cm deep; however,
the size of the enclosure is primarily driven by the size of the used fluid reservoirs and
a much more compact arrangement should be possible, especially with lower volume or
external fluid compartments. Instead of relying on external fluid control instruments that
are usually bulky and expensive, we integrated flow-control modules into the custom PCB
circuit (Figure 2B). The motor driver controls the pump speed via pulse-width modulation
(PWM). The boost converters control the switching of valves by stepping up voltage input
(+3VDC) to the rated voltage of solenoids (+12VDC) while featuring output disconnect
during shutdown to save power. Miniaturized peristaltic pump and solenoid valves were
selected due to their compact sizes and lower costs than common syringe pumps and
rotary valves. While microfluidic pumps and valves have also been widely developed, they
increase the total cost of sensor fabrication and tend to suffer leakage issues [17,18].
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Power consumption is important for battery-powered devices. The system here draws
a current of ~7/30/250 mA, respectively, during default (measuring alone), pumping, and
solution switching (when both pump and valve are activated) modes. With a single 9 V
battery, the cut-off voltage of the device is found to be ~7.5 V (below which the boost con-
verters could not generate enough current to activate the solenoid valves). Based on these
results, we estimate that with a single battery charge the device can continuously run for
up to 40 h or about 50 automatic calibrations (see Methods and also below). The operating
life can be further extended by using a high-capacity battery such as a power bank.

3.2. Sensor Fabrication and Microfluidic Enclosure

The multiplexed sensor containing SCISEs for K+ and NO3
− ions and a Ag/AgCl

reference electrode was fabricated on PCB substrates due to the cost-effectiveness of the
process and its potential for high-throughput manufacturing. Mesoporous carbon black
(MCB) was used as the transducing layer to stabilize the potentiometric response of SCISEs
due to its high surface area and good conductivity [14,19]. To suppress the formation of a
water layer under the membrane, the ion-selective membranes were shifted laterally from
the underlying conducting layer, as shown in Figure 1B, and were discussed in detail in
our earlier work [14].
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To enable self-calibration capability (and flow-through analysis), the sensor was in-
tegrated with a microfluidic flow cell constructed with adhesive tapes and 3D printing.
While a variety of microfabrication techniques, such as soft lithography, hot embossing,
and injection molding, can be used to make microfluidic channels [20–25], the simplicity
and versatility of pressure-sensitive adhesives and 3D printing make them ideal for rapid
prototyping of larger microfluidic structures [26,27]. As the spacer layer, the double-coated
tape (#9474LE) has proven to be leak-free and chemically inert to the sensor during months
of measurement. The 3D-printed top part provided a direct tubing connection via through-
holes. Due to the limited resolution of our low-cost 3D printer (~50 µm), it was difficult
to consistently print perfectly matched inlets for the tubing and occasional bubbles were
introduced at the tubing interface. Nevertheless, when an air-tight interface was formed,
the microchannel can sustain flow rates of at least 10 mL/min, which is sufficient for many
microfluidic applications and the sensor system herein (where flow rate ≤ 0.45 mL/min
was used).

3.3. Sensor Performance

A reliable reference electrode is a prerequisite for a stable potentiometric sensor;
thus, we first tested the potentiometric response of the electroplated Ag/AgCl electrodes,
as shown in Figure 3. The electrodes displayed an average drift of −2.7 ± 0.8 mV
(−0.044 mV/min) within the first hour and a baseline reproducibility of 112.8 ± 4.0 mV.
Such moderate drift and reproducibility are deemed sufficient for fast analysis, although
long-term measurements would require regular calibration. Better performance may be
achieved on PCB substrates by electroless silver plating [28] or ink-jet printing [29].
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The dynamic response of the sensor (SCISE vs. electroplated Ag/AgCl) when sub-
jected to alternating flow and static conditions showed that hydrodynamics did not exert
much influence on the response. Results in Figure 4A show that at concentrations > 10−5 M,
the potential differences (∆E) between 0.45 mL/min flow and static phases were less than
3 mV. The influence was larger at low concentrations (<10−6 M), especially for the K+ sensor
which showed ∆E >20 mV and a much slower response in the static phase. These results
can be explained by the leaching of primary ions (K+ or NO3

−) from the membrane that
raised their local concentrations in the solution. On the other hand, the flow keeps the local
concentration to the actual value by constantly refreshing the solution. Despite some flow
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sensitivity, the sensors showed a generally rapid response (~20 s) to concentration changes
(Figure 4A, inset).
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Figure 4. Potentiometric response of the multiplexed sensor (K+ and NO3
− electrodes and Ag/AgCl

reference) in microchannel under alternating flow (shaded) and static conditions: (A) Real-time
sensor response. Flow rate: 0.45 mL/min. Electrolyte: KNO3 + 10 mM NaCl. Inset: enlarged view
showing sensor’s response to changing concentration. (B) Calibration curves of the NO3

− and
K+ ISEs (3 electrodes for each ion). Solid lines indicate flow condition and dashed lines indicate
static condition.

Both the K+ and NO3
− electrodes displayed near-Nernstian response over the three-

decade concentration range, which covers typical ranges in biological and environmental
samples. Figure 4B shows that the K+ electrodes exhibited a slope of 56.6 mV/dec from 10−5

to 10−2 M, and the NO3
− electrodes displayed −57.4 mV/dec from 10−4 to 10−1 M. The

limits of detection (LOD) were calculated to be 1.9 × 10−6 M and 3.6 × 10−5 M for K+ and
NO3

− electrodes, respectively, with the flow condition showing a slightly lower LOD than
the static condition. With NaCl (10 mM) as the background electrolyte, selectivity (LogP)
can also be derived and was determined to be −3.72 for the K+ electrode (vs. Na+) and
−2.44 for the NO3

− electrode (vs. Cl−). These values agree with the results from capillary-
based electrodes in the bulk solution [19], suggesting that neither the PCB substrate nor the
adhesive tape affected sensor selectivity. In the upper range, the signal of K+ electrodes
eventually flat out beyond 10 mM due to the so-called co-ion interference of NO3

− [30].
Further extension of the upper limit may be achieved by increasing the concentration of
ionic sites (TPB) in the membrane.

Evaluation of the long-term performance showed that the sensors retained most of
their sensitivity (95% for NO3

− and 91% for K+ ISEs) after 3 weeks (Figure 5A). The gradual
decay may be linked to the leaching or breakdown of membrane ingredients (e.g., plasticizer
or ionic sites), which was thought to have also resulted in decrease in sensor conductivity
and capacitance [14]. In addition, the sensors have maintained their selectivity over the
testing period, with the NO3

− ISEs displaying selectivity coefficients of −2.4 to −2.5 (vs.
Cl−) and the K+ ISEs of −3.7 to −4.2 (vs. Na +) (Figure 5B). The maintenance of selectivity
ensured that the sensors would function properly in complex samples. In terms of baseline
(Figure 5C), the sensors showed an average drift of 6–11 mV per day (mV/d) in the first
week and have stabilized since then with the drift typically below 3 mV/d. However, even
with a drift of 3 mV/d, the error could be as high as 13% for daily measurement. Therefore,
the sensors here would need regular calibration in the long term, especially for the first
2 weeks. For calibration-free sensors, drift on the order of µV/h was suggested [10].
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Figure 5. Long-term sensor performance: (A) Sensitivity of ISEs. The sensitivities were measured
by two-point calibration between 1 and 10 mM KNO3. (B) Selectivity of ISEs. For K+ electrodes,
selectivity was measured against Na+ ions; for NO3

− electrodes, selectivity was against Cl− ions.
(C). Baseline drift of ISEs at 1 mM KNO3 (in mV per day, mV/d) over a 4-week period. Reference:
electroplated Ag/AgCl. For all measurements, 10 mM NaCl was added as background. At least 3
electrodes were used for each measurement. Sensors were stored dry in air between measurements.

3.4. Self-Calibration and Plant Sap Test

To evaluate the sensor system for in situ measurements, the response of the sensor was
measured in an automated two-point calibration (Figure 6). At each step, the sensor was
measured for 60 s at default followed by solution switching for 25 s. These parameters were
chosen to ensure complete rinsing of the channel while minimizing reagent consumption.
The sample volume used for each measurement was ~187.5 µL. As shown in Figure 6, after
about two calibrating cycles, both K+ and NO3

− sensors showed a highly reproducible
response, with the K+ ISEs exhibiting 20.4 ± 0.45 and 68.4 ± 0.45 mV for the last five
cycles at 1 and 10 mM KNO3, respectively, and the NO3

− ISEs showing 299.1 ± 0.18 and
244.9 ± 0.36 mV. The high reproducibility indicates that the sensor system can robustly
perform self-calibration.
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The system was further applied to detect ionic nutrients in plant sap (Z. mays). As
shown in Figure 7A, a program of pump and valve actions was implemented so that multi-
ple sap samples were analyzed in a continuous manner and the sensors were calibrated
before and after each sample. Based on the calibrations, the concentrations of K+ and
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NO3
− in the original sap were calculated to be 1–20 mM (Figure 7B, Table 1), which were

consistent with reported values in maize [15,31]. The low NO3
− levels in some samples in-

dicate that plants were most likely suffering from nitrogen deficiency. Moreover, the results
of our sensors were consistent with that of commercial ISEs, with typical differences of
≤3 mM and correlation coefficients >0.95. The mean accuracy of our measurement against
commercial sensors was 105.7% for K+ ions. The NO3

− sensor showed a small systematic
bias (~ +1.3 mM), with respect to commercial sensors, possibly due to interference from Cl−

ions (which were suppressed in commercial ISEs with the use of an ionic strength adjustor).
When such bias was corrected by subtraction, the adjusted mean accuracy of measurement
was calculated to be 95.2% for NO3

−.
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Table 1. Concentrations of K+ and NO3
− ions in xylem sap (Z. mays) measured by our sensors and

commercial ISEs (n is the number of measurements).

Sample K + _Our Sensor (mM) K + _Commercial (mM) NO3−_Our Sensor (mM) NO3−_Commercial (mM)

1 9.59 ± 0.48 (n = 16) 10.98 ± 0.15 (n = 3) 1.63 ± 0.57 (n = 16) 0.62 ± 0.19 (n = 3)
2 14.37 ± 0.98 (n = 16) 14.94 ± 0.34 (n = 3) 4.76 ± 0.56 (n = 16) 3.01 ± 0.2 (n = 3)
3 17.46 ± 1.5 (n = 4) 14.17 ± 1.59 (n = 4) 1.9 ± 0.52 (n = 4) 0.63 ± 0.23 (n = 4)
4 24.02 ± 1.52 (n = 8) 20.64 ± 0.92 (n = 8) 15.59 ± 1.05 (n = 12) 14.07 ± 1.03 (n = 8)

4. Conclusions

This work demonstrated a self-calibrating sensor system by integrating SCISEs with
flow-control modules into the same readout circuit. The resulting sensor system is compact,
cost-effective, and robust, with the potential for in situ measurements in a variety of
agricultural, biomedical, environmental, or geochemical applications. In the future, the
capability of the system can be further expanded. For example, the system currently
supports multiplexed sensing of three ion analytes via USB-A interface; the number of
analytes can be readily increased using an alternative electronic interface such as HDMI
(16-pin) or USB-C (24-pin). At the same time, the sensors can be tailored to other ions
by simply varying the selective components (ionophores/ion exchangers). In addition, a
microcontroller unit can be integrated into the custom PCB circuit to further reduce the
footprint of the electronics. Furthermore, chip-based potentiostat circuits can be integrated
to enable other sensing schemes (e.g., amperometry or voltammetry). The fluid control
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modules of the system can also be readily adapted into other analytical systems that require
automated sensor calibration.
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