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Abstract: In this work, graphene-oxide-decorated porous ZnO nanosheets were prepared using a
hydrothermal method. The graphene oxide/porous ZnO nanosheet (GO/ZnO nanosheet) composites
were characterized with SEM, HRTEM, XRD, Raman spectroscopy, XPS and BET. The results indicate
that the ZnO nanosheets have a porous, single-crystal structure. Thin GO nanosheets closely cover
the surface of porous ZnO nanosheets. The sensing performance of GO/ZnO nanosheet composites
is investigated. At the optimized temperature of 300 ◦C, the GO/ZnO nanosheet composites exhibit a
superior sensing performance in n-propanol detection. In a wide range of 5–200 ppm, the composites
exhibit a linear response to n-propanol. Moreover, the sensing performance of the GO/ZnO nanosheet
composites to n-propanol is largely higher than that to other VOC gases, indicating a high selectivity
in n-propanol detection. This can be ascribed to the higher electron-separation efficiency and larger
depletion layer brought by the modification of the GO on ZnO nanosheets. It is considered that the
GO/ZnO nanosheet composites have a great application potential in n-propanol detection.

Keywords: graphene oxide; ZnO nanosheet; n-propanol; sensing property

1. Introduction

The demand for accurate detection for volatile organic compounds (VOCs) is increas-
ing alongside the development of industrialization [1,2]. Therefore, many methods have
been developed for the efficient detection of VOCs. Among various techniques, metal
oxide semiconductor (MOS) gas sensors with benefits including fast response, low energy
consumption and compact size are widely used [3–5]. Among MOS materials, ZnO has
attracted great attention in the field of gas detection due to its excellent electronic and
photonic properties [6–9]. However, owing to the large resistance value and the aggregation
during the process of detection, pure ZnO sensing materials always suffer imperfections
such as poor sensitivity and selectivity in VOC detection [10–12]. Numerous efforts have
been devoted to enhance the performance of ZnO sensing materials [13–15]. Composite
ZnO with a secondary material is a rational method to enhanced its sensing property,
since the composite materials always combines the advantages of each component [16,17].
Aubekerov et al. synthesized ZnFe2O4-modified ZnO nanowires, which show better sen-
sitivity than pure ZnO nanowires in isopropyl alcohol detection [18]. Xu et al. reported
Eu(III)-functionalized ZnO@MOF heterostructures with excellent selectivity and sensitivity
for aldehyde detection [19]. Nevertheless, it is still a big challenge to obtain ZnO-based
sensing materials with superior sensing performance.

Two-dimensional materials, such as graphene and graphene oxide (GO), have attracted
much attention due to their unique structures and excellent physical and chemical proper-
ties [20,21]. The unique two-dimensional network of graphene facilitates the exposure of
all carbon atoms to air, allowing the maximum contact with the target molecules [17,22].
Wu et al. [23] found that a graphene/ZnO composite with low resistance exhibits better
gas-sensing performance. GO, with abundant oxygen-containing functional groups, has a
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similar structure to graphene, and can also be used as an ideal modifier to ZnO [24,25]. GO
can not only effectively prevent the aggregation of ZnO nanomaterials, but also improve
the electrical conductivity of ZnO materials, thus enhancing the sensing performance of
the composites [26,27]. Singh et al. [28] prepared GO/ZnO composites using a one-step
method, and these composites could efficiently detect NH3 (1 ppm), NO (5 ppm) and CO
(22 ppm) gases. Although many reports mention GO-modified sensing materials, it is still
a big challenge to promote their sensing performance.

As one of the most widely used chemical raw materials, n-propanol is used in various
industries, such as preservatives, detergents, cosmetics and pharmaceuticals [29]. However,
n-propanol does harm to human health, and is known as a toxic volatile organic compound
(VOC). When the concentration of n-propanol exceeds 400 ppm, it may impair the upper
respiratory tract, retina and optic nerve. Therefore, the high-performance detection of
n-propanol has attracted great interest in recent years [30]. In this work, graphene-oxide-
decorated porous single-crystalline ZnO nanosheet (GO/ZnO nanosheet) composites were
synthesized using a hydrothermal method. In the composites, the ZnO nanosheets of
hexagonal wurtzite are closely wrapped by GO lamellae, and this unique structure makes
the GO/ZnO nanosheet composites exhibit a high response, excellent selectivity and
stability in n-propanol detection. At the optimized temperature of 300 ◦C, the GO/ZnO
nanosheet composites exhibit a linear response in n-propanol detection. The sensing
performance of the GO/ZnO nanosheet composites to n-propanol is much higher than to
other VOC gases. The sensing mechanism is also discussed. It is believed that the GO/ZnO
nanosheet composites have great potential for practical usage.

2. Materials and Methods
2.1. Materials

Zinc acetate, urea, sodium nitrate, potassium permanganate, graphite powder and
concentrated sulfuric acid of analytical grade were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China) and used without further purification. Deionized
water was used in all experiments.

2.2. Preparation of GO and Porous Single-Crystal ZnO Nanosheet Composites

GO was prepared using the modified Hummer method using graphite, sodium nitrate,
concentrated sulfuric acid and potassium permanganate as raw materials. Graphite powder
(0.5 g) and concentrated sulfuric acid (23 mL) were added to a 250 mL three-necked round-
bottomed flask. The flask was sealed and stirred in an ice bath continuously overnight.
NaNO3 (0.5 g) was quickly added into the mixture and KMnO4 (3 g) was slowly added for
30 min. Then the mixture was transferred to a 35 ◦C water bath under vigorous stirring for
1 h. Deionized water (40 mL) was slowly added and the system was heated up to 90 ◦C
and stirred continuously for 2 h. Then a mixture of deionized water (10 mL) and hydrogen
peroxide (30%) (3 mL) was slowly added and stirred for a few minutes. GO was prepared
by filtering and washing the solution until it was neutral. GO (20 mg) was dissolved in
1 mL deionized water and ultrasonicated to form a 20 g/L GO dispersion.

The GO dispersion was added to a mixture of zinc acetate (1 g), urea (3 g) and 40 mL
deionized water in a conical flask under ultrasound for 30 min. The conical flask was
tightly corked and heated in an oven at 100 ◦C for 6 h, and then cooled to room temperature.
Then, the complexes of GO and ZnO precursor were prepared. The product was washed
with deionized water and ethanol by centrifugation and dried at 60 ◦C for 24 h. Finally,
the GO-modified porous single-crystal ZnO nanosheet composites were prepared after
calcinating the obtained samples at 300 ◦C for 2 h in air.

2.3. Characterization

The morphologies and structure of the samples were examined using field emission
scanning electron microscopy (FESEM, FEI Sirion-200, Eindhoven, Netherlands) at 5 kV
of accelerating voltage, and high resolution transmission electron microscopy (HRTEM,
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JEOL JEM-2010, Tokyo, Japan) at 200 kV of accelerating voltage. The crystal structure of the
samples was determined using X-ray diffraction (XRD, Philips X’ pert PRO, Amsterdam,
Netherlands) with Cu Kα radiation, λ = 0.15418 nm. The Raman spectroscopy was pro-
cessed with a Raman spectrometer (invia, Renishaw, 532 nm wavelength, Gloucestershire,
UK). X-ray photoelectron spectra (XPS) were recorded on an AXIS ULTRADLD spectrome-
ter(Manchester, UK), with monochromatized Al Kα X-rays as the excitation source and C
1s chosen as the reference line. N2 adsorption/desorption isotherm was carried out at 77 K
using an Autosorb-1-C analyzer (Quantachrome Instruments, Boynton Beach, FL, USA),
and the corresponding pore size distribution was derived from the adsorption branch of
the isotherm using the BJH method.

2.4. Fabrication of the Gas Sensor and the Gas-Sensing Measurement System

An illustration of the operating procedure of the gas sensor and its measurement
system is shown in Figure 1. Two gold electrodes with a distance of 10 mm were added
onto a ceramic tube. Next, two pairs of gold wires were closely bonded to those two gold
electrodes. Then, a nichrome wire (with a resistance of 30 Ω) was placed in the interior
of the ceramic tube as a heating wire. For the fabrication of the gas sensor, the prepared
GO/ZnO nanosheet composite and porous ZnO nanosheet powders were dispersed in
ethanol solvent and directly coated on the surface of the ceramic tube and then dried
naturally at room temperature. The final thickness of the sensing film of the GO/ZnO
nanosheet composite and porous ZnO nanosheet were both approximately 200 µm.
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Figure 1. Schematic diagram of the experimental setup. The inset is the structure of the sensor.

The gas-sensing measurements were performed in a closed test chamber (1 L) equipped
with an inlet and an outlet for gas. A Keithley 6487 Source/Measure Unit was used to
record the change in current. When working, a constant voltage was applied onto the two
gold electrodes between the sensing films, and the corresponding current was measured.
In the typical gas-sensing test, certain amount of target gas was first collected from the
headspace vapor of the organic solvent (e.g., methanol, ethanol, n-propanol, isopropanol,
ammonia, methanal, benzene, water, etc., all of analytical grade), and then introduced into
the test chamber using a microsyringe. The saturated vapor pressure of the organic vapor
was recorded to calculate the concentration of the target gas under a standard atmospheric
pressure. The injection rate of the target gas was about 1 mL/s. When the test was over, the
target gas in the testing chamber was released by inputting fresh compressed air into the
air bottle.

The response of the sensor is defined as:

Response = Ra/Rg = Ig/Ia (1)
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Here, Ra and Rg are the electric resistance of the sensor in air and the target gas, respec-
tively. Ia and Ig are the electric current of the sensor in air and the target gas, respectively.

3. Results
3.1. Characterization

The porous ZnO nanosheets were first synthesized through a hydrothermal method,
then the GO nanosheets were modified onto their surface. The morphologies of the porous
ZnO nanosheets and the GO/porous ZnO nanosheet (GO/ZnO nanosheet) composites
were investigated with SEM, and the results are shown in Figure 2. Figure 2a,b are the
SEM images of the porous ZnO nanosheets at different magnifications. In these images,
a great many nanosized pores can be clearly seen on the surface of the ZnO nanosheets.
After the modification of GO nanosheets, from Figure 2c, it can be seen that the edges of the
modified ZnO nanosheets are blurred. Furthermore, in the magnified image (Figure 2d), a
thin and wrinkled structure can be observed on the surface of the nanosheets, indicating the
successful modification of the lamellar GO on the porous ZnO nanosheets. The statistical
distributions of the length and width of the GO/ZnO nanosheet composites are presented
in Figure S1. The average length and width of the GO/ZnO nanosheet composites are 5.0
and 3.5 µm, respectively.
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Figure 2. (a,b) SEM images of porous ZnO nanosheets, (c,d) GO/ZnO nanosheet composites, (b,d) are
the magnification of (a,c), respectively.

Figure 3a,b are TEM images of the GO/ZnO nanosheets at different magnifications. It
can be seen that the pores on the ZnO nanosheet are very rich, and the average diameter of
the pores is about 30 nm. When looking closely at the surface of the ZnO nanosheets, it
can be found that the ZnO nanosheet is covered with a thin layer of GO. In addition, at
the edge of the ZnO nanosheet, the uncovered GO nanosheets also can be clearly observed.
Figure 3c is the corresponding SAED pattern of the GO/ZnO nanosheet, which consists
of well-ordered dots, indicating the single crystallinity of the porous ZnO nanosheets.
The (112), (110) and (002) planes of wurtzite ZnO can also be indexed from the SAED
pattern. Due to its small amount and poor crystallinity, the SAED pattern of GO cannot be
observed. From the HRTEM image of GO/ZnO nanosheets (Figure 3d), it can been seen
that the clear and coherent lattice fringes go throughout the nanosheet. The lattice spacing
is 0.26 nm, which can be ascribed to the (002) plane of the hexagonal phase ZnO. Those
results definitively prove the formation of the GO/ZnO nanosheet composites.
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The XRD patterns of pure porous ZnO nanosheets and GO/ZnO nanosheet composites
are shown in Figure 4. All peaks in the porous ZnO nanosheets and GO/ZnO nanosheet
composites correspond to the characteristic peaks of hexagonal wurtzite zinc oxide (JCPDS
No. 36-1451), and no other peaks can be observed, indicating that there are no other
impurities in the GO/ZnO nanosheet composites. The disappearance of the diffraction
peak of GO in the composite material is due to its low amount and poor crystallinity.
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Raman spectroscopy is an effective method to characterize the structure of GO; thus,
the GO nanosheets, porous single-crystal ZnO nanosheets and GO/ZnO nanosheet compos-
ites were characterized with Raman spectroscopy, and the results are presented in Figure 5.
From the Raman spectra of the GO and GO/ZnO nanosheet composites, two obvious peaks
at 1362 cm−1 and 1590 cm−1 can be observed, which correspond to the D and G bands
of graphene, respectively. Furthermore, the Raman spectra of the GO/ZnO nanosheet
composites also contain three small peaks at 322.2, 432.3 and 562.2 cm−1, which can also
be observed in the Raman spectrum of the porous ZnO nanosheets. This result further
confirms the combination of the ZnO nanosheets and GO.
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The structure of GO/ZnO nanosheet composites was further investigated with XPS,
and the results are shown in Figure 6. Figure 6a is the survey XPS spectrum of the com-
posites, while Figure 6b presents the Zn 2p spectrum of the composites. The two char-
acteristic peaks at 1044.6 and 1021.5 correspond to Zn 2p1/2 and Zn 2p3/2, respectively,
which are associated with the Zn-O bonding in ZnO. In Figure 6c, the C 1s peak of the
GO/ZnO nanosheet composites can be deconvoluted into three peaks observed at 284.8,
286.2 and 288.7 eV, corresponding to functional groups C-C, C-O and C-COOH, respec-
tively [21,31]. The O 1s spectrum (Figure 6d) can be deconvoluted into three peaks at 529.7,
531.2 and 532.5 eV, which correspond to the O2− valance state (O-Zn bonding) in GO/ZnO
nanosheet composites, oxygen vacancies and defects, and chemisorbed oxygen species,
respectively [26,31]. The greater amount of oxygen vacancies and defects of the GO/ZnO
nanosheet composites can help to trap electrons, improve the electron-hole recombination
rate and keep a high carrier mobility, resulting in the enhanced sensing performance of the
GO/ZnO nanosheet composites. The results are consistent with the sensing performance
of the composites.

The N2 adsorption/desorption isotherm of GO/ZnO nanosheet composites was stud-
ied and the result is presented in Figure 7. The N2 adsorption/desorption isotherm of
GO/ZnO nanosheet composites displays a type IV isotherm with an H3 hysteresis loop,
which is typical of mesoporous materials. Figure 7b presents the pore size distribution of
the composites. It can be seen that the average pore diameter is around 18.8 nm, which is
consistent with the TEM result. The BET surface area of the GO/ZnO nanosheet composites
is 25.1 m2g−1, which is larger than that of the ZnO nanosheet (21.3 m2g−1) [32]. The larger
surface area and abundant pore structure of the GO/ZnO nanosheet composite make it a
promising candidate for VOC detection.
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3.2. Sensing Performance

The electrical behavior of GO/ZnO nanosheet composites was investigated, and
Figure S2 presents the corresponding current-voltage (I–V) curves. It can be seen that the
almost linear characteristics of the ZnO/GO samples indicate the p-type ohmic contact of
the sensing films.

The sensing performance of MOS sensors usually depends on the operating temper-
ature. The responses of the GO/ZnO nanosheet composite sensor to 50 ppm n-propanol
and isopropanol at different operating temperatures were investigated. As illustrated in
Figure 8, the responses of GO/ZnO nanosheet composites to both n-propanol and iso-
propanol first increase with the increasing working temperature. However, when the
temperature increases beyond 300 ◦C, the responses decrease. At low temperatures, there
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are not enough O2− anions on the surface of the GO/ZnO nanosheet composites to react
with n-propanol and isopropanol molecules, and when the working temperature is too
high, the desorption rate of molecules is far greater than the adsorption rate, thus resulting
in a decrease in the response of the GO/ZnO nanosheet composites. Thus, the optimum
operating temperature of the GO/ZnO nanosheet composites is 300 ◦C, and the subsequent
gas-sensing tests were carried out at this temperature.
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The real-time responses of the GO/ZnO nanosheet composites to n-propanol at dif-
ferent concentrations were also investigated, and the results are presented in Figure 9a.
With an increase in the n-propanol concentration from 5 to 200 ppm, the response currents
increase rapidly, and then immediately drop as the n-propanol gas is removed from the
testing chamber. Figure 9b displays the plot of the sensitivity as a function of the concentra-
tion of n-propanol, revealing a linear range from 5 to 200 ppm. The least-squares fitting
is y = 5.48 + 0.26x, and the regression coefficient (R2) is 97.6%. The real-time response
curves of GO/ZnO nanosheet composites to 50 ppm n-propanol and isopropanol at 300 ºC
are shown in Figure 10. The sensitivity of the GO/ZnO nanosheet composites to 50 ppm
n-propanol and isopropanol is 17.2 and 4.4, respectively. In addition, the responses and
recovery of the composites to both n-propanol and isopropanol are very fast, and the
corresponding response times are 45 and 36 s, while the recovery times are 15 and 19 s,
respectively. The results indicate that the GO/ZnO nanosheet composites have a good
response to n-propanol.
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The sensing performance of the GO/ZnO nanosheet composites was also compared
with that of the porous ZnO nanosheets, and the results are presented in Figure 11. As
shown, the responses of the ZnO nanosheets to 50 ppm n-propanol and isopropanol are
2.58 and 2.39, respectively. Nevertheless, when the ZnO nanosheets are coupled with GO
nanosheets, the sensing performance of the composites is largely enhanced, especially
to n-propanol. Obviously, this huge enhancement in sensing performance is due to the
modification with GO.
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The selectivity of the gas sensor is an important parameter for its application. Thus, the
sensing properties of the GO/ZnO nanosheet composites to 50 ppm of methanol, ethanol,
n-propanol, isopropanol, ammonia, methanal, benzene and hydrogen were investigated at
300 ◦C, and the results are presented in Figure 12. Obviously, the responses of the GO/ZnO
nanosheet composites to ammonia, methanal and benzene are not high, namely 2.2, 1.5
and 1.2, respectively. For alcohols, the responses of the composites increase significantly.
As well, the sensitivity of the GO/ZnO nanosheet composites largely increases with the
growth of the carbon chain. The sensitivities of the GO/ZnO nanosheet composites to
methanol, ethanol and n-propanol are 2.7, 7.0 and 17.2, respectively. Furthermore, the
sensitivity of the composites to isopropanol, the isomer of n-propanol, largely reduces to
4.0. Thus, it is believed that the GO/ZnO nanosheet composites can identify n-propanol in
a complex environment. The sensing performance of the GO/ZnO nanosheet composites
was also compared with other values from the literature, and the results are presented in
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Table 1. Obviously, the GO/ZnO nanosheet composites exhibit good sensitivity towards
n-propanol.

Chemosensors 2023, 11, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 12. Responses of the GO−decorated porous single−crystalline ZnO nanosheets to 50 ppm of 
various gases at 300 °C. 

Table 1. N−propanol sensors based on metal oxide nanostructures. 

Sensing Materials Temperature (°C) 
Response @ Concentration 

(ppm) Selectivity 
Response 
Time (s) References 

ZnO nanowires 300 30.1@50 (2−propanol) General 5 [33] 
CuO nanofiber 200 4.66@100 General 4.66 [34] 
TeO2 nanowires 50 3.15@500 Poor 20 [35] 

CuO/CuCo2O4 nanotubes Room temperature 14@100 General 6.3 [36] 
Cu2O hollow microspheres 187 11@100 General 50 [37] 
GO/ZnO nanosheet compo-

sites 300 17.2@50 Good 45 This work 

The sensing mechanism of the GO/ZnO nanosheet composites was also deduced. As 
shown in Figure 13, GO nanosheets exhibit a p−type semiconductor behavior, while ZnO 
is an n−type semiconductor; thus, the p−n heterojunction of GO and ZnO is formed. When 
working, both of the GO and ZnO nanosheets are hot excited. As GO (4.5 eV) and ZnO 
(4.22 eV) have different work functions, the electrons in the higher energy level will be 
transferred to the lower energy level [21,26]. In the GO/ZnO heterojunction, the electrons 
will transfer from p−GO to n−ZnO, and the holes move in the opposite direction until equi-
librium. The abundant oxygen vacancies and efficient electron mobility at the GO/ZnO het-
erojunction will provide more active sites for gas adsorption by increasing the specific sur-
face area. Furthermore, they supply more channels to facilitate the diffusion of gas mole-
cules, and consequently, favor the enhancement of n−propanol detection. Moreover, the 
unique structure of the ZnO nanosheet is also beneficial for the sensing properties of the 
composites. First, the porous structure provides more active sites. Due to the porous struc-
ture, there are more surface defects on the surface of the nanosheet, and those defects can 
effectively adsorb VOC molecules. In addition, these nanoholes could be the ideal transmis-
sion channel for the target gases, effectively facilitating the diffusion of gas molecules, which 
can greatly increase the sensing performance of the composite. Second, the single−crystal-
line structure of individual nanosheets can also increase the sensitivity. During transporta-
tion, electrons need not jump cross−grain boundaries, which is beneficial for the stability of 
the sensing materials. Third, the ZnO nanosheets are ultra−thin, which makes the space 
charge layers cover the whole nanosheet. Fourth, in the composite, both ZnO and GO are 
lamellar structures, which grant the composite a larger boundary area; thus, electrons can 
be effectively transferred between the GO/ZnO nanosheets heterogeneously. Thus, the com-
posites exhibit superior n−propanol sensing performance. 

Figure 12. Responses of the GO-decorated porous single-crystalline ZnO nanosheets to 50 ppm of
various gases at 300 ◦C.

Table 1. N-propanol sensors based on metal oxide nanostructures.

Sensing Materials Temperature (◦C) Response @
Concentration (ppm) Selectivity Response Time (s) References

ZnO nanowires 300 30.1@50 (2-propanol) General 5 [33]

CuO nanofiber 200 4.66@100 General 4.66 [34]

TeO2 nanowires 50 3.15@500 Poor 20 [35]

CuO/CuCo2O4
nanotubes Room temperature 14@100 General 6.3 [36]

Cu2O hollow
microspheres 187 11@100 General 50 [37]

GO/ZnO
nanosheet
composites

300 17.2@50 Good 45 This work

The sensing mechanism of the GO/ZnO nanosheet composites was also deduced. As
shown in Figure 13, GO nanosheets exhibit a p-type semiconductor behavior, while ZnO is
an n-type semiconductor; thus, the p-n heterojunction of GO and ZnO is formed. When
working, both of the GO and ZnO nanosheets are hot excited. As GO (4.5 eV) and ZnO
(4.22 eV) have different work functions, the electrons in the higher energy level will be
transferred to the lower energy level [21,26]. In the GO/ZnO heterojunction, the electrons
will transfer from p-GO to n-ZnO, and the holes move in the opposite direction until equi-
librium. The abundant oxygen vacancies and efficient electron mobility at the GO/ZnO
heterojunction will provide more active sites for gas adsorption by increasing the specific
surface area. Furthermore, they supply more channels to facilitate the diffusion of gas
molecules, and consequently, favor the enhancement of n-propanol detection. Moreover,
the unique structure of the ZnO nanosheet is also beneficial for the sensing properties of
the composites. First, the porous structure provides more active sites. Due to the porous
structure, there are more surface defects on the surface of the nanosheet, and those defects
can effectively adsorb VOC molecules. In addition, these nanoholes could be the ideal trans-
mission channel for the target gases, effectively facilitating the diffusion of gas molecules,
which can greatly increase the sensing performance of the composite. Second, the single-
crystalline structure of individual nanosheets can also increase the sensitivity. During
transportation, electrons need not jump cross-grain boundaries, which is beneficial for the
stability of the sensing materials. Third, the ZnO nanosheets are ultra-thin, which makes
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the space charge layers cover the whole nanosheet. Fourth, in the composite, both ZnO
and GO are lamellar structures, which grant the composite a larger boundary area; thus,
electrons can be effectively transferred between the GO/ZnO nanosheets heterogeneously.
Thus, the composites exhibit superior n-propanol sensing performance.
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Figure 13. Sensing mechanism of the GO/ZnO nanosheet composites.

The stability of the GO/ZnO nanosheet composite sensor was further studied. As
shown in Figure 14, there is no significant reduction in the response of the composite during
a 14-day test. It is believed that the good stability of the GO/ZnO nanosheet composite can
be attributed to the unique structure of the porous ZnO nanosheet.
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Figure 14. Response curve of the GO/ZnO nanosheet composites to 50 ppm n-propanol after 14 days
of testing.

4. Conclusions

In conclusion, the GO/ZnO nanosheet composites were successfully synthesized
through a hydrothermal method. In the composites, the ZnO nanosheets of hexagonal
wurtzite are closely wrapped by GO lamellae, and the unique structure makes the GO/ZnO
nanosheet composites exhibit a high response, excellent selectivity and stability in n-
propanol detection. At the optimized temperature of 300 ◦C, the GO/ZnO nanosheet
composites exhibit a linear response in n-propanol detection in a large range. Moreover,
the sensing performance of the composites to n-propanol is largely higher than to other
VOC gases, indicating a high sensitivity and selectivity in n-propanol detection. This can
be ascribed to the higher electron-separation efficiency and larger depletion layer brought
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by the modification of the GO on ZnO nanosheets. It is considered that the GO/ZnO
nanosheet composites have a great application potential in n-propanol detection.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/chemosensors11010065/s1, Figure S1: The statistical distri-
butions of the length and width of the GO/ZnO nanosheet composites; Figure S2: The corresponding
current–voltage (I–V) curves of the GO/ZnO nanosheet composites.
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