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Abstract: Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory condition that
often goes undiagnosed despite the availability of spirometry for diagnosis, and its exact preva-
lence remains uncertain. Exhaled breath has been proposed as a source of relevant health infor-
mation, particularly Volatile Organic Compounds (VOCs), which can be easily obtained and ap-
plied in clinical practice. In this study, exhaled breath samples were collected from patients diag-
nosed with COPD of varying severity during their stable condition using specialized RTubeVOC
tubes. Volatile compounds from the air samples were extracted using a 50/30 µm divinylben-
zene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber and the analysis was performed
using gas chromatography/mass spectrometry (GC/MS) technique. The patients were divided into
two groups based on their history of exacerbations, and the aim was to identify VOCs associated
with the risk of future COPD exacerbation, thus allowing for more personalized and objective COPD
treatment. Blood eosinophil content was also taken into consideration. A panel of distinguishing
mass-spectral features was identified between the two patient groups. The discriminating exhaled
molecules were heptane 2,2,4,6,6-pentamethyl, gamma-terpinene, 2-ethylhexanol, and undecane
demonstrating the potential of analyzing VOCs in exhaled breath for the detection and management
of COPD, offering a promising avenue to improve COPD management and treatment approaches.

Keywords: exhaled breath analysis; chronic obstructive pulmonary disease; volatile organic compounds;
gas chromatography/mass spectrometry

1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory condition
characterized by airway inflammation and destruction of lung parenchyma. Patients often
experience symptoms such as dyspnea, cough, and sputum production. The development
of COPD is strongly associated with gene-environment interplay, with tobacco smoking and
inhalation of toxic particles being the main environmental factors. The diagnosis of COPD is
usually confirmed through spirometry, which detects airflow obstruction (FEV1/FVC < 0.7
after bronchodilation), in the relevant clinical context. However, despite clear diagnostic
criteria, COPD remains under-diagnosed, and its exact prevalence is elusive. Nevertheless,
the global prevalence of COPD is estimated at 10.3% [1], and approximately three million
deaths annually are attributed to the disease [2].

The natural progression of COPD involves acute respiratory events characterized
by worsening symptoms that call for additional therapeutic measures. Exacerbations are
classified as mild when treated with short-acting bronchodilators only, moderate when
antibiotics and/or oral corticosteroids are required, and severe when hospitalization is
necessary [3]. The debilitating nature of COPD, combined with its numerous comorbid
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conditions, imposes a significant economic and social burden primarily attributable to exac-
erbations. COPD exacerbations have long been recognized as crucial factors in determining
a patient’s treatment plan and overall prognosis.

In recent literature, there has been growing interest in exploring biomarkers for COPD
that can aid in treatment selection and objectively assess therapeutic response [4]. Currently,
a blood eosinophil count ≥300 cells/µL is used to identify COPD patients likely to benefit
from preventive treatment with inhaled corticosteroids. Several studies have also reported
a correlation between increased blood eosinophils and future exacerbation risk [5,6], al-
though the evidence remains inconclusive. Moreover, higher blood eosinophil contents
are associated with elevated lung eosinophil numbers and the presence of type-2 inflam-
mation in the airways [7], albeit through an indirect pathway that remains unresolved.
Building upon the role of blood eosinophils, the Global Initiative for Chronic Obstructive
Lung Disease (GOLD) has proposed a strategy called “Treatable traits” to classify COPD
heterogeneity in clinical practice and integrate phenotypes with endotypes [8].

In the pursuit of patient-oriented COPD treatment supported by objective means,
there is a pressing need for additional biomarkers that are easily obtained and applicable
in clinical practice. Volatile Organic Compounds (VOCs) present a promising perspective
in this regard. VOCs are a diverse group of carbon-based chemicals that are volatile at
room temperature, and they offer a safe, easy-to-perform, and non-invasive biomarker.
In respiratory conditions, particularly COPD, VOCs are expected to capture certain phys-
iological and pathological processes, such as inflammation, occurring in the airways or
alveoli and emitted in exhaled breath. While the literature has shown applications of VOCs
in various health conditions, including breast cancer [9], asthma [10], pulmonary arterial
hypertension [11], and interstitial lung diseases [12], none of these applications have been
implemented in clinical practice. To achieve this, strict standardization is required in
the steps involved in obtaining, manipulating, and analyzing VOCs. Solid-phase micro-
extraction (SPME) has been successfully used to extract a series of volatile compounds
from human breath, including aliphatic and aromatic hydrocarbons [13]. In contrast to
alternative preconcentration methods, solid-phase microextraction (SPME) offers a straight-
forward, cost-effective, and solvent-free solution. It can be seamlessly automated without
requiring thermal desorption equipment or modifications to the gas chromatography (GC)
apparatus. Furthermore, SPME is universally compatible with all GC systems, rendering
it accessible for use in virtually any laboratory setting. For the identification of volatile
compounds in intricate mixtures, Gas Chromatography/Mass Spectrometry (GC/MS) has
traditionally been the preferred technique.

In this study, we analyze the exhaled breath of patients diagnosed with COPD of
varying severity during their steady state (i.e., not during an exacerbation), while also
measuring their blood eosinophil count. Patients are divided into two groups based on their
exacerbation history: those with ≥1 exacerbation in the past year and those without any
exacerbations. Our objective is to identify VOCs associated with future COPD exacerbation
risk and subsequently facilitate more personalized and objective COPD treatment.

2. Materials and Methods
2.1. Subjects

The study was conducted as a collaboration between the Chemistry Department of the
University of Ioannina and the Pulmonary Clinic of the University Hospital of Ioannina,
spanning from May 2021 to September 2021. It included men with mean age 66 years old
who had been diagnosed with COPD. To ensure consistency in the experimental results,
participants were instructed not to smoke or consume food or beverages three hours before
the collection of breath samples.

A total of 27 patients with COPD were involved in this study, with 12 of them having
experienced at least one exacerbation and 15 of them having no history of exacerbations
during the last year. The study protocol was approved by the ethic committee of University
of Ioannina and University Hospital. The trial was conducted according to the Declaration
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of Helsinki and written informed consent was obtained from all individuals. Table 1
provides an overview of the number of patients, their clinical status, and their age.

Table 1. Patient information.

Patients Code Age Number of Exacerbations EOS Count per µL

exac1 66 3 450
noexac1 66 0 380
noexac2 60 0 30
noexac3 53 0 160
noexac4 77 0 170

exac2 79 2 180
noexac5 62 0 150
noexac6 77 0 310
noexac7 60 0 210
noexac8 78 0 420

exac3 77 3 190
exac4 70 2 360
exac5 70 4 500

noexac9 69 0 70
exac6 58 2 160

noexac10 71 0 170
exac7 73 3 120
exac8 72 1 150
exac9 61 1 310

noexac11 69 0 330
noexac12 59 0 180
noexac13 73 0 150
noexac14 68 0 60
noexac15 70 0 80

exac10 70 4 480

2.2. Exhaled Air Collection

The samples in this study were collected using specialized RTubeVOC tubes. These
tubes are specifically designed as single exhalation devices and feature two one-way valves,
ensuring that the airflow remains unidirectional throughout the breathing cycle when the
individual exhales through the mouthpiece. With a capacity of 65 mL, these tubes are
designed to capture the last fraction of exhaled air, which is representative of the air from
inside the lungs, while expelling the initial fraction. It is important to note that air samples
need to be processed within two hours of collection to prevent volatile compounds from
depositing on the tube walls, which could lead to significant losses of these compounds
(RTubeVOC End Tidal Air Collector|Respiratory Research).

2.3. Solid-Phase Microextraction (SPME)

The volatile compounds from the air samples were extracted using a 50/30 µm di-
vinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber manufactured
by Supelco, a division of Merck KGaA, located in Bellefonte, PA, USA. Before each use,
the fiber was cleaned in the GC injection port for 1 min at 280 ◦C in order to release any
contaminants, and then exposed to the RTubeVOC tube containing the exhaled air breath
sample for a duration of 30 min at a temperature of 25 ◦C.

After this loading phase (extraction), the SPME fiber was thermally desorbed by
introducing it into the gas chromatograph (GC) injection port. The desorption process was
carried out at a temperature of 200 ◦C for a period of 5 min [13]. The SPME conditions
were adopted from a well-established procedure of Wang et al., 2014 [13] used for VOCs
determination in exhaled breaths from patients with breast cancer, cyclomastopathy and
mammary gland fibroma. For confirmation purposes preliminary experiments were carried
out to ensure a reliable and repeatable exhaled breath sampling procedure based on the
respective GC/MS chromatographs obtained. Since SPME was employed for identification
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of significant metabolites or potential biomarkers and not for quantification purposes
the method was not validated by studying analytical characteristics such a linear range,
precision, limits of detection (LOD) and quantification (LOQ).

2.4. Gas Chromatography-Mass Spectrometry (GC/MS) Analysis

The analysis was conducted using a gas chromatography/mass spectrometry (GC/MS)
system consisting of a Trace GC Ultra (Thermo Scientific, Waltham, MA, USA) and an
RTX-5MS capillary column (30 m length, inner diameter of 0.25 mm, and a film thickness of
0.25µm). Manual injection of the samples was performed by directly placing the SPME fiber
at the injection port of the GC/MS system. The injection was carried out in the splitless
mode, with a splitless time of 1 min. The injector temperature was set to 200 ◦C, and
helium (99.999%) was used as the carrier gas, with a constant flow rate of 2 mL/min. The
temperature program used in the analysis involved a gradual increase in temperature.
Initially, the column temperature was held at 40 ◦C for 2 min, followed by an increase of
7 ◦C per minute until reaching 200 ◦C. The column temperature was held at 200 ◦C for
1 min and was then increased at a rate of 20 ◦C per minute to 230 ◦C (held for 3 min).
Then with the same gradient 20 ◦C/min, it reached 270 ◦C, where it was maintained for
5 min. The chromatographic run was completed in 37.37 min. The temperature of the
interface system-transfer line was set to 285 ◦C. For mass spectrometry analysis, an ISQ
Single Quadrupole instrument (Thermo Scientific) was used in full-scan mode. The scan
time was set to 0.5 s, and the scan range covered from 35 to 200 atomic mass units (amu).
The analytes’ ions were formed using a gas phase electron impact ion source (EI) with
positive ionization. The accelerating voltage for the electrons was set to 70 eV, and the ion
source temperature was maintained at 250 ◦C. A typical SPME/GC-MS chromatogram of
an exhaled breath sample is provided in Figure S1.

2.5. GC-MS Data Preprocessing

The raw GC/MS data obtained from the analysis were converted into mzML format
using the ProteoWizard 3.0.21260 64-bit program. This format conversion allowed for
further processing and analysis of the data. The mzML data were then imported into the
XCMS Online platform (Version 3.7.1), which is the online version of the XCMS software.

In XCMS Online, various data processing steps were performed. This included feature
detection, where all the detectable characteristics in the data were identified. Additionally,
retention time correction, statistical analysis, alignment, and normalization were conducted
to ensure data quality and consistency. The processed data were then visualized for
analysis purposes. The output of this process was a table in Excel format. The table
contained information on all the detected characteristics, including their mass, retention
time, p-value, and other relevant data. Any missing values in the table were corrected
using the MetaboAnalyst 5.0 software.

Subsequently, the corrected table was imported into the SIMCA program (Sartorius
Stedim Biotech GmbH, Göttingen, Germany) for further analysis and interpretation of the
data. SIMCA is a multivariate analysis software commonly used for analyzing complex
data sets in various fields, including metabolomics. In summary, the GC/MS data were
converted into mzML format, processed, and analyzed using XCMS Online, corrected for
missing values with MetaboAnalyst 5.0, and further analyzed in the SIMCA program.

2.6. Statistical Analysis

Multivariate analysis techniques, specifically principal component analysis (PCA),
partial least squares analysis (PLS-DA), and orthogonal partial least squares analysis
(OPLS-DA), were applied to the entire dataset using the SIMCA Software. These tech-
niques are commonly used to analyze complex datasets and identify patterns, relationships,
and differences between groups. To validate the models created during the analysis, a
permutation test was performed with 100 iterations. This test helps assess the statistical
significance and robustness of the models. Following the statistical analysis, it was im-
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portant to identify the characteristics or variables that were primarily responsible for the
separation observed between the groups. The Variable Importance in the Projection (VIP)
diagram and S-plot were used for this purpose. The VIP diagram provides a measure of the
importance of each variable in the model, while the S-plot helps visualize the relationship
between the variables and the differences between the groups. Furthermore, the t-test was
utilized as the final step in distinguishing the features that significantly differed between
the two populations. A feature was considered significant if its p-value was less than 0.05.
The t-test is a statistical test used to compare means between two groups and determine if
the differences observed are statistically significant [14–16].

3. Results

The statistical analysis of the data using PCA and PLS-DA should be performed with
two different scaling: UV scaling and Pareto scaling. These two scalings are commonly
used in multivariate analysis to account for different variations and emphasize important
features in the data. Once the PLS-DA stage is reached, it is important to conduct a
permutation test for both UV scaling and Pareto scaling. The permutation test helps assess
the statistical significance and predictive ability of the models generated with each scaling.
By comparing the results of the permutation test, you can determine which scaling provides
a better description and prediction of the data. After selecting the preferred scaling based
on the results of the permutation test, the statistical analysis can continue with further
techniques such as OPLS-DA, S-Plot, and VIP-Plot. OPLS-DA is an extension of PLS-DA
that helps identify variables responsible for group separation while removing confounding
variation. The S-Plot and VIP-Plot are graphical tools that aid in the interpretation of
the models, highlighting important variables and their contributions to the separation
between groups.

3.1. UV Scaling

The results obtained from the PCA score plot (Figure 1A) indicated that there was
not a clear separation trend between samples of patients with exacerbations and those
without exacerbations. This is expected as PCA is an unsupervised method that does
not consider the predefined categories or classes. It primarily shows the relationship and
patterns among the observations themselves. However, the PLS-DA score plot (Figure 1B)
demonstrated a clear separation between the patient samples based on exacerbation status.
This is because PLS-DA is a supervised method that incorporates the class information
into the analysis, allowing for better discrimination between the groups of interest. In
this case, since the categories of exacerbations and non-exacerbations were defined before
applying PLS-DA, it was able to effectively differentiate the two groups. To further validate
the PLS-DA model, the Permutation Test for UV Scaling was performed (Figure 1C). The
validity criteria were evaluated based on the Q2 and R2 values. The Q2 values (blue points,
left side of the plot) are lower than the original points (right side), indicating that the
model has predictive ability. The blue dashed line of Q2 points intersects the vertical axis
(on the left) below zero, further confirming the validity of the model. Additionally, the
green R2 values (left side) are lower than the starting point on the right, supporting the
robustness of the supervised model. These results demonstrate that the PLS-DA model with
UV scaling provides a valid and reliable separation between patients with exacerbations
and those without exacerbations, indicating its potential for predicting and distinguishing
the two groups based on the given data.

3.2. Pareto Scaling

The results obtained from the PCA score plot (Figure 2A) did not show a clear separa-
tion trend between samples of patients with exacerbations and those without exacerbations.
As mentioned earlier, PCA is an unsupervised method that primarily reveals the relation-
ship between observations themselves rather than considering the predefined categories.
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Similarly, the PLS-DA score plot (Figure 2B) did not demonstrate a clear separation
between the patient samples based on exacerbation status, even though the categories
were defined beforehand. This suggests that the PLS-DA model may not be effective in
distinguishing between the two groups in this dataset. To validate the PLS-DA model, the
Permutation test (Figure 2C) was performed using Pareto Scaling. However, the results of
the Permutation test indicated that Pareto Scaling was over-fitted to the data. The R2 and
Q2 values calculated from the permuted data were higher than the original values in the
validation plot. This suggests that the model based on Pareto Scaling may not be reliable
for further statistical analysis, as it does not accurately reflect the underlying patterns in
the data.
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3.3. OPLS-DA UV Scaling, VIP, and S-Plot

In the OPLS-DA Score plot using UV scaling (Figure 3), the patient samples (exacerba-
tions and non-exacerbations) were completely separated along the X-axis. This indicates
that the OPLS-DA model was able to successfully differentiate between the two categories
based on the defined exacerbation status. After obtaining the OPLS-DA results, the VIP
(Variable Importance in the Projection) diagram was generated (Figure 4). The VIP chart
provides a summary of the most important features that contribute to the separation ob-
served in the OPLS-DA model. In this chart, features with VIP values greater than 1.0 are
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considered statistically significant, indicating their importance in distinguishing between
the two categories. On the other hand, features with VIP values less than 0.5 are considered
non-statistically significant and may exert a diminished impact on the separation. From
the VIP diagram, a table with the VIP values and the MZ_RT (Table 2) was automatically
generated. In addition to the VIP diagram, the S-plot was utilized to display the covariance
and correlation of the characteristics. The S-plot helps identify the features that exhibit high
differentiation and contribute the most to the separation observed in the OPLS-DA model.
Features located at the edges of the S-plot, further away from the center, are the ones that
show the greatest covariance and correlation with the defined categories. From the S-Plot,
a table with the MZ_RT (Table 3) was automatically generated. The combination of two
tables, namely Tables 2 and 3, resulted in the creation of a third table, denoted as Table 4,
that provides a summary of the characteristics derived from the sample analysis.
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Table 2. VIP-Statistically Important Characteristics.

MZ_RT VIP Values MZ_RT VIP Values

81_9.4 1.64496 58_8.3 1.12807
122_8.9 1.40979 41_10.8 1.11455
98_9.4 1.35878 55_9.4 1.09555
80_8.9 1.34396 112_10 1.09417

112_8,3 1.33589 82_9.4 1.09209
85_10 1.29344 92_8.9 1.06967
55_6.5 1.27024 67_8.3 1.06094
119_10 1.24997 77_8.9 1.05121
57_8.3 1.24264 93_8.9 1.05057
67_9.4 1.23331 56_10.8 1.04641

118_10.8 1.21833 94_8.9 1.04191
44_10.8 1.20416 70_9.4 1.0409
95_9.4 1.18957 71_12 1.03677
68_9.4 1.17337 123_10.8 1.01216

Based on the data in Table 2, a search was conducted in the mass spectrum using the
corresponding retention times of each characteristic. The NIST library was utilized (a simi-
larity score higher than 90% between the mass spectral data of the analyzed compound
to the its closest hit in the library was used) to identify the compounds associated with
these characteristics (Table 5). For each identified compound, a t-test was performed to
determine if there was a statistically significant difference between the two groups (patients
with exacerbations and patients without exacerbations). The t-test was conducted at a 95%
confidence level, and a feature was considered significant if the p-value was less than 0.05.
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Table 3. S-Plot-Statistically Significant Characteristic.

MZ_RT MZ_RT

98_9.4 67_9.4
80_8.9 112_8.3
55_6.5 44_10.8
122_8.9 95_9.4
68_9.4 118_10.8
85_10 119_10
81_9.4

Table 4. Summary table of the characteristics obtained from the analysis of the samples.

RT (min) Characteristics (M/Z)

6.5 55
8.3 57, 58, 67, 112
8.9 77, 80, 92, 93, 94, 122
9.4 55, 67, 68, 70, 81, 82, 95, 98
10 85, 112, 119

10.8 41, 44, 56, 118, 123
12 71
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Table 5. Metabolites identified with the NIST library.

RT (min) M/Z p-Value Volatiles

8.3 57, 58, 67, 112 0.0387 Heptane,2,2,4,6,6-pentamethyl
8.9 77, 80, 92, 93, 94, 122 0.0001 gamma-terpinene(1-methyl-4-propan-2-ylcyclohexa-1,4-diene)
9.4 55, 67, 68, 70, 81, 82, 95, 98 0.0001 2-ethylhexanol

10.8 41, 44, 56, 118, 123 0.0110 Undecane

3.4. Box Plots and ROC Curves

Based on the box plots (Figure 5) for the identified compounds, it was observed that
the mean values of patients without exacerbations (noexac) were higher than the mean
values of patients with exacerbations (exac). The box plots also indicated that for the
compounds gamma-terpinene (1,4-Cyclohexadiene, 1-methyl-4-(1-methylethylene)) with
RT: 8.9 and 2-ethylhexanol with RT: 9.4, the overlap range between the two groups was
very narrow. However, for the compounds Heptane,2,2,4,6,6-pentamethyl with RT: 8.3 and
Undecane with RT: 10.8, there was some overlap between the two groups.
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The ROC curves (Figure 6) for all the identified compounds showed that the area
under the curve (AUC) values were greater than 0.7, indicating satisfactory to excellent
separation between the two classes. Additionally, the p-values for all the curves were
significantly lower than the required threshold of 0.05, indicating statistical significance
and reliable results.

Furthermore, from the ROC curves (Figure 7), it appeared that the diagnostic perfor-
mance of the four substances was better compared to Eosinophils (Eos) of the patients.
These findings suggest that the identified compounds have potential as biomarkers for dis-
tinguishing between patients with exacerbations and those without exacerbations in COPD.
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(RT: 8.9), 2-ethylhexanol (RT: 9.4), Undecane (RT: 10.8) compared to the ROC Curve of eosinophils
(Eos) from each patient.
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4. Discussion

The aim of the study was to identify potential metabolites that can differentiate be-
tween patients with different stages of COPD. We collected exhaled air samples from
patients within the same age range, including both patients with exacerbations and pa-
tients without exacerbations. We successfully employed an analytical methodology that
involved using RTubeVOC for air sample collection and solid phase microextraction
(PDMS/CAR/DVB-30/50 um) for volatile compound extraction. Gas chromatography
coupled with mass spectrometry was used for the analysis of the extracted compounds. To
analyze the complex data obtained from the analysis, multivariate statistical analysis was
performed. As a result, four compounds were identified: Heptane,2,2,4,6,6-pentamethyl,
gamma-terpinene, 2-ethylhexanol, and Undecane. It is worth noting that 2-ethylhexanol
belongs to the alcohol compound class, while the other three compounds belong to the
hydrocarbon class. The identification of these compounds was done with a confidence
level greater than 95%.

The study faced great challenges in collecting air samples from patients due to the
coronavirus situation in Greece. With a larger number of samples, the results could poten-
tially be more representative of the disease and provide a better understanding of COPD.
It’s important to note that there are currently no studies available that specifically compare
the two stages of COPD (patients with exacerbations and patients without exacerbations).
Existing literature mainly focuses on comparisons between COPD patients and healthy
subjects, lung cancer patients, or asthma patients [17].

Nevertheless, this study contributes valuable evidence by demonstrating differences
in the breath profiles of patients with COPD and exacerbations compared to patients with
COPD without exacerbations. Four VOCs were identified in the analysis. It was found
through literature research that undecane and n-terpinene have been reported as identified
biomarkers in online COPD databases [17,18]. The remaining two biomarkers are likely
among the many yet to be certified biomarkers, as there are over 3000 metabolites in exhaled
air, and approximately 500 have been identified so far. Our suggested approach addresses
the primary limitation in the analysis of exhaled-breath condensate, which is likely linked to
the challenge of standardizing sample collection. With respect to electronic nose, besides its
portability, it is not equipped to offer structural elucidation for distinguishing VOCs within
different groups. However, our method cannot be compared to the real-time techniques
that provide minimized sample handling with low associated risk of sample contamination.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors11100542/s1, Figure S1: A typical SPME/GC-MS
chromatogram of an exhaled breath sample of patient (A) with exacerbations and (B) without
exacerbations.
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