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The detection of volatile organic compounds (VOCs) is in high demand in various
fields, such as environmental pollution monitoring, early disease screening, and food
freshness assessment [1–3]. A variety of methods, including spectroscopic analysis [4], mass
spectrometry [5], chromatographic analysis [6], electrochemical gas sensors [7], infrared
gas sensors [8,9], and semiconductor gas sensors [10–12], have been extensively used for
VOC detection. This is especially the case for semiconductor sensors thanks to their high
sensitivity, fast response time, and cost-effectiveness [13–15].

Under the unremitting efforts of researchers, the research of semiconductor gas sensors
has made a major breakthrough. There have been advanced research results with high sen-
sitivity [16–19], a low minimum detection limit [20–23], room temperature sensing [24–27],
and other advanced properties. Li et al. prepared s-Nb2O5 @ SnO2 composite, and its
response to 500 ppb acetone at 250 ◦C was 37 [28]. Xiao et al. prepared TiO2 NCs-implanted
LaFeO3 nanomaterials, and its response to 100 ppm formaldehyde was 221.8 [29]. Hu et al.
prepared Au-functionalized MoO3 nanoribbons, which realized the detection of formalde-
hyde at room temperature [30]. Compared with toluene, ethanol, methanol, and acetone,
the sensitivity to formaldehyde is one to two orders of magnitude higher. Li et al. realized
the identification of VOC gas at room temperature by using an ultraviolet light regulation
method [31].

However, there are still problems to be solved from the perspective of large-scale
commercial applications. Firstly, the low temperature response speed of the sensor needs
to be improved. Sensors can detect the target gas at room temperature, thus reducing
the explosion risk and power consumption. However, their response to the target gas is
relatively slow, and the response curve cannot completely recover to the response baseline
or is slow after the response. Secondly, the selectivity of semiconductor sensors has not
been fundamentally improved. The sensitivity difference between target gas and non-target
gas is increased by adjusting the material structure. Thirdly, the practical application ability
of the sensor needs further verification. Most research papers only focus on the laboratory
stage, and the related gas sensing performance research needs to be carried out with the
help of high-purity air and high-precision instruments.

In view of the above difficulties, this Special Issue presents a comprehensive and
detailed exploration of the latest achievements in VOC detection based on chemical sen-
sors. Modifying sensitive materials is a practical approach to enhance the gas-sensing
performance of semiconductor metal oxide sensors. Li et al. synthesized nickel-doped
ZnO-sensitive materials with core–shell structures, doped at ratios of 0.5%, 1%, and 2%,
which achieved the rapid detection of toluene [32]. Based on a doping ratio of 1%, the
sensors exhibited a response of up to 210 for 100 ppm toluene, with a detection limit
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as low as 0.5 ppm. Research indicates a significant enhancement in sensor performance
through the combined action of a narrower bandgap, higher specific surface area, and ion
catalysis. San et al. designed a series of three-dimensional rGO-functionalized flower-
shaped In2O3 structures, enabling the low-temperature and rapid detection of acetone. The
working temperature of 150 ◦C and a fast response time of 3 s can be attributed to the
introduction of an appropriate amount of graphene [33]. Scholars have tried to achieve
breakthroughs in detection methods, data analysis, and sensor system design, aiming to
further enhance the capability of detecting VOCs in real-world application scenarios. In
terms of detection methods, Wang et al. synthesized Pt/Ti3C2Tx-CNT and employed cata-
luminescence technology to achieve the non-invasive and rapid detection of the lung cancer
biomarker toluene at lower operating temperatures [34]. Regarding the construction of
physical systems, Shen et al. developed a wireless luminescent sensor system with excellent
luminescent characteristics, featuring high visible light intensity and a high signal-to-noise
ratio [35]. Zhang et al. completed a comprehensive review of the detection of triethylamine
using chemical sensors [36]. This paper commences with the fundamental characteristics
of sensors and typical sensing mechanisms, providing a comprehensive summary of the
latest advancements in enhancing the sensing performance of triethylamine sensors from
various perspectives. It serves as a detailed entry point for readers interested in exploring
VOC detection.

I would like to express my heartfelt thanks to all the authors, reviewers, and editors of
this Special Issue, who have enriched its content and contributed to advancing the field of
combustible volatile organic compound detection.
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