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Abstract: Returning extraterrestrial samples to Earth has become essential for future deep space
exploration. Achieving a comprehensive evaluation of the physical and chemical properties of
samples with minimal damage is key to analyzing extraterrestrial samples in the future, as well as to
the future sampling and returning of heterogeneous solid samples. This article aims to reconstruct
the three-dimensional internal structure of high-contrast objects, select sections of interest through
internal structure and detail features, and then analyze the physical and chemical properties of the
samples based on laser spectroscopy technology. This paper proposes a strategy based on Raman
mapping and X-ray phase-contrast imaging technology to reconstruct the three-dimensional internal
structure of a heterogeneous solid sample and detect the substance composition of the region of
interest. This study takes meteorite samples as an example and uses X-ray phase-contrast imaging
technology to distinguish and reconstruct the spatial distribution of different components in the
meteorite, providing a three-dimensional visualization reference with a high spatial resolution for the
spatial positioning of the region of interest. Raman spectroscopy, in combination with LIBS, was used
to further identify the meteorite as pallasite and to achieve the spectral image fusion of high spatial
and high spectral resolutions. The experimental results show that the unknown meteorite’s three-
dimensional structure and its components’ spatial distribution can be evaluated based on Raman
mapping combined with X-ray phase-contrast imaging technology. This article provides a highly
valuable analytical strategy by which to analyze samples returned from deep space exploration.

Keywords: X-ray phase-contrast imaging; Raman mapping; magnesium iron silicate; meteorite;
component analysis; internal morphology

1. Introduction

Cutting meteorites into slices or processing broken samples are classical methods by
which to analyze their physical properties and chemical compositions by. For some mete-
orites with high scientific research value or jades with high economic value, rock ore slices
are usually selected for refined analysis to reduce irreversible structural damage as much
as possible. In general, the cutting of rocks and jade depends on the operator’s experience
and professional background. It relies on subjective judgment based on experience, with a
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certain randomness, similar to cutting “gambling stones”. To explore a meteorite’s internal
microstructure, one needs to conduct a detailed analysis by cutting it. However, one cannot
analyze the composition information stored in a meteorite before cutting it. Therefore, the
question of how to cut, and from which angle to cut, directly affects the internal presen-
tation of the specific details. Likewise, the question of how, and from which angle, to cut
directly affects the subsequent mineral’s internal representation of the detailed information.
Therefore, we propose a comprehensive evaluation method for a mineral’s spatial structure
and composition distribution based on Raman mapping and X-ray phase-contrast imaging
technology. X-ray three-dimensional imaging technology, especially when combined with
CT, has been used to image biological remains in fossils and identify special biological
resources [1,2]. These techniques have unique advantages when assessing the internal
structure of an opaque body. However, they cannot reveal the composition of the spatial
inter-texture or achieve high spatial resolution imaging of the internal components. Raman
mapping is an optical imaging technique using Raman spectral detection and scanning
imaging, such as single-point and line scanning [3–5]. However, it is based on micro- and
nano-scale microstructures and is limited to the small field of view and low imaging flux
on a sample’s surface. Additionally, Raman spectroscopy, as a molecular detection tech-
nique, has an essential advantage in molecular mineral recognition [6,7] but is ineffective
with regard to metallic materials [8]. In the past decade, there have been many studies
involving molecular detection based on micro-Raman spectroscopy in different application
scenarios, such as analyses of prehistoric rock art [9–11], biological tissue or cell [12–14],
meteorites [15,16], and others [17,18]. Raman spectroscopy is a spectroscopic technology
suitable for the detection of mineral molecules. This technology has an advantage in offer-
ing non-destructive, in situ detection and microscopic analysis. Most importantly, Raman
mapping can be realized by combining the point scanning detection method. The applica-
tion of Raman spectroscopy combined with X-ray phase-contrast imaging technology in
mineral samples has yet to be reported. Nevertheless, the study of X-ray fluorescence and
laser-induced breakdown spectroscopy-assisted Raman spectroscopy technology has been
applied to characterize the mineral phases of meteorites [19].

In this work, X-ray phase contrast imaging technology and Raman mapping have
been used to analyze a mineral’s spatial structure and composition detection. X-ray phase
contrast imaging technology can provide a complete view of the interior structure of the
mineral, give an informed choice for sample cutting and guide the accurate location of a
region of interest. Raman spectroscopy is used to characterize the mineral composition of
the slice, which can then be correlated with the 3D internal structure reconstruction model
to speculate the overall characteristics of the mineral.

2. Materials and Methods

The pallasite came from the Boyuan geological specimen studio and was discovered in
the wild. It should be emphasized that this meteorite has yet to be certified by international
professional institutions, but this does not affect research on methodological exploration.
The research route and scheme adopted in this paper to comprehensively conduct the
mineral research are as follows. Firstly, the internal morphologies of the minerals are
determined with the combination of X-ray phase contrast imaging technology. The cutting
surface is located using three-dimensional morphology reconstruction. Secondly, Raman
mapping, combined with microscopic imaging, is used to detect molecular structures and
distribution in a small area. Finally, we determine the detection of element composition
and distribution characteristics in a small area to realize the mineral from macro-3D re-
construction to micro-optics and spectroscopy 2D imaging, and complete the detection of
the element, molecular composition, and distribution characteristics. The entire research
process proceeds from the macro to the micro before completing the micro-scale imaging
and phase characterization, as shown in Figure 1.
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Figure 1. The research process. (a) The optical micrograph; (b) Raman mapping; (c) The spectral
image fusion.

The experimental parameters of the specific technology in this article are as follows:

2.1. X-ray Phase Contrast Imaging Technology

(1) A home-built X-ray phase contrast imaging system was used. The micro-focus
transmission tungsten target X-ray tube (XWT-225-THE Plus, X-ray WorXGmbH, Garbsen,
Germany) was used in the hardware system. The voltage range of this tube is 20~225 kV,
current content is 20~1000 µA, focus size is 2 µm, maximum target power is 50 W, X-ray
angle is 160◦, and the X-ray source can continuously provide a stable X-ray beam for 4 h.
The extensive field-of-view high-resolution imaging was realized using a complementary
metal oxide semiconductor (CMOS) X-ray (Rad-icon 2329, Teledyne DALSA, Milpitas,
USA) on GdOS scintillate, where the single-pixel size of the detector is 49.5 µm, the pixel
array is 4608 × 5890, and the imaging plane is 291 mm.

(2) In the system, the X-ray source, the sample table, and the detector are all placed
on the same axis upon which the X-ray source is fixed. The sample table can perform x,
y, z along a three-dimensional translation and w along a one-dimensional rotation and
four-dimensional motion. At the same time, the sample stage and detector can be moved
along the x-direction to adjust the source–object distance (SOD) and the source–detector
distance (SDD) to adjust the geometric magnification of the imaging system arbitrarily. The
minimum SOD is 10 mm and the maximum SDD is 1570 mm. The maximum geometric
magnification is 157×, and the corresponding adequate pixel size is 0.32 µm. The exposure
time can range from a few hundred milliseconds to more than ten seconds, depending on
the imaging conditions. The specific experimental parameters are provided in Table 1 below.

Table 1. The specific experimental parameters of the X-ray phase contrast imaging technology.

Sample Tube
Voltage/kV

Tube
Current/µA

Exposure
Time/s

Distance from
Light Source to

Sample/mm

Distance from
Light Source to
Detector/mm

Pixel Size/µm

Pallasite 140 80 0.2 85 367 11.5

2.2. Microphotograph

An Olympus IX73 manual inverted microscope was equipped with an achromatic
microscope objective (UPLFLN 4X, Olympus, Tokyo, Japan), and a Tucsen camera (Fuzhou
Tucsen Photonics Co.,Ltd, Fuzhou, China) to take gray images. The picture resolution is
1280 pixel × 952 pixel, the photo exposure time is 280 µs, and the gain is 11.967 db.
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2.3. Raman Mapping Technology

A home-built laser confocal micro-Raman spectrometer system was used. The param-
eters of the system are as follows: The wavelength of the laser is 532 nm, the spectral line
width is better than 0.00001 nm, the focused energy is 10 mW, the effective diameter of the
laser focusing spot is 1 µm, the wavelength range of the spectrometer is 100~1868 cm−1,
the resolution is better than 1.5 cm−1, and the integration time is 100 ms.

2.4. Laser-Induced Breakdown Spectroscopy Technology

A home-built laser-induced breakdown spectrometer system was used. The parame-
ters of the system are as follows: the wavelength of the laser is 266 nm, the single pulse
energy is better than 12 µJ at 1 kHz, the repetition frequency 1 kHz, the pulse width less
than 1.0 ns, pulse-to-pulse RMS less than 2% at 1 kHz and the beam diameter 900 ± 200 µm.
The UV laser was focused on the meteorite profile through a cassegrain microscope ob-
jective (REFLX OBJ. 10X/0.23NA DUV INFIN (Edmund Optics®, Barrington, IL, USA),
DUV-enhanced aluminum coating (150~11,000 nm), NA: 0.22, aperture diameter: 8.6 mm,
focal length: 19.3 mm, and working distance: 30.56 mm). The spectrometer was an AvaSpec-
ULS2048x64TEC (Avantes Technology, Apeldoorn, Netherlands) with a 1200 lines/mm
grating in a range of 347~600 nm, the signal-to-noise ratio was 550:1, the resolution was
better than 0.1 nm, and the integration time was 100 ms. The model of the 266 nm laser
BrightLine® single-edge laser dichroic beamsplitter (IDEX Health & Science, LLC, Rochester,
NY, USA) is Di01-R266-25×36, and its reflection band is 200~1000 nm, reflectivity is better
than 94%, transmission band is 277~1200 nm, and transmittance is better than 90%. The
model of the 266 nm RazorEdge® ultra-steep long-pass edge filter (IDEX Health & Science,
LLC, Rochester, NY, USA) is LP02-266RU-25, the transmission band is 272.4~600 nm, the
transmittance is better than 90%, and the edge wavelength is 268.6 nm. The coupler was
a UV-reflective collecting mirror. The spot diameter of the LIBS system is 20 µm, and the
diameter of the ablation hole is 40 µm.

2.5. Energy Dispersive Spectroscopy (EDS)

Backscattered electron (BSE) images were captured using a JSM-IT500 SEM (JEOL Ltd.,
Showashima City, Tokyo, Japan) at Macau University of Science and Technology. Energy
dispersive spectrometers installed on the SEM were employed to identify minerals and
acquire X-ray elemental mappings. The resolution of the electron microscope (SEM) is
approximately 20 nm with high vacuum mode.

The structural diagram of the instruments is shown in Figure 2.
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3. Results
3.1. X-ray Phase Contrast Imaging Technology

Figure 3a–l shows a 360-degree perspective view of the internal structure of the mineral.
It can be seen that the mineral is filled with irregular strip materials.
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Figure 3. Perspective views of the mineral’s internal structure (the metal cladding is presented
in transparent gray; the contents of the package are presented in opaque light blue). (a–l) show
perspective views at 0◦, 35◦, 85◦, 130◦, 150◦, 185◦, 210◦, 245◦, 280◦, 300◦, 320◦, and 350◦, respectively.

3.2. Microphotograph

X-ray phase contrast imaging technology reconstructed the internal structure of the
meteorite, providing three-dimensional visualization information for researchers to use
when selecting areas of interest and assisting them in locating potential cutting surfaces of
high scientific value. The section shown in Figure 4 was located through internal structural
reconstruction. Figure 4 shows the stitching of the complete section micrograph. The OMI
provides the spatial distribution of detailed texture and other information in some areas.

3.3. Spectroscopy Technology

According to the microscopic images of OMI, the region of interest (ROI) with potential
typical ore bodies and their transition zones is selected for Raman mapping, and the
excitation wavelength is 532 nm. The Raman imaging area is set to 151 µm × 101 µm. The
scanning step is 1 µm. The integration time of a single spectrum at each scanning point
is 100 ms. As a result, a hyperspectral matrix can be obtained (each pixel of the detector
represents a channel). For reference, Raman spectra of substances in the scanning regions
are shown in Figure 5.
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Figure 5. Average spectra of meteorite mineral. The scanning area is 151 µm × 101 µm, and the step
size is 1 µm. A total of 15,251 spectra were obtained and these were divided through spectral cluster
analysis into Sample 1 (7941 spectra) and Sample 2 (7310 spectra).

The scanning area contains two main types of objects: One mineral with strong Raman
activity (Sample 1) and the other with no Raman activity (Sample 2). By matching with
the RRUFF Project website’s Raman Spectrum Database, we discovered the Raman active
substance of magnesium iron silicate (Sample 1), as shown in Figure 6. ‘The Database
The RRUFF™ Project is creating a complete set of high-quality spectral data from well-
characterized minerals and is developing the technology to share this information with the
world. The collected data serves as a standard for mineralogists, geoscientists, gemologists,
and the public in identifying minerals on earth and for planetary exploration’ [20]. There-
fore, the average spectral data of two species are chosen for retrieval in mineral matching.
Because each Raman spectrum contains 1015 pixels, we can obtain hyperspectral images
of 1015 channels, given that the area mainly comprises two minerals, the intensities of
1868, 854 and 822 cm−1 are selected as R, G, and B information, respectively, of RGB. The
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intensity of 1868 cm−1 represents Sample 2, which has a strong baseline signal at 1868 cm−1.
The intensities of 854 and 822 cm−1 represent the magnesium iron silicate minerals, which
have strong Raman peaks at 854 and 822 cm−1, respectively, as shown in Figure 7.
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The original pseudo-color map, shown in Figure 7d, clearly distinguishes the spatial
distribution characteristics of the two substances. Even after image normalization, the
content differences in the spatial distribution of magnesium iron silicate can be observed.

Although OMI has a high spatial resolution, it cannot characterize the distribution
of molecular components. In contrast, Raman mapping has the attributes with which to
indicate the spatial distribution of molecular bonds. However, the spatial resolution of the
mapping image is often affected by such factors as focusing spot, scanning step, and so on.
As a result, the mapping image does not have the exact spatial resolution as the OMI, i.e.,
the spectral resolution of the Raman mapping image is higher, but the spatial resolution is
low, whereas the spatial resolution of the OMI is high. Therefore, to proceed to the next
step of spectral image fusion, one must extend the dimensions of the Raman mapping
data to the same as those of the optical micrograph, extending the 151 pixels × 101 pixels
of the pseudo-color map generated by Raman mapping to the 711 pixels × 472 pixels of
the optical micrograph in the same region (Figure 8a). The intensity–hue–saturation (IHS)
algorithm is a mature spatial transformation algorithm that was developed very early in the
history of image fusion technology [21–24]. The image fusion of OMI and Raman mapping
is realized based on the IHS algorithm. The fused image not only preserves the Raman
spectra information of material molecules but also improves the spatial resolution of the
picture. Raman mapping with low spatial resolution and an optical microscope with high
spatial resolution can be fused in IHS space to transform Raman mapping from an RGB
image to an IHS model. The components reflecting Raman mapping spatial resolution
are connected with panchromatic images in IHS space, and the results are converted back
to RGB space, as shown in Figure 8. The texture and composition distribution features
of the mineral section’s key research area are realized through the fusion of OMI and
Raman mapping technology. Raman molecular spectroscopy allows for the precise location
of the transition zones and the characterization of the molecular spatial distribution of
the orebodies.
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According to the factor group analysis, the magnesium iron silicate structure with
Pnma symmetry has 36 Raman-active vibration modes: 11Ag + 11B1g + 7B2g + 7B3g [25].
The Raman spectra of the silicate crystals have a characteristic set of two intense lines near
858–837 cm−1 (K1: Si-O asymmetric stretching band Ag (Si-O)a-str) and 825–808 cm−1 (K2:
Si-O symmetric stretching band Ag (Si-O)s-str) [26].

It is worth noting that the 15,251 spectra in the Raman mapping region are divided
into two categories by cluster analysis [27]. Therefore, the average Raman spectra of each
class are used to match the typical minerals in the search for molecules. The average Raman
spectra of Sample 1 are consistent with those of forsterite in the mineral database. The
results reveal that Sample 1 was forsterite-dominated olivine. The ratio of the two Raman
characteristic peaks of 854 and 822 cm−1 could reflect the content difference between
forsterite and fayalite in olivine [28]. By calculating the Raman peak ratio (Figure 9), it
is found that the peak ratios of the two Raman characteristic peaks, 854 and 822 cm−1,
are mainly concentrated in three regions (fitting the three regression equations by the
partial least squares regression method), the contents of forsterite and fayalite in the
scanned area were mainly classified into three categories. The color image (Figure 9c)
generated by the Raman peak ratio normalization index can more intuitively represent the
spatial distribution characteristics of this content difference. With the help of the positive
correlation between Raman characteristic peak and concentration, Raman mapping can
determine the spatial positioning of mineral types and characterize the spatial distribution
of a specific kind of mineral content.
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Raman spectra corresponding to three typical peak ratios; (c) color image generated by Raman peak
ratio normalization index.

Sample 2 cannot be identified using Raman spectra, but their strong reflectance can
characterize their spatial distribution. Due to its physical properties and non-Raman
molecular activity, it can be preliminarily determined as a metallic substance. Therefore,
laser-induced breakdown spectroscopy (LIBS) is used to preliminarily determine the el-
emental composition and content of the substance. Almost all element analyses can be
performed using LIBS. LIBS technology uses a laser to focus and ablate the sample, result-
ing in plasma luminescence. It has the advantages of remote sensing, in situ analysis, a
powerful signal, high efficiency, less sample pretreatment, and low interference from the
environmental background [29–31]. Although it has a high spectral resolution, its spatial
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resolution is low, making it difficult to detect the distribution of elements with high spatial
resolution in a short period. In this paper, the micro-region LIBS technique is used to collect
50 LIBS data randomly from two kinds of minerals classified in the Raman spectroscopy
experiment, determine the elemental composition of Sample 2 and verify the predicted
results of Sample 1. Through the LIBS experiment, the detection of each mineral element
component is realized and the results are shown in Figure 10.
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Figure 10. Sample 1 and 2 average spectra and element matching results for their database. (a) Sample
1 and 2 average spectra of 50 LIBS; (b) the LIBS spectra and their element matching results in the range
of 345~380 nm; (c) the LIBS spectra and their element matching results in the range of 380~400 nm;
(d) the LIBS spectra and their element matching results in the range of 400~450 nm; (e) the LIBS
spectra and their element matching results in the range of 485~535 nm; (f) the LIBS spectra and their
element matching results in the range of 560~600 nm.

Based on the strong reflectance of Sample 2 in the Raman spectroscopy experiment
and the matching of the characteristic spectral lines of Sample 2 and iron in the LIBS
experiment, it can be concluded that Sample 2 is a metal material dominated by iron. Sample
1 contains elements of magnesium, silicon, and iron. In addition, trace sodium spectral lines
(589.3/589.89 nm) were found in both Sample 1 and Sample 2. When combined with the
experimental results of Raman mapping, the following results are obtained: (1) Sample 2 is a
metal material dominated by iron; (2) Sample 1 is a silicate mineral dominated by forsterite,
and the presence of iron suggests that it is doped with a small amount of Fe2SiO4. Combined
with the three-dimensional reconstruction model of the internal structure derived from
X-ray phase contrast imaging, we can comprehensively evaluate the composition of this
mineral and its spatial distribution characteristics.

3.4. Energy Dispersive X-ray Spectroscopy Technology

Energy dispersive X-ray spectroscopy (EDS) is selected to compare the detection
results of Raman spectroscopy and LIBS in order to verify the feasibility of this technical
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scheme. EDS is a well-known non-destructive X-ray technique with which to determine
the elemental composition of materials. EDS is a technique primarily used with SEM
and transmission electron microscopy (TEM) to find relationships between components,
microstructures, and elemental spectra [32]. Combined with the experimental results of
Raman and LIBS and based on EDS technology, the high spatial resolution detection of
constituent elements was carried out, as shown in Figure 11. The spatial distribution of
silicon and magnesium elements exhibits a high degree of consistency, while the spatial
distribution of iron elements complements it.
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4. Discussion
4.1. Discussion on X-ray Phase Contrast Imaging-Assisted Raman Spectroscopy

We can obtain a two-dimensional section detail with higher contrast, as shown in
Figure 12. As the depth of the section increases, we notice that the embedded block has fine
cracks as if invaded by ‘homogeneous’ matter. X-ray phase contrast imaging offers much
reference information for the selection of cut surfaces and the prediction of the composition
and structure of minerals.
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Figure 12. Section detail of the mineral’s internal structure. (a–o) show sectional perspectives at
different depths.

4.2. Third Party Test Verification

First, one must identify the region of interest to be detected and complete the SEM
analysis. Second, six characteristic points in the specific area and transition area of minerals
are selected based on the spectral detection results in order to complete the point detection
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and calculate the elements’ weight percentage (wt%) and atomic percentage (at%), as show
in Figure 13. The experimental results (Figure 14) of EDS confirm the metal material such as
Fe found in the LIBS experiment and also show that these were doped with a small amount
of Co and Ni. The consistent distribution of Mg and Si elements further confirms the result
of the Raman spectroscopy experiment. Forsterite is the main mineral, and a small amount
of fayalite is mixed with it.
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Figure 14. Comparison of quantitative analysis of chemical components at six scanning points (Radar
chart). (a) Chemical composition radar map of scanning point 1; (b) Chemical composition radar
map of scanning point 2; (c) Chemical composition radar map of scanning point 3; (d) Chemical
composition radar map of scanning point 4; (e) Chemical composition radar map of scanning point 5;
(f) Chemical composition radar map of scanning point 6.

5. Conclusions

Pallasites are stony irons composed of roughly equal amounts of silicate, dominated by
olivine, and metal plus troilite. We developed a method based on laser spectroscopy combined
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with X-ray techniques to analyze the internal morphology and chemical characteristics of
pallasites. This method could help researchers to scientifically evaluate the physical chemistry
features of pallasites based on a composite of multiple factors. The internal structure of the
pallasite was reconstructed using X-ray phase contrast imaging, and the fault reconstruction
of the mineral section could be obtained from any angle in order to provide a reference for
the researchers to select the region of interest and cut the section. Raman mapping can reveal
the composition and two-dimensional spatial distribution of the material in the cut section
of the pallasite, as well as the recognition and spatial distribution of the pallasite molecules.
Raman spectroscopy is ineffective for detecting metal materials. However, meteorites are
rich in metals, so LIBS technology with full element detection capability can be used to
detect the single point LIBS on the cutting surface, as a complementary technology to Raman
spectroscopy. In addition, the compatibility and complementarity of these technologies
were demonstrated by SEM-EDS. Accurately locating hidden areas of scientific interest and
analyzing their physical chemistry properties requires the rapid mapping the internal structure
of opaque samples such as minerals.
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