
Citation: Farooq, S.; Zezell, D.M.

Diabetes Monitoring through Urine

Analysis Using ATR-FTIR

Spectroscopy and Machine Learning.

Chemosensors 2023, 1, 10565.

https://doi.org/10.3390/

chemosensors11110565

Academic Editor: Ilaria Rea

Received: 26 September 2023

Revised: 30 October 2023

Accepted: 7 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

chemosensors

Article

Diabetes Monitoring through Urine Analysis Using ATR-FTIR
Spectroscopy and Machine Learning
Sajid Farooq * and Denise Maria Zezell

Center for Lasers and Applications-CLA, Nuclear and Energy Research Institute-IPEN/CNEN, Av. Professor
Lineu Prestes, São Paulo 2242, SP, Brazil; zezell@usp.br
* Correspondence: sajid.f@ipen.br

Abstract: Diabetes mellitus (DM) is a widespread and rapidly growing disease, and it is estimated
that it will impact up to 693 million adults by 2045. To cope this challenge, the innovative advances in
non-destructive progressive urine glucose-monitoring platforms are important for improving diabetes
surveillance technologies. In this study, we aim to better evaluate DM by analyzing 149 urine spectral
samples (86 diabetes and 63 healthy control male Wistar rats) utilizing attenuated total reflection–
Fourier transform infrared (ATR-FTIR) spectroscopy combined with machine learning (ML) methods,
including a 3D discriminant analysis approach—3D–Principal Component Analysis–Linear Discrimi-
nant Analysis (3D-PCA-LDA)—in the ‘bio-fingerprint’ region of 1800–900 cm−1. The 3D discriminant
analysis technique demonstrated superior performance compared to the conventional PCA-LDA
approach with the 3D-PCA-LDA method achieving 100% accuracy, sensitivity, and specificity. Our
results show that this study contributes to the existing methodologies on non-destructive diagnostic
methods for DM and also highlights the promising potential of ATR-FTIR spectroscopy with an
ML-driven 3D-discriminant analysis approach in disease classification and monitoring.

Keywords: discriminant analysis; FTIR; diabetes; biomarkers; machine learning

1. Introduction

Diabetes mellitus (DM) is a prevalent and rapidly growing disease worldwide, which is
diagnosed by abnormally high blood glucose levels, and it affects the endocrine system [1].
It is estimated that it will impact approximately 693 million adults by 2045, thus posing a
significant health concern [2]. Although considered to be potentially devastating, DM is
an incurable metabolic disorder characterized as hypoglycemic due to the devastation of
insulin-secreting pancreatic β-cells, which results in ineffective glucose processing by the
body and high levels of glucose in the bloodstream [3]. Diabetes is categorized into two
main types: Type 1 and Type 2. Type-1 diabetes is an autoimmune disease that primarily
affects children and adolescents where the immune system damages insulin-producing
cells in the pancreas, and lifelong insulin therapy is required for treatment [4]. Type-2
diabetes, caused by lifestyle and genetic factors, results in insulin resistance or insufficient
insulin production. It is more prevalent than Type 1 and can be managed with lifestyle
changes, medication, or a combination of both [5]. DM is associated with metabolic disor-
ders including macrovascular and microvascular complications, such as neuropathy [6],
cardiovascular disease [7], diabetic kidney disease [8], and diabetic retinopathy [9]. These
complications can lead to an increased risk of mortality, blindness, kidney failure, and
a reduced quality of life for individuals coping with diabetes [2,10]. Hence, the early di-
agnosis and effective management of diabetes are crucial for preventing complications
and promoting optimal health. Treatment may include lifestyle changes, medications, and
regular monitoring of blood sugar levels.

A plethora of studies demonstrate that diabetes can result in alterations in urine
composition, leading to the presence of glucose when it surpasses the kidneys’ capacity
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for re-absorption, making urine analysis a useful method for monitoring hyperglycemia
in diabetic patients [11]. Additionally, urine analysis requires an easily accessible and
non-destructive technique that can be applied to determine urinary components, e.g., tract
and kidneys, and monitor several metabolic, endocrine, and toxic conditions [12]. Re-
cently, several methods have been introduced for urine analysis, and attenuated total
reflection–Fourier transform infrared (ATR-FTIR) spectroscopy is an effective option due to
its sensitive and non-destructive technique. ATR-FTIR spectroscopy is capable of extracting
intricate biochemical information from the vibrational energy inherent in chemical bonds
found within biomolecules, such as lipids, nucleic acids, proteins, and carbohydrates when
applied to liquid matrices [13–15]. This analytical technique ensures the detailed quantita-
tive assessment of complicated biochemical samples, thus enabling the identification of the
concentration of specific molecules [16]. Furthermore, it assists qualitative analysis through
the examination of spectral disparities in characteristic bands of biomolecules related to
the particular pathology under investigation. By virtue of its outstanding sensitivity, speci-
ficity, and the ability to simultaneously scrutinize all molecular components, ATR-FTIR
spectroscopy has emerged as an invaluable tool for the early screening of a myriad of
pathological conditions [17,18].

ATR-FTIR, in particular, can evaluate several urine components, for instance creatinine [19],
urea [20], uric acid [21], phosphate and sulfate [12], as well as cystinuria [22], by ma-
nipulating components absorbed at certain wavenumbers using infrared (IR) spectrum.
Furthermore, ATR-FTIR provides many advantages, such as no sample preparation, low
cost, automated analysis, and a non-destructive nature [23].

Recently, the extensive use of Artificial Intelligence (AI) algorithms combined with ATR-
FTIR, specifically machine learning (ML), has been shown to be useful in urine analysis [24].
Not only can these AI algorithms assess the risk of developing diabetes by monitoring
glucose levels and diagnosing the disease, but ML can also monitor for complications
by evaluating symptoms and test results. Hence, ML in integration with ATR-FTIR can
provide highly accurate, user-friendly, and accessible computational modeling simulations,
which hold huge potential in medical applications [23,25].

In this paper, ATR-FTIR spectroscopy is used as a novel approach to monitor alterations
in urinary molecules modified by diabetes. Thereby, we aim to show the ability of ATR-FTIR
spectroscopy integrated with ML modeling to discriminate between urinary components
of non-diabetic (ND) versus diabetic rats. The discriminant analysis algorithm, which is
an ML method, is composed of two distinct techniques: 3D-PCA-LDA and PCA-LDA. A
vital factor to identify urinary parameters is a computational modeling framework used to
achieve the accurate monitoring of urine glucose to identify diabetes via markers in silico
perfectly with 3D-PCA-LDA that shows optimal precision.

2. Methods and Materials
2.1. Experimental Analysis

Male Wistar (∼260 g) rats were used in our experiment. We caused diabetes in the
Wistar rats in order to examine the effects of DM. The experiment adhered to the Brazilian
Society of Laboratory Animal Science’s (SBCAL) recommendations for the handling and
using of laboratory animals, and the experimental procedures were approved by the
Federal University of Uberlandia’s (UFU) Ethics Committee for Animal Research (License
No. CEUA-UFA No. 013/2016) in accordance with the ethical principles adopted by
the Brazilian College of Animal Experimentation (COBEA) in accordance with ARRIVE
recommendations. The UFU’s Center for Vivariums and Experimentation (REBIR) supplied
the rats, which were kept under standard conditions (12 h light/dark cycle), with regulated
temperature and humidity (∼60%), and with unrestricted access to water.

The experimental protocol involved administering a sole intraperitoneal injection of
60 mg/kg streptozotocin (STZ), reconstituted in 0.1 M citrate buffer (pH 4.5), following
an overnight period of fasting to the rats. Animals were classified as diabetic (D) if they
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had hyperglycemia (>250 mg/dL) 48 h later. The control subjects were administered an
intravenous injection of 0.9% sodium chloride (physiological saline) in equimolar quantities.

2.2. Samples Collection

The rats were housed in metabolic cages for 24 h on day 6 of the experiment in order
to obtain their individual 24 h urine samples. The samples were then gathered, measured,
processed, and kept at a temperature of −80 ◦ until further research. In accordance with the
recommendations of the manufacturer (Labtest Diagnostica SA, Lagoa Santa–MG, Brazil),
enzymatic tests were performed to determine the levels of diverse features (creatinine,
urea, and glucose) in urine. Blood glucose levels were quantified from the tail vein of rats
after an overnight fast, employing reactive strips compatible with a glucometer (Accu-
Chek Performa, Roche Diagnostic Systems, Basel, Switzerland). The estimation of glucose
concentration from the FTIR spectra exhibits a strong positive correlation with enzymatic
tests (R2 = 0.79) [24]. Additionally, the variance in body weight gain/loss (∆ body weight)
following STZ or placebo treatment was examined. Animals were subjected to death by an
excessive anesthetic dose after the 24 h urine collection and other measures. The samples
of urine were lyophilized using Liotop L101 and then analyzed after drying.

2.3. ATR-FTIR Data Analysis

An FTIR (Thermo Scientific’s Nicolet 6700, Waltham, MA, USA) instrument integrated
with a diamond crystal ATR accessory, which operates in ATR mode to obtain reflection–
absorption spectral information for sensitive measurement and covers the range of 4000
to 400 cm−1, was used to collect the spectroscopic data. The 100 scans (co-adds) per
spectrum and with fine spectral resolution (4 cm−1) were applied to collect the spectra.
The ATR-FTIR spectra were preprocessed by baseline correction, vector normalization,
and smoothing using the Savitzky-Golay (SG) filter with a polynomial of 2nd order in an
eleven-point window prior to the analysis of the spectra data. The bio-fingerprint region
1800–900 cm−1 served as the input to the computational modeling framework. All pre-
processing procedures and spectral analyses were systematically computed using Python
3.0. The source code was accessed on 9 November 2023 (https://github.com/sajid-dahar/
Diabetes) and can be found in the Supplementary Material.

2.3.1. Principle Component Analysis

Chemometrics employs advanced statistical and mathematical methodologies to ex-
tract information from data originating from biological, chemical, and medical analyses
and apply it within the field of chemical measurements. Among these techniques, Principal
Components Analysis (PCA) has emerged as a potential and extensively applied method-
ology [26]. PCA can be utilized for several purposes in data analysis. It can be employed
either independently for exploratory data analysis [27] or as an initial step in classification
(e.g., SIMCA) [28] as well as in calibration (e.g., principal component regression) [29].
Moreover, PCA has frequently been used as a data compression algorithm.

In the context of exploratory analysis utilizing PCA, several conventional parameters
are leveraged:

1. Scores—these are employed to investigate the interrelationships among individual
measurements or observations, thus facilitating the detection of trends, groupings,
outliers, and other pertinent patterns.

2. Loadings—loadings are instrumental in exploring the connections between variables
and discerning their influence on the PCs extracted through PCA.

3. Distances—distance plots are used to identify outliers and extreme objects within the
PCA model constructed with a specified number of components, thus aiding in the
detection of data points that deviate significantly from the norm.

4. Residual/Explained Variance—variance plots lead the objective of determining the
optimal number of components to include in the PCA model, thus offering insight
into the proportion of variance accounted for by each component.

https://github.com/sajid-dahar/Diabetes
https://github.com/sajid-dahar/Diabetes
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As previously mentioned, the utilization of the PCA technique required the decom-
position of the spectral matrix (X) into its constituent components, such as loading (P),
scores (T), and residuals (E). Mathematically, the model’s performance was evaluated
using the following method:

X = TPT + E (1)

where P depicts the variability in the direction of variables (i.e., wavenumber) and can
be used to identify potential markers in the spectrum. On the other hand, T indicates
variations in the direction of samples, thus enabling the assessment of similarities or
dissimilarities between them.

The 3D-PCA technique employs a conventional PCA methodology, which is given as:

X∗
lm = TlmPT

lm + Elm (2)

where the spectral matrix at the position (l, m) is denoted by Xlm, while rows and columns
of data represent samples and wavenumbers, respectively. The residuals at (l, m) are
represented by Elm. The PCA scores and loading at (l, m) are represented by Tlm and
Plm, respectively.

2.3.2. Classification Analysis Based on Machine Learning

Linear discriminant analysis (LDA) is a supervised classification technique employed
to discriminate samples into their respective classes by exploiting Mahalanobis distance
calculations [30,31]. Hence, the calculation process is executed by considering the variance–
covariance matrix of each class separately. The calculation of score for LDA (Lij) is evaluated
according to [32]:

Lij = (xi − xj)
TΣ−1

pooled(xi − xj)− 2logeπj (3)

where variables xi and xj represent the scores of T for sample i and the scores of class j for
their respective PCs, where each is a 1× N row vector.

In term of LDA, the class covariance matrices are supposed to be equal so that a pooled
covariance matrix is given as:

Σpooled =
1
n

ΣJ
j=1njΣj (4)

where Σj represents the class covariance matrix of class j.

2.4. Performance Parameter for Quality Evaluation

The data analysis was conducted using Python 3.0 in a Jupyter Notebook environment,
adhering to established ML methodologies. The raw spectra were loaded and subjected to
a series of precise preprocessing steps. First, the fingerprint regime (1800 to 900 cm−1) was
specifically extracted to focus on relevant spectral features. Next, a Savitzky–Golay (SG)
filter was applied using a window size of 11 points, a 2nd order polynomial, and a first
derivative to effectively mitigate noise while enhancing spectral resolution. To correct for
baseline distortions, Automatic Weighted Least Squares baseline correction was employed,
which accounts for varying intensity profiles with high precision. Normalization to the
Amide I band was performed to account for differences in spectral intensities, ensuring
accurate comparative analysis. Finally, mean centering was applied to further standardize
the data, ensuring that the spectra were centered around zero and thus minimizing the
impact of systemic variations. These rigorous and precise preprocessing steps were meticu-
lously implemented to ensure the robustness and reliability of subsequent data analysis, as
shown in Supplementary (Figure S1). Table 1 offers a comprehensive inventory of selected
wavenumbers derived from the Supplementary (Figure S2), which was specifically de-
signed for the analysis of urine samples [33]. These wavenumbers are accompanied by their
respective tentative biomolecular assignments, contributing to a thorough understanding
of the spectral data’s biomolecular constituents and their relevance in the context of the
study [34].
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Table 1. The prominent wavenumbers attributed for classification rate.

Wavenumber (cm−1) Tentative Assignment

978 vas(C-C), β-sheet of proteins δ(=CH) of lipids

1015 v(C-O), v(C-C), δ(OCH)

1075 P-O, NH2, S=O stretching

1154 v(C-O) of proteins and carbohydrate

1461 CH2 bending

1468 vas(C-N)

1564 Amide II

1587 CO stretch

1620 vas(C-N) bending

1643 Amide I

1662 Amide I

1755 lipids

Key metrics, including accuracy (ACC), sensitivity (SENS), and specificity (SPEC),
were measured on both the train and test sets to assess the classification rate and validation
performance of the models in order to obtain optimal computational model performance.
The following formulas were used to calculate these metrics:

ACC(%) =

(
TP + TN

TP + FP + TN + FN

)
× 100 (5)

SENS(%) =

(
TP

TP + FN

)
× 100 (6)

SPEC(%) =

(
TN

TN + FP

)
× 100 (7)

where the TN stands for true negative, TP denotes true positive, FN signifies false negative,
and FP represents false positive.

3. Results

ATR-FTIR is a sophisticated and well-known analytical method that has shown to
be extremely useful in the study of diseases. This method uses very accurate and precise
measurements of biological materials to analyze various disorders [35]. To evaluate the
performance metrics, including SENS, SPEC, and ACC, in distinguishing the diabetic
group, we leveraged ATR-FTIR as a robust analytical tool in our study.

The dataset encompasses a total of 149 samples, consisting of 66 urinary spectra
samples from the control group and 83 samples from individuals with diabetes. To prepare
the spectral data for analysis, we applied an SG filter, which includes smoothing, baseline
correction, and normalization techniques, to the fingerprint domain ranging from 1800
to 900 cm−1, as shown in Figure 1. Multiple spectra were acquired for each sample,
thus resulting in a total of 149 spectra. The raw as well as preprocessed data comparing
control and diabetes samples are presented in Figure 2. As mentioned previously, the
data pertaining to diabetes and ND samples were imbalanced. Therefore, we utilized
SMOTE-TOMEK techniques to balance the data and achieve higher precision and accuracy
in our analysis.
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Figure 1. Data preprocessing procedure involved in smoothing, baseline correction and normalization.
The data are split into train (80%) and test (20%) sets, and for balancing data, the SMOTETomek
technique is applied to perform the unfolded (PCA-LDA) and 3D discriminant analysis approaches.

Figure 2. Fourier Transform Infrared Spectroscopy Analysis: (a) The data comprise raw in-
frared (IR) spectra acquired within the bio-fingerprint region, spanning the wavenumber range of
1800–900 cm−1, extracted from samples belonging to individuals with diabetes and those from (ND)
controls. (b) The displayed information represents the mean preprocessed infrared spectra, which
have undergone an Amide I and II peak baseline correction using the Asymmetrically Weighted Least
Squares (AWLS) method, all within the bio-fingerprint region (1800–900 cm−1), for samples obtained
from both individuals with diabetes and control subjects.

Within the domain of interest, specifically the fingerprint regime (1800 to 900 cm−1),
prominent spectral characteristics were identified, including a peak at 1650 cm−1 indicative
of Amide I proteins.

In order to accurately evaluate the presence of diabetes in rat urine samples, the ML
method was employed to identify biochemical signatures that can differentiate between
healthy (control) and non-healthy (diabetic) samples. Initially, a Principal Component
Analysis model was utilized for exploratory data analysis, as depicted in Figure 3. Three
PCs were utilized, which accounted for over 93% of the cumulative explained variance.
In the PCA plot depicted in Figure 3a, PC1, which accounted for 83.97% of the explained
variance score, was compared to PC2, which accounted for 7.43% of the explained variance
score. Additionally, the comparison of PC2 with PC3 (1.88% of explained variance), as
seen in Figure 3b, and the plot of PC1 versus PC3 scores (Figure 3c) revealed that these
components were effective in differentiating the sample groups. However, the percentage
of spectral explained variance for class separation was found to be relatively low (PC2
vs. PC3), indicating that additional spectral features may be required for more robust
discrimination between the sample groups. Furthermore, the scores plot represents each
spectrum as a point in space. Spectra that are similar to each other are closer, while
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dissimilar spectra are positioned farther apart (see Figure 3). This type of visualization
greatly facilitates the rapid identification of patterns within similar datasets.

Figure 3. PCA scores plots: (a) PC1 vs. PC2, (b) PC2 vs. PC3 and (c) PC1 vs. PC3. PC loading on PC1,
PC2 and PC3 (d), respectively.

The precise characterization of distinct markers, notwithstanding inherent biological
variability, necessitates a comprehensive understanding of the underlying biochemical
constituents responsible for differentiation between control and diabetes groups. To achieve
this goal, we have meticulously identified prominent peaks within the absolute values of
PC loadings, which correspond to specific wavenumbers that exert a significant influence
on the variance within the FTIR dataset. As illustrated in Figure 3, these identified peaks
play an important role in achieving the highest levels of differentiation between diabetes
and non-diabetes spectral markers. PC1, capturing 83.97% of the total dataset’s variance,
emerges as a key discriminant factor in revealing prominent spectral features, as shown in
Figure 3d. As evident in Figure 3, PC1 loading exhibits both positive and negative values,
thus reflecting the distinct wavenumber regions considered during PC calculations. An
elucidation of the specific vibrational modes associated with PC1 loading (Table 1) provides
invaluable insights into the nuanced biochemical constituents relevant to diabetes spectral
markers. The capability of PC1 to underscore significant spectral disparities positions it as
a primary contributor to differentiate among diabetes vs. non-daibetes, thereby offering
indispensable information for precise markers characterization.

Moreover, PC2, responsible for 7.43% of the dataset total variance, presents a unique
perspective on diabetes differentiation. In distinct contrast to PC1, PC2 loading predom-
inantly manifests as positive values in the range 1200–900 cm−1 (Figure 3). Notably, the
spectral bands responsible for diabetes differentiation in PC2 occur in entirely distinct
wavenumber ranges, confirming the independence of these principal components. The
systematic assignment of vibrational modes to peaks within PC2 loading enhances our
understanding of spectroscopic features contributing to the discrimination of markers, thus
augmenting the robustness and specificity of our analytical framework. Additionally, PC3,
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contributing 1.88% to the data’s total variance, introduces a distinctive profile characterized
by frequent variations and narrower peak profiles, as depicted in Figure 3. This character-
istic implies the involvement of a wide spectrum of biomolecular constituents in driving
subtle yet significant variations in the FTIR signal of control group. The localization of
these spectral variations within specific wavenumber regions, as unveiled by PC3, under-
scores the intricate biochemical distinctions captured within these tissues. A systematic
assignment of vibrational modes to peaks in PC3 loading serves important insights into the
precise biochemical elements responsible for these diabetes spectral markers.

These results elucidate the discriminating spectral properties across the sample groups
and offer useful insights into the spectral features that account for the observed segregation
pattern in PCA-related scores. As shown in Figure 3d, the spectrum analysis of urea
(NH2CONH2) and creatinine (C4H7N3O) depict unique bands at particular wavenumbers,
presenting the existence of molecular vibrations. Four distinct bands can be seen in urea:
NH2 vibrational bands at 1149 cm−1 [36], a CN stretch antisymmetric band at 1459 cm−1, a
CO stretch band at 1587 cm−1, and an NH bend antisymmetric band at 1620 cm−1 [12,24].
For creatinine, a single band at 1449 cm−1 is seen, which can be ascribed to vibrations
of the C=N stretch, CN stretch, and N-CH band bending. In addition, three more bands
can be observed in the 1700–1500 cm−1 range (Figure S2). It is important to note that
due to the hydrogen bonding between them, these bands of urea and creatinine may
interact with water bands (1635 cm−1), thereby changing their spectral properties. The IR
signatures of glucose primarily derive from the stretching vibrations of C-O and C-O-C
bonds (Figure 2), thus resulting in distinct peaks within the lower wavenumber range
(1200–900 cm−1) [37,38]. In a similar vein, one can evaluate glucose concentration by
observing spectral changes at approximately 1050 cm−1 [39].

In order to explore performance exclusively, semi-supervised classification models
utilizing unfolded PCA-LDA and a 3D discriminant analysis technique were introduced
to systematically discriminate between urine-based diabetes groups and healthy urine
control groups. The preprocessed spectral data were split into train (80%) and test (20%)
sets, employing the SMOTE-TOMEK technique uniform sample selection algorithm. The
performance of the 3D-PCA-LDA classification algorithm was compared to the PCA-LDA
model, and performance measures including ACC, SENS, and SPEC were calculated for
both the test and train sets. The 3D-PCA-LDA algorithm obtained the best classification
efficiency, having an ACC of 100%. As shown in Figure 4a, the discriminant function (DF)
depicts a clear separation between control and diabetes samples, and no miss-classification
is found. Figure 4b presents a discriminant function plot of the unfolded model (PCA-
LDA), indicating a little overlapping between the healthy control and diabetes groups.
These results, as shown in Figure 4b, indicate that the unfolded model achieved close to
97% accuracy for the test sets, while it achieves 100% with the 3D discriminant analysis
approach. However, a clear difference in performance was observed when employing
receiver operating characteristic (ROC) curve analysis using 3D discriminant analysis
(Figure 5a). The performance achieved by the area under the curve (AUC) reached 1.0 using
the 3D-PCA-LDA model, which outperformed the PCA-LDA model (0.97), as depicted in
Figure 5b.

Figure 4. Discriminant function showing separation between diabetes and non-diabetes samples
using (a) 3D-PCA-LDA and (b) PCA-LDA methods.
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Figure 5. ROC curve to obtain the model performance for (a) 3D-PCA-LDA (AUC = 1.0) and
(b) PCA-LDA (AUC = 0.97).

Table 2 indicates the correct classification rates achieved for testing and validation in
various models using confusion matrices. Interestingly, the PCA-LDA algorithm demon-
strates a significant improvement with correct classification rates of 94% and 96% for
non-diabetic samples in the test (20%) and CV (LOO) datasets, respectively. In contrast, the
3D-PCA-LDA method achieves a perfect classification rate of 100% for diabetes samples in
both the training and cross-validation model evaluation of datasets (Table 2).

Table 2. The confusion matrices for datasets, including testing and validation (KFold = 5), were
generated using both unfolded and discriminant analysis techniques.

Methods PCA-LDA 3D-PCA-LDA

Non-Diabetes Diabetes Non-Diabetes Diabetes

Testing Non-Diabetes 94% 6% 100% 0%

Diabetes 1% 99% 0% 100%

CV Non-diabetes 96% 4% 100% 0%

Diabetes 1% 99% 0% 100%

During test analysis, the classification performance of the PCA-LDA algorithm resulted
in ACC, SENS, and SPEC scores of 97%, 94%, and 99%, respectively. However, with the
3D-PCA-LDA model, there was a significant improvement in performance parameters
(SENS, SPEC and ACC) with scores of 100% (Table 3). Furthermore, the samples were
reduced using the Leave-One-Out (LOO) approach to perform cross-validation (CV). As
presented in Table 3, the SENS, SPEC and ACC values are overall 100%, showing that there
is no over-fitting when using 3D-PCA-LDA. Our study clearly presents the advantages
of using the 3D discriminant analysis approach over unfolded algorithms in identifying
diabetes vs. non-diabetes in urine samples.

Table 3. Performance parameters (ACC, SENS, SPEC) of computational modeling using the PCA-
LDA versus 3D-PCA-LDA methods for diabetes vs. control.

Data Analysis Methods Accuracy Sensitivity Specificity

PCA-LDA Test 97% 94% ∼99%

CV 98% 96% ∼99%

3D-PCA-LDA Test 100% 100% 100%

CV 100% 100% 100%

4. Discussion

The development of a pioneering diagnostic tool is crucial, especially in the context of
diabetes-related disease like DM, which can pose risks to both growing fetuses and older
populations. ATR-FTIR spectroscopy has become a powerful and potent analytical tool that
may reveal various biological structures through spectrum analysis. This novel method
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has been shown to be extremely valuable in clinical healthcare realizations and offers
encouraging possibilities for the future promises to continued technical improvements.
Thus, the spectral fingerprint in the range of 1800 to 900 cm−1, as acquired through
spectroscopic analysis, contains crucial information pertaining to biomolecules like nucleic
acids, proteins, lipids, and carbohydrates [40].

For computational modeling simulations, urine samples obtained from male Wistar
rats were comprised of 63 control and 83 diabetes samples. In order to explore more about
the chemical signatures of the urine components, these samples were submitted to ATR-
FTIR spectroscopy. The results of our analysis of the data depicted that an unsupervised
machine learning method was successful in differentiating between the non-diabetes and
diabetes groups with clear differences seen in the scores of Principal Components (PCs)
such as PC1 and PC2. There was no discernible difference between the groups in PC3.
However, clear changes in the water and protein sections of the spectra were found,
indicating possible variations in the composition of these elements between the D and ND
groups. These results demonstrate the capability of ATR-FTIR spectroscopy to characterize
distinctive spectrochemical properties and distinguish between various groups in rat urine
samples specifically in reference to the water and protein components.

Moreover, we applied PCA-LDA and 3D-PCA-LDA techniques to classify samples of
urine regarding healthy control and diabetes. Among these models, the 3D-PCA-Linear
Discriminant Analysis emerged as the most effective classification model, consistently
distinguishing urine-based diabetes samples obtained from controls. The 3D-PCA-LDA is a
potent feature selection technique that utilizes combining three-dimensional PCA with LDA,
selecting the most relevant single-valued decomposition that maximizes class separation.
It has shown superior performance compared to feature extraction methods. Notably, there
are fewer studies that have explored the employment of ATR-FTIR in DM-related research
with even fewer focusing on urine samples of DM. Using a 3D-PCA-LDA approach, the
performance parameters, i.e., SENS, SPEC and ACC, is 100%, which outperforms the
unfolded approach. In another study, Caixeta et al. demonstrated the effectiveness of
ATR-FTIR combined with an unfolded approach in analyzing saliva samples from male
Wistar rats containing DM, achieving ∼95% accuracy and highlighting the potential of
the ML method in monitoring DM [41]. Moreover, a study conducted by Bernardes et al.
investigated the promising potential of combining ATR-FTIR with multivariate analysis to
attain a high degree of ACC in the assessment of gestational DM [42].

The proposed computational model (3D-PCA-LDA) has demonstrated the ability
to confirm the suitability of our platform for detecting diabetes in urine samples. The
identification of spectral biomarkers in urine presents new opportunities for identifying the
severity of diabetes. Considering the metabolic similarities between diabetic animal models
and human patients, we propose that this urine-based ATR-FTIR-integrated ML-based di-
agnostics could be further examined in large patient samples for the rapid and cost-effective
monitoring of diabetes using urine samples. This approach may also have the potential to
facilitate point-of-care assays using portable ATR-FTIR spectroscopic approaches.

5. Conclusions

In conclusion, our study utilized a 3D discriminant approach with ATR-FTIR spec-
troscopy to effectively differentiate between diabetes and control groups in urine samples.
Our model outperformed conventional methods like PCA-LDA in distinguishing the in-
frared spectra of urine between diabetic and non-diabetic rats, achieving an extraordinarily
high discriminating accuracy of 100% in sensitivity and specificity. This demonstrates the
reliability and effectiveness of our approach in detecting the metabolic changes associated
with diabetes. Our research adds to the expanding body of research on non-invasive
diabetes diagnosis techniques and supports the promise of ATR-FTIR spectroscopy as a
robust diagnostic and prognostic tool.



Chemosensors 2023, 1, 10565 11 of 13

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/chemosensors11110565/s1, Figure S1: The data utilized
in this study: Raw (a) of diabetes and (b) non-diabetes attributed to urine samples as well as their
respective preprocessed (c,d) data. Figure S2: The second derivative plots of absorbance (A) for
identification of spectral biomarkers in urine using Savitzky–Golay filter smoothing (window 11,
polynomial fitting order 2, derive = 2).

Author Contributions: Conceptualization, S.F. and D.M.Z.; methodology, S.F.; software, S.F.; valida-
tion, S.F. and D.M.Z.; formal analysis, S.F.; investigation, S.F.; resources, D.M.Z.; data curation, S.F.;
writing—original draft preparation, S.F.; writing—review and editing, S.F. and D.M.Z.; visualization,
S.F.; supervision, D.M.Z.; project administration, D.M.Z.; funding acquisition, D.M.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by FAPESP (21/00633-0, 17/50332-0), CAPES (Finance Code 001)
and CNPq (INCT-465763/2014-6, INCT 406761/2022-1, PQ-314517/2021-9), Sisfóton (440228/2021-2).

Institutional Review Board Statement: The animal study protocol was approved by the Institutional
Ethics Committee of Federal University of Uberlandia (protocol code CEUA-UFA No. 013/2016, 14
April 2016) for studies involving animals.

Data Availability Statement: The data are available upon reasonable request from the corresponding
author.

Acknowledgments: We express our gratitude to Robinson Sabino-Silva of the Innovation Center
in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical
Sciences, Federal University of Uberlandia, Uberlandia, Brazil, for his invaluable contributions,
insightful discussions, and unwavering support throughout thisproject.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF

diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [CrossRef]
[PubMed]

2. Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [CrossRef]
[PubMed]

3. Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The diabetes mellitus–atherosclerosis
connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [CrossRef]
[PubMed]

4. Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame
the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [CrossRef] [PubMed]

5. Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother.
2020, 131, 110708. [CrossRef]

6. Chitneni, A.; Rupp, A.; Ghorayeb, J.; Abd-Elsayed, A. Early detection of diabetic peripheral neuropathy by fMRI: An evidence-
based review. Brain Sci. 2022, 12, 557. [CrossRef]

7. Liccardo, D.; Cannavo, A.; Spagnuolo, G.; Ferrara, N.; Cittadini, A.; Rengo, C.; Rengo, G. Periodontal disease: A risk factor for
diabetes and cardiovascular disease. Int. J. Mol. Sci. 2019, 20, 1414. [CrossRef]

8. Yamazaki, T.; Mimura, I.; Tanaka, T.; Nangaku, M. Treatment of diabetic kidney disease: Current and future. Diabetes Metab. J.
2021, 45, 11–26. [CrossRef]

9. Ansari, P.; Tabasumma, N.; Snigdha, N.N.; Siam, N.H.; Panduru, R.V.; Azam, S.; Hannan, J.; Abdel-Wahab, Y.H. Diabetic
retinopathy: An overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology 2022, 3, 11. [CrossRef]

10. Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol.
2022, 18, 525–539. [CrossRef]

11. Das, T.; Harshey, A.; Srivastava, A.; Nigam, K.; Yadav, V.K.; Sharma, K.; Sharma, A. Analysis of the ex-vivo transformation of
semen, saliva and urine as they dry out using ATR-FTIR spectroscopy and chemometric approach. Sci. Rep. 2021, 11, 11855.
[CrossRef] [PubMed]
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