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Abstract: Colorimetry is an important on-site detection method for organophosphorus compounds.
O-Ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) is recognized as one of the dead-
liest organophosphorus chemical agents, and the rapid on-site detection of VX is of great significance
to public safety. In this paper, a squaraine derivative was synthesized as probe molecules, and
the sensing characteristics of VX in a colorimetric solution system containing tetrabutylammonium
fluoride (TABF) were studied with UV−Vis spectroscopy, nuclear magnetic resonance (1H NMR), and
mass spectrometry. The results showed that the binding of the thiol moiety of VX to the quaternary
ring of the squaraine probe changed the molecular conjugation system, and that the rapid colorimetric
detection of micro-trace VX was achieved based on color change before and after interaction with
squaraine, enabling the detection limit of VX to be as low as 0.4 µg/mL. Moreover, the colorimetry
method also possessed satisfactory sensitivity and could detect VX from other organophosphorus
pesticides (e.g., parathion and dichlorvos), phosphorus-containing reagents (e.g., diethyl chlorophos-
phate and dimethyl methylphosphonate), a benzene series (e.g., toluene), and acid and base agents
(e.g., acetic acid and triethylamine, respectively), which demonstrated that squaraine-based colorime-
try could provide fast, on-site measurement results for VX detection. The strategy of this research
could be extended as a common approach for the detection of other organophosphorus nerve agents
or organophosphorus pesticides.

Keywords: squaraine; colorimetry; VX; mechanism

1. Introduction

Squaraine compounds are a class of excellent functional dyes with unique D–A–D
conjugated structures [1], extremely high molar extinction coefficients, and strong ab-
sorption and fluorescence emission in the visible and near-infrared regions [2,3]. The
unique structural characteristics of squaraine dyes make them easy to be attacked by nu-
cleophiles [4,5]. As colorimetric and fluorescent probes, squaraine dyes are used in the
detection of proteins [6,7], small biological molecules [8,9], environmental pollutants [10],
and metal ions [11–13].

Organophosphorus compounds represented by organophosphorus nerve agents and
organophosphorus pesticides are extremely toxic to humans and animals. After entering
the body, they can quickly interact with acetylcholinesterase, resulting in neurological disor-
ders and endangering the life and safety of the body. O-Ethyl S-(2-diisopropylaminoethyl)
methylphosphonothioate (VX) is one of the deadliest persistent organophosphorus nerve
agents [14]. Human skin contact or the inhalation of VX can cause poisoning, and a lethal
dose of VX can cause a person to stop breathing and die within minutes [15]. Currently,
VX detection methods mainly consist of chromatography and chromatography–mass spec-
trometry [16,17], which can be employed for the qualitative and quantitative analyses of
samples and have extremely high sensitivity. However, these methods usually require
sophisticated and expensive instruments, and the operations are complicated and time-
consuming; therefore, they are not appropriate for the on-site rapid detection of targets.
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Consequently, determining a fast, simple, and cost-effective method for VX detection is
still a challenge. Compared with traditional persistent nerve agent detection methods
represented by chromatography and chromatography–mass spectrometry, colorimetry
possesses the advantages of low cost and fast and simple operation [18–21] and is widely
used for the rapid, on-site detection of organophosphorus compounds [22–25]. At present,
most colorimetry methods used for VX detection have used gold nanoparticles and en-
zymes [18,19]. These sensing materials should be prepared in advance, and their selectivity
is mediocre. Squaraine has excellent absorbance and has application prospects in the
colorimetric detection of persistent organophosphate nerve agents. However, there are few
reports on the use of squaraine as a probe for VX detection.

Most of the procedures for the colorimetric detection of VX with dyes have used F- to
react with VX at room temperature to quickly destroy the P–S bond [26,27]. The solubility
of VX is extremely poor, and organic solvents are generally used to dissolve and sample
VX. Therefore, it is necessary to use organic fluorine salts to react with VX because of the
poor solubility of metal salts, such as sodium fluoride in organic solvents. As an organic
base, tetrabutylammonium fluoride (TABF) is a good phase transfer catalyst with good
solubility in both the organic phase and water that can be utilized as a facile fluoride
source. In this paper, a squaraine derivative is synthesized as a probe molecule, and TABF
is mixed with squaraine to prepare a colorimetric solution. A colorimetric method for VX
detection is established, and the sensing features of VX in the solution are investigated using
UV−Vis spectroscopy and nuclear magnetic resonance (1H NMR). This study shows that
the colorimetry method used for the detection of VX developed in this article can be used
for the rapid on-site detection of microtrace VX. In addition, organophosphorus pesticides,
phosphorus-containing compounds, a benzene series, and acid and base compounds have
no effect on the colorimetric detection of VX. Therefore, these observed results demonstrate
that this method has promising application in the field of organophosphorus compound
detection.

2. Materials and Methods
2.1. Reagents and Instruments

3,4-dihydroxy-3-cyclobutene-1,2-dione (98%) was obtained from Adamas Reagent
Co., Ltd., Shanghai, China, and dimethyl methylphosphonate (DMMP) was obtained from
Sun Chemical Technology (Shanghai) Co., Ltd. (China). Diethyl chlorophosphate (DCP)
(97%) was purchased from Alfa Aesar (United States). Parathion and dichlorvos (DDVP)
were received from MTstandard (Beijing, China). VX was received from the Laboratory
of Analytical Chemistry, Research Institute of Chemical Defense (Beijing, China). Other
chemicals of analytical grade were procured from Beijing Chemical Works (Beijing, China).

1H NMR and mass spectra (MS) were measured with Brucker Advance 300 MHz
CDCl3 (δ = 7.26 ppm) and Agilent InfinityLab LC/MSD instruments, respectively. UV−Vis
spectra were recorded with a Mettler Toledo UV5Nano Spectrophotometer.

2.2. Synthesis of Squaraine Probe (SP)

The synthetic route of SP is shown in Scheme 1. A total of 3.3 g of N, N-diethyl-m-
hydroxyaniline (20 mmol) and 1.14 g (10 mmol) of 3,4-dihydroxy-3-cyclobutene-1,2-dione
were added to a 250 mL dried solanum bottle. Then, 130 mL of mixed-solvent toluene
and n-butanol (V:V = 1:1) was added. After evenly mixing, the mixture was stirred for
reflux at 138 ◦C for 8 h. During the reaction process, the water produced by the reaction
was removed with a water separator. After the reaction was complete, the mixture was
filtered, and the solvent was removed. The residue was recrystallized in methanol and
filtered, and the filter cake was rinsed with methanol three times. After vacuum drying,
1.6 g golden green solid was obtained with a yield of 40%. 1H NMR (300 MHz, CDCl3) δ
12.09 (s, 2H), 11.39 (s, 1H), 8.03 (d, J = 9.2 Hz, 1H), 7.89 (d, J = 9.2 Hz, 2H), 6.33 (dd, J = 9.2, 2.4
Hz, 2H), 6.13 (t, J = 2.9 Hz, 2H), 3.47 (q, J = 7.1 Hz, 8H), and 1.25 (t, J = 7.1 Hz, 12H); 13C NMR
(75 MHz, CDCl3) δ 164.56 (s), 132.78 (s), 107.95 (s), 98.94 (s), 93.38 (s), 45.83 (s), 12.99 (s),
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and 0.14 (s). MS (ESI) m/z: 409.2 (M+H)+. 1H NMR spectrum of SP in CDCl3 is displayed
in Figure S1.
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2.3. Establishment of Colorimetry

A method for determining the concentration of TABF in a colorimetric solution can
be found in the Electronic Supplementary Information (ESI), and UV−Vis spectra and
color changes of colorimetric solutions contented TBAF of different concentrations are
shown in Figure S2 and Figure S3, respectively. Table S1 displays the absorbance change
of colorimetric solutions, and the concentration of TABF in a colorimetric solution was
determined to be 250 µg/mL. A series of 2 µg/mL SP colorimetric solutions (CH2Cl2,
containing 250 µg/mL TBAF) was prepared, and the concentrations of VX contained in
these colorimetric solutions were 0, 2, 4, 10, 40, 100, 150, 200, 400, and 500 µg/mL. This
was followed by an observation of the color changes in this series of solutions with the
naked eye. The UV−Vis absorption spectra of these solutions were measured with a Mettler
Toledo UV5Nano Spectrophotometer, and the maximum absorbance was plotted as a curve.

To evaluate the colorimetry method’s VX detection specificity, 4 mg/mL of organophos-
phorus pesticides (parathion and DDVP), phosphorus-containing reagents (DCP and
DMMP), a benzene series (toluene), an acid (acetic acid), and a base (triethylamine) were
added separately to colorimetric solutions containing 2 µg/mL SP and 250 µg/mL TBAF,
and their absorption spectra were recorded with the same procedure as that used to detect
VX. Meanwhile, to investigate the anti-interference of the colorimetry method, solutions
containing 2 µg/mL SP, 250 µg/mL TBAF, and 10 µg/mL VX were treated with 1 mg/mL
parathion, DDVP, DCP, DMMP, toluene, AcOH, and Et3N, and their absorption spectra
were measured with the same procedure used to detect VX.

All spectra mentioned above were measured one minute after the solutions were mixed.

2.4. Detection Mechanism

An SP solution containing TABF, a mixed solution of TBAF and VX, and a colorimetric
solution containing SP, TBAF, and VX were prepared, followed by a determination of the
mass spectrometry and 1H NMR results of the three solutions.

3. Results
3.1. Colorimetry for VX Detection

As can be observed from Figure 1, the colorimetric solution without added VX was
light blue, and the color of the solution gradually became lighter after adding VX. When
the VX concentration reached 200 µg/mL, the solution was faded and almost transparent.
Furthermore, the change in the UV−Vis spectra showed that the absorption peak of the
solution at 644 nm decreased gradually with an increase in VX concentration (Figure 2a).
It can be noted that the UV−Vis spectra still changed with a concentration of VX as low
as 2 µg/mL. As the VX concentration increased to 400 µg/mL, the absorbance of the
colorimetric solution at 644 nm hardly changed (Figure 2b).
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The gradient color bar represented the VX concentration and color change of the solution.
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Figure 2. (a) UV−Vis spectra changes in colorimetric solution with increasing VX concentration;
(b) curve of absorbance with VX concentration at 644 nm.

As displayed in Figure 3, a curve was obtained by plotting the rate of change in
absorbance at 644 nm against the quadratic root of the VX concentration [VX]. On the
ordinate, (1 − ∆A/A0) × 100% is plotted, where A0 was the initial absorbance and ∆A
is the difference in the absorbance corresponding to before and after VX was added into
the colorimetric solution, respectively. When the concentration of VX was in the range of
4~200 µg/mL, (1 − ∆A/A0)×100% and [VX] showed a linear relationship, and the following
relation was obtained:

(1 − ∆A/A0) × 100% = 0.37523[VX] + 19.79432 (R2 = 0.9819, p < 0.00001, N = 6).

The detection limit (DL) of 0.4 µg/mL was calculated using the following equation:
DL = 3σ/k [28], where σ is the standard deviation of blank measurement, and k is the slope
of the linear relationship between (1 − ∆A/A0) × 100% and [VX].
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3.2. Selectivity and the Anti-Interference Ability of Colorimetry

In this study, the specificity performance of the colorimetry method was also inves-
tigated by measuring the response of the colorimetry method to different interferents.
Figure 4 shows the color changes in colorimetric solutions containing 2 µg/mL of SP and
250 µg/mL of TABF after the addition of 4 mg/mL of different of interferents. Meanwhile,
their UV−Vis absorption spectra were also recorded. As can be seen from Figure 5, the
absorbances of the colorimetric solutions were only slightly reduced, and the peak shapes
did not change significantly after the addition of DMMP and toluene. The absorbance of
the colorimetric solution was slightly reduced and changed to purple-red after the addition
of DCP. After adding triethylamine (Et3N) and DDVP, the absorbances of the solutions
increased significantly, while Et3N changed the color of the solution to blue and DDVP
changed the color of the solution to purple-gray. Parathion and acetic acid (AcOH) both
caused significant increases in the absorbance of the colorimetric solution system, in which
the color changed to yellow-green after the addition of parathion, and AcOH made the
colorimetric solution change to light emerald-green color. Colorimetry exhibited extremely
different responses to all of the other organophosphorus pesticides, phosphorus-containing
reagents, the benzene series, and the acid and base mentioned above compared with VX.
Based on these facts, we can assume that the colorimetry method developed in this article
was suitable for the selective detection of VX.
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Figure 5. UV−Vis spectra changes in colorimetric solutions after the addition of different interferents.

To examine whether the colorimetry method developed in this article could maintain
the sensing of VX under the potential competition of interferents, its anti-interference
capability was studied. Parathion, DDVP, DCP, DMMP, toluene, AcOH, and Et3N were
added at the 100 equiv. of VX. As shown in Figure 6, DDVP, DCP, and AcOH had slightly
noticeable effects on the detection of VX, which increased the A of the colorimetric solutions
and lowered the calculated concentrations. The other interferents did not appear to interfere
significantly with the detection of VX. It can be concluded that the colorimetry method
could still detect VX in the presence of the 100 equiv. of these different interferents;
however, its quantitative detection was, unfortunately, interfered. Therefore, the influence
of interferents such as DDVP, DCP, and AcOH on the detection results should be taken in
account when performing colorimetry.
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Figure 6. Absorption of colorimetric solutions (1), colorimetric solution containing VX (2),
and colorimetric solution containing VX mixed with the 100 equiv. of interferents (parathion (3),
DDVP (4), DCP (5), DMMP (6), toluene (7), AcOH (8), and Et3N (9)) at 644 nm.
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3.3. Mechanism for the Colorimetric Detection of VX

The addition of only VX to the colorimetric solution did not lead to color change, while
the presence of TABF led to a change in the UV-Vis spectrum. To further investigate the
response mechanism of the colorimetry method, the 1H NMR spectra of the SP (Figure 7a),
TBAF (Figure 7b), VX (Figure 7c), the mixture of the SP with TBAF (Figure 7d), the mixture
of the SP with VX (Figure 7e), the mixture of TBAF with VX (Figure 7f), the mixture of the
SP with TBAF, and VX (Figure 7g) were compared. When the SP was mixed with TBAF
(Figure 7d), the proton signal Ha (12.14 ppm) in the hydroxyl part of the SP disappeared,
the proton signal Hb (7.93 ppm) on the benzene ring adjacent to the hydroxyl group was
significantly split, and the proton signal on the benzene ring away from the hydroxyl group
became more complex. When the SP was mixed with TBAF and VX (Figure 7g), the proton
signal on the benzene ring changed significantly compared to the SP mixed with TBAF and
shifted to higher fields at 7.54 ppm.
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A proposed mechanism is illustrated in Scheme 2, in which a fluoride anion reacts with
VX to generate a thiolate fragment. The thiolate anion initiates a nucleophilic attack on the
electron-deficient central four-membered squaric acid ring in the SP. Then, the nucleophilic
attack of the thiolate fragment breaks the conjugation in the SP and induces color fading.

Subsequently, the mixture of the SP with TBAF and VX was subjected to MS analysis.
As can be seen from Figure 8, the positive ion peak at 162.2 for the hydrogenation of the
thiol portion of VX was found in the MS of the positive ionization of the mixture. However,
as can be seen from Figure S4, the hydrogenation of the thiol portion of VX was not found
in the MS of the positive ionization of the mixture of the SP and VX, indicating that the P–S
bond of the VX was broken to produce a thiol fragment in the presence of TABF.
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Figure 8. MS of the VX thiol fraction in the mixture of the SP with TBAF and VX.

A negative ion peak at 569.2 of the SP bound to the thiol fragment was found in the
MS of the negative ionization of the mixture of the SP with TBAF and VX. The mechanism
of the colorimetry method for the detection of VX should be that the presence of TABF
broke the P–S bond of VX, releasing the thiol fragment (Figure 9). Since the four-membered
ring of the SP was highly electron deficient, an additional reaction of the thiol fragment
with the SP subsequently occurred, which led to a disruption in the p–π conjugate structure
of the SP and resulted in changes in the UV−Vis spectra and color of the SP.
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4. Conclusions

In this article, a colorimetric squaraine probe (SP) was prepared, and a colorimetry
method for the detection of the organophosphorus nerve agent VX in a colorimetric solu-
tion that mixed the SP and TABF was established. The sensing characteristics of VX in the
colorimetric solutions were studied using UV-Vis spectroscopy. The results showed that the
absorbance levels of the colorimetric solutions decreased with increasing concentrations
of VX, and the method exhibited good linearity between the rate of change in absorbance
at 644 nm and [VX] in the range of 4~200 µg/mL. Furthermore, the colorimetry method
could detect VX in the presence of the 100 equiv. of interferents, such as other organophos-
phorus pesticides, phosphorus-containing reagents, a benzene series, and an acid and base.
1H NMR and MS studies revealed the mechanism of the colorimetric detection method.
VX produced a thiol fragment in the presence of TABF; then, the thiol fragment bound
to the four-membered ring of squaraine, which changed the D–A–D structure of the SP
and caused color fading. Compared with previous fluorescence and colorimetric detection
methods reported in the literature, the colorimetry method developed in this paper pos-
sessed a lower DL of 0.4 µg/mL. More importantly, it did not require the toxic metal ion
of Hg2+ for color recovery [29]. Even compared with other squaraine-based colorimetric
methods for the detection of organophosphorus nerve agents, the colorimetry method
had a similar satisfactory sensitivity [30]. It should also be noted that, compared with the
addition of VX, the absorption spectra of the colorimetric solutions changed significantly
after the addition of parathion, DDVP, and DCP, which indicated that the colorimetric
solution was also valuable for the detection of other organophosphorus compounds. Based
on this, colorimetric arrays for different targets should be developed in the future.

The colorimetry method proposed in this article can be used for the rapid detection
of VX; moreover, it provides a probable approach for the detection of organophosphorus
nerve agents and pesticides, metal ions, and many other targets of interest in the fields
of homeland security, environmental monitoring, and public health. This research also
provides a technical basis and reference for promoting the development of new, on-site
colorimetric methods, which have important supporting significance for the detection of
various harmful substances.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11020137/s1, Figure S1: 1H NMR spectrum of SP
in CDCl3; Figure S2: UV-Vis spectra changes in colorimetric solutions with TBAF contents of different
concentrations; Figure S3: Color changes in colorimetric solutions; Table S1: Absorbance changes in
colorimetric solutions; Figure S4: MS of the SP with VX.
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