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Abstract: Using a combination of chemical coprecipitation and hydrothermal treatment of the
resulting dispersed system, a hierarchically organized NiCo2O4 nanopowder was obtained, consisting
of slightly elongated initial oxide nanoparticles self-organized into nanosheets about 10 nm thick,
which in turn are combined into hierarchical cellular agglomerates of about 2 µm. Fourier-transform
infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), selected area electron diffraction
(SAED) and high-resolution transmission electron microscopy (HR-TEM) allowed to confirm the
formation of NiCo2O4 powder with the desired crystal structure via additional heat treatment
of the intermediate product. Energy-dispersive X-ray spectroscopy (EDX) was used to confirm
the target metal ratio, and the uniform distribution of the elements (Ni, Co and O) was shown
by mapping. The resulting nanopowder was employed to prepare functional inks suitable for
microplotter printing of the NiCo2O4 film. It was found that an oxide film morphology is fully
inherited from the hierarchically organized oxide nanopowder used. Atomic force microscopy (AFM)
revealed the film thickness (15 µm) and determined the maximum height difference of 500 nm over
an area of 25 µm2. Kelvin probe force microscopy (KPFM) showed that the surface potential was
shifted to the depths of the oxide film, and the work function value of the material surface was
4.54 eV, which is significantly lower compared to those reported in the literature. The electronic state
of the elements in the NiCo2O4 film under study was analyzed by X-ray photoelectron spectroscopy
(XPS). Chemosensor measurements showed that the printed receptor layer exhibited selectivity and
high signal reproducibility for ethanol detection. As the relative humidity increases from 0 to 75%,
the response value is reduced; however, the sensor response profile and signal-to-noise ratio remain
without significant changes.

Keywords: programmable coprecipitation; hydrothermal synthesis; NiCo2O4; nanopowder; film;
spinel; microplotter printing; electrode; gas sensor; supercapacitor

1. Introduction

Transition metal oxides (TMOs), especially metal cobaltites (MCo2O4, M = Cu, Zn,
Mn, Ni) with spinel structure, owing to their catalytic and electrochemical characteristics
are nowadays very promising materials in such practically important fields as alternative
energy [1–3], catalysis [4,5], optics [6,7], gas [8,9] and biosensors [10,11]. It is also noted that
such complex composition oxides exhibit improved functional characteristics compared
to the individual metal oxides comprising them. Thus, NiCo2O4 is an inverse spinel, a
typical p-type semiconductor combining two metal cations capable of forming two redox
couples: Ni3+/Ni2+ (0.58 V/0.49 V) and Co3+/Co2+ (0.53 V/0.51 V) [10]. Such reversible
processes can provide donor-acceptor sites for chemisorption of gas molecules and promote
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their subsequent reversible adsorption [10,12]. Thus, the high redox activity and electrical
conductivity (at least two orders of magnitude higher than those of individual cobalt and
nickel oxides [13]), as well as the commercial availability of nickel-cobalt spinel make it
a very attractive receptor material for resistive gas sensors. For instance, a number of
works report on the development of sensor systems based on NiCo2O4 sensitive to H2 [14],
NO2 [12], as well as to a number of volatile organic compounds (acetone [15], xylene [16],
n-butanol [17] and ethanol [18]). In the case of ethanol, the pure NiCo2O4 used by the
authors was characterized by a rather low sensory response, which may be due to an
insufficiently developed surface of the material. Its modification with tin dioxide particles
enhanced the chemosensory properties, but led to a complication of the synthesis method.

Other metal oxide-based materials are applied as receptor components used for ethanol
gas sensing. In particular, metal oxide semiconductor heterojunctions (MOSHs) [19,20],
which are characterized by low operating temperatures and improved kinetic parameters,
have recently received much attention in this context. A common chemosensor material
such as zinc oxide is also very effective for the detection of ethanol vapor in the ambient
atmosphere. In this case the functional properties can be improved by modifying it with
noble metals or rare-earth element oxides [21]. Using methods that allow the formation
of anisotropic oxide structures, the chemosensory properties of the materials in ethanol
detection can be further improved [22].

To improve the performance characteristics (magnitude and time of sensory response,
selectivity) of the receptor materials, researchers tend to form nanomaterials with hierarchi-
cally organized microstructure (including those consisting of anisotropic particles), which,
as a rule, leads to surface development and significant functional properties enhancement.
In particular, a number of papers have shown that such an approach makes it possible to
reduce charge (ion/electron) transfer distance and enlarge the active surface area of the
obtained materials. In turn, this contributes to increased number of surface active centers
and selectivity, as well as improved kinetic characteristics of the receptor materials [17,23].
Additionally, the features of the material’s pore structure have a significant impact on its
other functional characteristics [24].

Among the strategies for hierarchical nanostructures formation are coprecipitation,
microemulsion synthesis, sol-gel technology, electrospinning, as well as hydrothermal
and solvothermal methods [25–27]. In the present study, in order to ensure the primary
nucleation under controlled conditions, we used a programmable chemical coprecipitation
of intermediates, which enables fine control of the reagent mixing kinetics, taking into
account the pH value of the reaction system that changes as a result of their interaction.
The hydrothermal treatment of the obtained disperse system was further performed to
initiate additional self-organization of initial nanoparticles. According to the literature data,
the hydrothermal method enables the formation of the most diverse spectrum of morpholo-
gies: hollow spheres [28–30], nanotubes, nanofibers, nanorods and nanoneedles [31–34],
nanosheets and lamellar structures [35–37] or nanoflowers [38–40].

The microstructure and functional characteristics of the receptor layers formed are
greatly determined not only by the active material synthesis method, but also by the film
deposition method as well. The continuous trend toward miniaturization of microelectronic
devices in general and resistive gas sensors in particular, as well as the need to create their
components in the form of complex geometry planar nanostructures, requires the use of
modern high-technology deposition methods. In this context, additive technologies (inkjet
printing [41–44], aerosol jet printing [45–47], pen plotter printing [48–50], microplotter print-
ing [51–53] and microextrusion printing [54–58]), which enable automated reproducible
application of coatings of different thicknesses and geometries to various, have recently
become increasingly popular.

The aim of this work was to study the synthesis process of hierarchically organized
nickel-cobalt spinel using programmed chemical coprecipitation followed by hydrothermal
treatment of the resulting disperse system, to develop a microplotter printing technique of
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the corresponding film on the chip surface and to examine chemosensory properties of the
obtained material.

2. Materials and Methods
2.1. Materials

NiCl2·6H2O (>98%, Lenreactiv, St. Petersburg, Russia), Co(NO3)2·6H2O (>98%, Lenre-
activ, St. Petersburg, Russia), triethanolamine (C6H15NO3, 99%, Chimmed, Moscow, Russia)
of analytical grade were used in this work without a further purification.

2.2. Preparation of NiCo2O4 Nanopowder

NiCo2O4 nanopowder was obtained by combining the programmed chemical co-
precipitation method with hydrothermal treatment of the resulting solid phase particles.
Chemical coprecipitation was carried out using an ATP-02 automatic high-precision po-
tentiometric titrator equipped with a built-in pH meter (Aquilon JSC, Podolsk, Russia).
At the first stage, a 10% aqueous solution of triethanolamine was automatically added
(supply pulse was 3 s with a pause between pulses being 2 s) to 10 mL aqueous solution of
inorganic metal salts (total metal concentration was 0.1 mol/L) heated to 60 ◦C until reach-
ing pH 9.7 to achieve full conversion of metal-containing reagents. The resulting disperse
system was transferred into a 25 mL Teflon-lined stainless-steel autoclave and subjected to
hydrothermal treatment at 140 ◦C for 2 h. After the system cooled naturally to 25 ◦C, the
dispersed phase was separated and washed with distilled water by cyclic centrifugation
followed by drying of the intermediate at 100 ◦C for 5 h. Then, considering the thermal
analysis results, additional heat treatment (400 ◦C, 5 h) of the obtained powder was carried
out in ambient atmosphere to crystallize the target NiCo2O4 oxide with spinel structure.

2.3. Microplotter Printing of Hierarchically Organized NiCo2O4 Film

The obtained anisotropic NiCo2O4 nanopowder was further used to prepare a stable
disperse system (10 wt% oxide particle content) in α-terpineol in the presence of a binder
(ethylcellulose), appropriate as functional inks for microplotter printing of an oxide film
on the surface of a specialized Pt/Al2O3/Pt chip (Ra = 100 nm, geometric dimensions
4.1 × 25.5 × 0.6 mm). A capillary with a channel diameter of 150 µm was used as a dis-
penser. The automated application of an ink layer with lateral dimensions of 5 × 3 mm
on the chip surface in the area of preliminary applied platinum interdigitated electrodes
was carried out using a three-coordinate positioning system after the dispersion system
meniscus contacted the substrate surface in accordance with the digital pathway. After
touching the chip surface, the dispenser was moved in the lateral plane along a zigzag
trajectory with a distance between the lines of 100 µm. Due to wetting of the substrate, the
ink was spontaneously extracted from the capillary without additional external activation.
Once the printing program was completed, the dispenser was automatically moved along
the vertical axis by 1 mm above the film and moved away from the sample. The formed ink
film was further subjected to a stepwise drying in the temperature range of 25–50 ◦C (5 h)
for solvent evaporation, followed by an additional heat treatment at 350 ◦C (1 h) for binder
removal. The preparation steps of NiCo2O4 powder and a corresponding film microplotter
printing are presented in Figure 1.
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Figure 1. Schematic illustration of hierarchically organized oxide synthesis and microplotter printing
of the corresponding film on a chip.

2.4. Instrumentation

Thermal stability of the as-synthesized product was examined by synchronous (TGA/DSC)
thermal analysis (SDT Q-600 thermal analyzer, TA Instruments, New Castle, DE, USA) in an air
flow (250 mL/min) in the temperature range of 25–1000 ◦C (controlled heating was performed
in Al2O3-microcrucibles at a speed of 10◦/min, powder mass was 1.414 mg).

IR transmission spectra of powders were recorded in the wavelength range of 350–4000 cm−1

(signal accumulation time 15 s and resolution 1 cm−1; InfraLUM FT-08 FT-IR spectrometer,
Lumex, St. Petersburg, Russia). For this purpose, suspensions using powders after synthesis and
also after additional heat treatment were prepared in Vaseline oil and then placed between KBr
glasses in the form of films.

XRD patterns of the powders under study were obtained on a Bruker D8 Advance
diffractometer (Bruker, Bremen, Germany; CuKα = 1.5418 Å, Ni-filter, E = 40 keV, I = 40 mA,
2θ range—5◦–80◦, resolution—0.02◦, signal accumulation time was 0.3 s and 2.0 s; for the
coating analysis at 2θ range—28◦–45◦).

The microstructure of the resulting NiCo2O4 nanopowder and the corresponding
film formedon its basis were studied by SEM (Carl Zeiss NVision-40, Carl Zeiss, Inc.,
Oberkochen, Germany). TEM was also used for microstructure analysis, selected area
electron diffraction and elemental mapping on the surface of oxide agglomerates (JEOL
JEM-1011 equipped with ORIUS SC1000W digital camera; JEOL JEM2100 with X-MaxN
Oxford Instruments EDX spectrometer; JEOL Ltd., Akishima, Japan).

The printed coating was also investigated by AFM and KPFM methods (NT-MDT
Solver PRO microscope (NT-MDT, Zelenograd, Russia); ETALON HA_HR probes (ScanSens,
Bremen, Germany) with W2C conductive coating (rounding radius < 35 nm). The work
function of the material surface (φfilm) was calculated in the course of the KPFM measure-
ment. First, the film surface was scanned using a probe with a preknown work function
value (φtip), the mean contact potential (φCPD) value was measured and then φfilm was
determined as the difference between φtip and φCPD.

X-ray photoelectron spectroscopy (XPS) studies were performed using an OMICRON
ESCA + spectrometer (Scienta Omicron, Taunusstein, Germany) with an aluminum anode
equipped with an AlKα XM1000 monochromatic X-ray source (with an emission energy of
1486.6 eV and a power of 252 W). A CN-10 charge neutralizer with an emission current of
4 µA and a beam energy of 1 eV was used to eliminate the local charge on the analyzed
surface. The transmittance energy of the analyzer was 20 eV. The spectrometer was cali-
brated using the Au4f 7/2 line at 84.1 eV. The pressure in the analyzer chamber did not
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exceed 10−9 mbar. All spectra were accumulated at least eight times. Fluctuation of the
peak positions did not exceed ±0.1 eV.

Chemosensory tests were conducted on a precise laboratory setup. Two Bronkhorst gas
flow controllers (Bronkhorst Instruments GmbH, Leonhardsbuch, Germany) with a maxi-
mum throughput of 100 and 200 mL/min were employed to create a gas environment in the
quartz cell with a volume of 7 × 10−5 m3. A Fluke 8846A Digit Precision Multimeter with
an upper detection limit of 1000 MΩ (Fluke Corporation, Everett, Washington, DC, USA)
was used to control electrical resistance of the film printed on the specialized Pt/Al2O3/Pt
chip, and its temperature was monitored with a platinum micro-heater pre-calibrated with
a high-precision Testo 868 thermal imager (Testo, Lenzkirch, Germany). Hydrogen (H2),
carbon monoxide (CO), ammonia (NH3), benzene (C6H6), ethanol (C2H5OH) and acetone
(C3H6O) responses were measured using the corresponding calibration gas mixtures with
air. To measure the sensory signal at different relative humidity (RH) level, a special unit
with a bubble flask was utilized and the gas mixture RH was controlled by an Eksis digital
flow-through hygrometer (Eksis, Zelenograd, Russia). The temperature value of the relative
humidity was set and then measured at 20 ◦C.

3. Results and Discussion
3.1. Characterization of the Intermediate Product and the Obtained NiCo2O4 Nanopowder

The thermal behavior of the obtained intermediate product was studied by a syn-
chronous (TGA/DSC) thermal analysis in air (Figure 2). The corresponding TGA curve
shows that in the temperature range under study the powder undergoes 3 main steps
of mass loss: in the interval of 25–250 (∆m = 15%), 250–300 (28%) and 300–900 ◦C (8%).
Including some mass loss during the final heating stage, the total ∆m value was 51.6%.
However, a thermal effect (with a maximum at 264 ◦C) characterized by significant energy
release was observed only for the second step of mass change. This exo-effect, presumably,
is connected with crystallization of the target oxide (NiCo2O4). Such thermal behavior of
the intermediate product, according to the literature data [59], may indicate the presence of
nickel-cobalt hydroxocarbonate in its composition. The first stage of the mass loss can be
related to the residual solvent evaporation and the intermediate product partial decom-
position. During the third stage of mass loss the semiproduct decomposition is probably
continued, passing about 850 ◦C to the formed NiCo2O4 degradation, accompanied by
the oxygen release. Thus, in order to fully decompose the semiproduct and prevent the
target material degradation a sufficiently long additional heat treatment of the sample at
relatively low temperatures is required. Given the thermal analysis results the following
mode of the intermediate product additional heat treatment has been chosen: 400 ◦C, 5 h.
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The set of functional groups in the semiproduct and the resulting NiCo2O4 nanopow-
der was determined by FTIR spectroscopy (Figure 3). The spectrum of the intermediate
product exhibits a broad absorption band at 3100–3700 cm−1 and another absorption band
with a maximum at about 1646 cm−1 related to the ν(O-H) and δ(O-H) vibrations, respec-
tively, which are characteristic of the nickel-cobalt layered double hydroxide (LDH) [60,61].
At the same time, the powder spectrum shows an absorption band with a maximum of
about 1584 cm−1 and a complex band in the range of 990–1190 cm−1, which may be related
to ν(-CO2

–) and v(CO3
2–) carboxylate groups vibrations [62,63], indicating the presence of

metal hydroxocarbonate in the material composition. Two absorption bands with maxi-
mums at 647 and 555 cm−1 related to vibrations of (Co-O) and (Ni-O) groups, respectively,
and characteristic for the NiCo2O4 oxide with spinel structure were observed in the spec-
trum of the powder obtained by additional thermal treatment at 400 ◦C [64]. No functional
groups from any impurities (reagents or by-products) were detected in the powders.
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The crystal structure of the intermediate product and its transformation as a result
of additional heat treatment when obtaining the target NiCo2O4 oxide was studied with
X-ray diffraction analysis (Figure 4). Thus, in the case of the intermediate product, the main
set of reflections at 2θ value of 8.3◦ (significantly shifted to the small-angle region), 24.9◦,
33.2◦ and 59.2◦ can be indexed to the (003), (006), (101) and (110) planes of hydrotalcite-like
NiCo LDH phase [60]. The reflection at 16.7◦ (marked with a *), which is not related
to this phase, was also observed in [65], where triethanolamine was used as one of the
reaction system components. The authors of this work did not attribute this signal to any
compound. We attribute the existence of the corresponding reflection to the formation of
hexagonal metal carbonate hydroxide hydrate of the composition M(CO3)0.5OH·0.11H2O
(where M is nickel and cobalt cations) being one of the semiproduct components [66]. The
average size of the coherent scattering region (CSR) of the main semiproduct component
was 13.2 ± 1.5 nm, and for the carbonate hydroxide hydrate this parameter has a value of
8.9 ± 1.0 nm. The XRD results for the semiproduct agree well with the data of its thermal
analysis, as well as with the FTIR results. The set of reflections on the XRD pattern of the
oxide powder corresponds well to the target NiCo2O4 crystal structure (space group Fd3m,
PDF # 73-1702) [64]. No reflections from the intermediates or decomposition products of
the target material are observed in this case, which testifies to the optimal heat treatment
mode of the powder. The average CSR size for the obtained NiCo2O4 oxide is 9.0 ± 1.0 nm,
i.e., the material has a nanocrystalline state.
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The microstructure of the obtained NiCo2O4 nanopowder was studied by scanning
electron microscopy (Figure 5a,b). As can be seen from the micrographs, the material
has several levels of organization. Thus, initial spherical nanoparticles of 10.0 ± 1.0 nm
are self-organized into nanosheets of the same thickness, which in turn are combined
into hierarchically organized cellular agglomerates about 2 µm in size. As a result, the
microstructure features of the obtained oxide nanopowder provide access to the ambient
atmosphere for almost every primary nanoparticle, which is especially important for
achieving a high sorption capacity of the receptor components used in resistive gas sensors.
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nanopowder; SAED (c, inset) and HR-TEM results (d, inset).

Transmission electron microscopy, including high resolution one, was used to further
analyze the oxide nanopowder microstructure (Figure 5c,d). The results showed that the ini-
tial oxide particles have a slightly elongated shape with an average length of 11.2 ± 1.5 nm
and an average thickness of 5.4 ± 0.4 nm. The SAED pattern (Figure 4c, inset) indicates
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that the resulting NiCo2O4 powder comprises highly crystalline nanoparticles. The diffrac-
tion rings correspond to the (111), (200), (311), (400), (422), (511) and (440) planes of the
cubic phase (Fd3m), respectively. The HR-TEM image acquired from a single NiCo2O4
nanoparticle (Figure 4d, inset) shows lattice fringes matching the crystallographic plane
(111) with an average interplanar distance of 0.470 nm.

When studying the microstructure of the oxide powder by the TEM method, the target
metal ratio was also confirmed using EDX. In addition, the element distribution maps
(Ni, Co and O) on the surface of the oxide particles were built (Figure 6). According to
the obtained results, the corresponding elements were evenly distributed on the particle
surface of the powder under study. No impurities differing from the basic material in
chemical composition or microstructure were revealed.
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Hence, a hierarchically organized NiCo2O4 nanopowder with a spinel structure was
obtained by combining the programmed chemical coprecipitation and hydrothermal treat-
ment of the resulting disperse system. The synthesized oxide nanopowder was further
used in the preparation of functional inks suitable in their sedimentation stability and
rheological characteristics for microplotter printing of the corresponding oxide film as a
receptor component of a resistive gas sensor.

3.2. Characterization of Printed NiCo2O4 Film

The crystal structure of the NiCo2O4 film formed on the Pt/Al2O3/Pt chip surface was
studied by X-ray diffraction analysis (Figure 7). The overview XRD pattern demonstrates
(Figure 7, left) the signals from the substrate components (Pt and Al2O3) prevail. The
most intense (311) reflection related to the oxide film were only detected with a significant
increase in the signal accumulation time (Figure 6, right), which can be attributed to the
highly dispersed state of the material and its microstructure peculiarities. Therefore, it was
shown that the material crystal structure did not undergo any changes during functional
ink preparation and oxide film printing, as well as no crystalline impurities appeared.
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The microstructure of the printed NiCo2O4 film was examined by scanning electron
microscopy (Figure 8). It was found that the character of the material morphology was
completely inherited from the employed hierarchically organized oxide nanopowder char-
acterized by two levels of particle self-organization. Thus, additional experimental steps
involving the formation of a stable disperse system based on oxide particles, film applica-
tion by microplotter printing and additional heat treatment for solvent and binder removal
do not lead to noticeable distortions in the material microstructural features, given by the
synthesis conditions. Furthermore, it is shown that the obtained film is highly porous and
has a cellular microstructure that provides high sorption capacity and provides access of all
NiCo2O4 initial nanoparticles to the surrounding atmosphere, which is necessary to ensure
high efficiency of the material as a receptor component as part of a resistive gas sensor.
Thus, a more detailed analysis of the film pore structure revealed that the pores of the mate-
rial, as well as the particles, have a multimodal size distribution. In particular, nanosheets
are characterized by pores with an average size of 8 ± 2 nm, pores between nanosheets in
cellular agglomerates have a size of 200 ± 50 nm and pores between these agglomerates
vary in a range of 0.5–2.5 µm. Thus, the obtained film has a complex organization of the
pore structure.
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Atomic force microscopy was used to further study the surface morphology of the
obtained NiCo2O4 film. The topographic image (Figure 9a) shows agglomerates consistent
in shape and size with the SEM results. At the same time, the complex structure of these
formations composed of self-organized nanosheets of complex shape does not appear in
the obtained image, which is related to the peculiarities of the probe used for scanning.
The root mean square roughness Rq of the film over an area of 25 µm2 was 72 nm, and the
maximum height difference in the studied representative area has a value of 500 nm, which
confirms the developed surface of the material. At this stage, the thickness of the printed
coating (15 µm) was determined.
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When studying the NiCo2O4 film surface using Kelvin probe force microscopy, the
local electrophysical properties of the material were investigated. Thus, the corresponding
map (Figure 9b) shows that the surface potential is slightly shifted to depths, which
indicates that the charge carriers are shifted to these areas. At the same time, it should be
noted that the difference in potential values over a rather large (25 µm2) area with height
differences up to 500 nm was only about 35 mV. This indicates a very uniform surface
potential distribution and indirectly points to a relatively high conductivity of the film.
This result further suggests the high reliability of the electronic work function value of the
material surface, established basing on the KPFM data, which was 4.54 eV, considerably
lower than that found in the literature (about 5.5 eV) and obtained by analogous methods
(Kelvin probe mapping, KPFM) [67,68]. This fact is of particular interest and can point
to the specific features of the obtained material associated with an increased oxygen
vacancy concentration. For example, a study [69] shows that the NiCo2O4 work function
decreases when the oxygen vacancy level in the material composition increases. Probably,
in our case, these electrophysical properties of the material resulted from the specifics of
the synthesis process with the use of triethanolamine as one of the reagents, as well as
including the stage of hydrothermal treatment of the solid phase particles formed by the
programmed coprecipitation method. A lower work function value for the individual NiO
was observed in a previous study [70] where triethanolamine was also applied as a base,
but the semiproduct particles were formed directly in hydrothermal conditions.

The electronic state of the elements in the NiCo2O4 film was analyzed by XPS (Figure 10).
According to the data obtained, the experimental curves of cobalt Co2p and nickel Ni2p are
similar to the results of Ref [71]. At the first stage, the spectra of nickel and cobalt were fitted
without determining the elements states (Figure 10a,b). The background was subtracted by
the Shirley method [72] with the spin-orbit coupling area ratio 2p3/2-2p1/2 preserved as 2:1.
The positions, full width at half maximum (FWHM) values, and the ratios of the peaks to each
other were determined (Table 1).

Determination of the element electronic states in the spectra was carried out taking into
account the characteristic forms of the spectra for compounds with known stoichiometry,
such as NiO, Ni2O3, Co3O4 (spectrum form similar to Co2O3) and CoO. The spectral shapes
of the listed states are complex and include several peaks (Figure 10c,d). According to the
obtained results, the two elements are both in the Me2+ state and in the Me3+ form. In
contrast to Ref. [73], the maxima of the cobalt states are shifted to the region of higher values
by 0.2 eV, and the maximum of NiO is located at 854.4 eV. The analysis of the obtained data
made it possible to determine the peak parameters of the corresponding element states
(Table 2).
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the electronic state of the elements (c,d), as well as the results of the O1s spectrum (e) analysis.

Table 1. Fitting parameters of the Ni2p3/2 and Co2p3/2 spectra without determining the electronic
states of the elements: binding energy (eV), percentage of total area, FWHM (eV).

Compound Ni2p3/2 Co2p3/2

Peak 1 (eV) 854.4 779.7

% 13.16 25.17

FWHM (eV) 1.32 1.40

Peak 2 (eV) 855.9 780.5

% 32.71 10.53

FWHM (eV) 2.57 1.19

Peak 3 (eV) 857.9 781.3

% 16.78 14.39

FWHM (eV) 3.95 1.74

Peak 4 (eV) 861.6 782.2

% 24.59 32.46

FWHM (eV) 3.27 3.97

Peak 5 (eV) 867.41 786.48

% 3.35 12.56

FWHM (eV) 2.47 4.39

Peak 6 (eV) 864.39 789.7

% 9.42 4.89

FWHM (eV) 3.28 2.81
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Table 2. Coupling parameters of the Ni2p3/2 and Co2p3/2 spectra with determination of the states:
binding energy (eV), percentage of the total area, FWHM (eV).

Compound
Ni2p3/2 Co2p3/2

Ni(II) Ni(III) Co(II) Co(III)

Peak 1 (eV) 854.4 855.4 780.2 779.8

% 14.3 42.3 46.6 40.5

FWHM (eV) 1.02 2.67 2.24 1.3

Peak 2 (eV) 856.1 858.0 782.3 781.1

% 44.2 23.8 25.7 29.1

FWHM (eV) 3.25 4.00 2.66 1.62

Peak 3 (eV) 861.6 861.5 785.7 782.4

% 34.0 13.3 1.6 15.2

FWHM (eV) 3.76 2.67 2.29 2.18

Peak 4 (eV) 864.7 867.4 786.6 785.4

% 3.6 3.5 26.1 8.1

FWHM (eV) 2.04 2.91 4.98 4.44

Peak 5 (eV) 867.0 863.6 789.7

% 3.9 17.1 7.1

FWHM (eV) 2.44 4.00 3.29

The O1s oxygen spectrum (Figure 10e), in turn, can be divided into five peaks, two
of which relate to oxygen-containing carbon derivatives and are labeled C–O (531. 3 eV,
FWHM 1.8 eV) and C=O (531.9 eV, FWHM 1.8 eV), a peak at 533.2 eV and FWHM 1.8 eV
can be attributed to adsorbed H2O vapor, and two peaks related to the oxide film material.
The maximum of the lattice oxide peak is located at 529.9 eV and has a FWHM of 1.25 eV,
while the second peak with a position of 531.0 eV (FWHM 1.8 eV) can be related either to
hydrated oxygen atoms on the surface or to oxygen atoms having more positive electronic
density than the lattice oxygen. As a result, the concentrations and positions of the maxima
for the studied elements were determined (Table 3). Sensitivity factors were determined for
substances with known stoichiometry.

Table 3. Concentrations and positions of the elements.

Compound
Ni2p3/2 Co2p3/2 O1s

Ni(II) Ni(III) Co(II) Co(III) L.Ox H.Ox C=O C–O H2O

Position, eV 854, 4 855, 4 780, 2 779, 8 529, 9 531, 0 531, 3 531, 9 533, 2

Conc., at.% 5, 7 7, 4 16, 0 9, 1 34, 4 16, 1 1, 6 5, 7 4, 0

3.3. Chemosensory Measurements

The sensory response was calculated according to the formula:

S = |Rg − RAir|/RAir, (1)

where Rg is the resistance at a given concentration of the analyte gas; RAir is the resistance
in air.

The results of a chemosensor characteristics studies of the printed hierarchically
organized NiCo2O4 film were used to plot the selectivity diagram containing the sensory re-
sponse values for the analytes under study in the operating temperature range of 50–300 ◦C
(Figure 11a). The highest sensory response values can be seen for ethanol and acetone in
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the 150–300 ◦C range. At 275–300 ◦C the material shows almost the same signal for acetone
and ethanol, for which the response is, respectively, 54 (300 ◦C) and 123% (275 ◦C), and
at 225 ◦C there is a noticeable selectivity to ethanol (Set = 84% vs. Sac = 48%). A further
decrease in the operating temperature leads to a significant drop in the ethanol sensory
response (down to 40–54%, 150–200 ◦C). Signals to other analytes in the entire temperature
range do not exceed 39% (CO, 150 ◦C). The response value for other gases (except ethanol
and acetone) at 225 ◦C does not exceed 28%. Further, the chemosensory properties of the
oxide film were studied when detecting ethanol at 225 ◦C in more detail.
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As the ethanol concentration increased from 4 to 100 ppm at an operating temperature
of 225 ◦C, there was a consistent rise in electrical resistance relative to the baseline and the
sensory response from 14 to 84% (Figure 11b). The increase in resistance during exposure
to the reducing analyte is an indirect confirmation of the p-type conductivity of the receptor
material under study (NiCo2O4). The established dependence of the sensory response on
ethanol concentration (Figure 11c) is well described by the Freundlich isotherm equation:
S = kCa, where k and a are proportional and exponential constants representing adsorption
capacity and adsorption intensification, respectively [74]. In our case, the equation has
the form: S = 9.9C0.47 (the determination coefficient (R2) value is 0.987). This dependence
is typical for chemoresistive gas sensors and agrees well with the available literature
data [75,76]. Good reproducibility of the sensor response when detecting 10 ppm ethanol
was demonstrated during 8 gas cycles (Figure 11d).

The ethanol detection mechanism using NiCo2O4 oxide with spinel structure as a
receptor material can be described using the generally accepted notions of the analyte
interactions with the p-type semiconductor surface [77,78]. Thus, in the ambient atmosphere
at elevated temperatures, oxygen molecules adsorb on the semiconductor surface, which
leads to a change in the material electrical resistance as electrons from the conduction band
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reduce O2 to the ionic form (reaction 2). In this case, O2−, O− и O2
− ion-sorbed forms

are possible depending on the operating temperature [79]. At the intermediate operating
temperatures (including 225 ◦C), the O– form is presumably formed, and the presence of
such oxygen ions on the semiconductor surface promotes the generation of a core–shell type
electronic structure. Here, the core is the inner volume of the semiconductor particle, and
the shell is the hole accumulation layer, HAL [80], formed as a result of electron depletion
for the O2 to O− reduction. In the presence of ethanol, a redox reaction occurs at the
semiconductor surface between the O− ions and the analyte, where the latter undergoes
oxidation (reaction 3) [81]. The released electrons recombine with holes, leading to an
increase in resistance, as observed in our case (Figure 11b). There are some publications in
the literature [15,81–84] where NiCo2O4 is used as a sensing component of resistive gas
sensors for VOC’s at intermediate and elevated temperatures, which can be explained by
its catalytic activity with respect to these analytes. In addition, the efficiency of the material
in this case is largely determined by its microstructural characteristics, and a highly porous
state with a hierarchical self-organization of the nanomaterial can contribute to an extra
enhancement of its interaction activity with the surrounding atmosphere.

O2 + 2e− ↔ 2O−ad (2)

C2H5OH + 6O−ad ↔ 2CO2 + 3H2O + 6e− (3)

The effect of relative humidity (RH) on the sensory response when detecting 10 ppm
ethanol was also studied during chemosensor measurements (Figure 12). Thus, as the RH
rises from 0 to 80%, there is a consistent increase in baseline resistance (Figure 12a), as well
as a decrease in the response value from 14 to 9% and from 44 to 35% upon detecting 4
and 20 ppm ethanol, respectively (Figure 12b). Nevertheless, the sensory response profile
and signal-to-noise ratio remain unchanged over a wide range of relative humidity. In an
atmosphere of elevated RH, hydroxyl groups can form on the surface of the NiCo2O4 film
by the following mechanism [85,86]:

H2O(g) + O−(ads) + 2Sur + h+ ↔ 2(Sur-OH), (4)

where Sur is the cobalt and nickel cations at the lattice sites on the surface of the NiCo2O4
film under study. As a result of this reaction, the main charge carriers (h+) of NiCo2O4
are used, increasing the electrical resistance, as observed in our case (Figure 10a). The
formed hydroxyl groups on the material surface occupy active centers that could be used
for analyte gas sorption, resulting in a slight decrease in the sensory response (Figure 12a).
The obtained results indicate that the alteration in atmospheric humidity does not lead to
significant changes in the sensor response value and the kinetics of the surface processes
during ethanol detecting. This feature of the material under study is extremely important
from the practical point of view, since the sensing of gases under real conditions in the most
cases occurs at elevated humidity.
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4. Conclusions

With the combination of chemical coprecipitation and hydrothermal treatment of the
obtained disperse system, NiCo2O4 nanopowder with several levels of microstructure
self-organization was obtained-initial oxide nanoparticles of slightly elongated shape (av-
erage length is 11.2 ± 1.5 nm and average thickness is 5.4 ± 0.4 nm) are self-organized
into nanosheets of about 10 nm thickness, which in turn are aggregated into hierarchically
organized cellular agglomerates approximately 2 µm in size. Since triethanolamine was em-
ployed as a precipitating agent, a hydrotalcite-like nickel-cobalt layered double hydroxide
with an admixture of hexagonal metal hydroxocarbonate hydrate of M(CO3)0.5OH·0.11H2O
composition (where M is nickel and cobalt cations) was obtained as a semiproduct. The
additional heat treatment of the intermediate product at 400 ◦C (5 h) resulted in its com-
plete decomposition and the formation of the NiCo2O4 oxide with the spinel structure (the
average CSR size was 9.0 ± 1.0 nm). The powder formation of the aimed crystal structure
was confirmed by XRD, SAED and HR-TEM. The target metal ratio was confirmed by
EDX, and the uniform distribution of elements (Ni, Co and O) was proved by plotting the
corresponding maps. The resulting nanopowder was used to prepare functional inks with
sedimentation stability and rheological properties suitable for the microplotter printing
of the NiCo2O4 film on the Pt/Al2O3/Pt chip surface. The morphology of the oxide film
was found to be fully inherited from the hierarchically organized oxide nanopowder used,
having two levels of particle self-organization. It was shown that the obtained film is highly
porous and has a cellular microstructure, providing high sorption capacity and access of
all initial NiCo2O4 nanoparticles to the external atmosphere, which is necessary to ensure
high efficiency of the material as a receptor component of a resistive gas sensor. The AFM
revealed the film thickness (15 µm) and found the root mean square roughness (Rq) of the
film over an area of 25 µm2 to be 72 nm, while the maximum height difference in the studied
representative area is 500 nm, which confirms the developed material surface. KPFM data
indicated that the surface potential was shifted to deeper areas, suggesting that the charge
carriers were shifted to these regions of the oxide films. The work function value of the
material surface (4.54 eV) was significantly lower compared to those found in the literature,
and may indicate the peculiarities of the obtained material related to the increased concen-
tration of oxygen vacancies. Probably, in our case these electrophysical properties of the
material were caused by the specifics of the synthesis process where triethanolamine was
used as a reagent as well as the hydrothermal treatment stage of the solid phase particles
formed by the programmed coprecipitation method. The electronic state of the elements
in the film under study was studied using XPS. According to the results obtained, both
metals are in the Me2+ and Me3+ forms. The oxygen O1s spectrum with regard to element
concentrations can be divided into five peaks, two of which refer to oxygen-containing
carbon derivatives, a peak with a position of 533.2 eV and FWHM 1.8 eV can be attributed
to adsorbed H2O vapor, and two peaks referring to the oxide material of the film. The
conducted chemosensor measurements demonstrated that the printed NiCo2O4 film shows
selectivity in the detection of ethanol at an operating temperature of 225 ◦C. The sensory
response dependence for this analyte at concentrations of 4–100 ppm was determined. In
addition, high signal reproducibility was shown when detecting 10 ppm ethanol. With
an increase in relative humidity from 0 to 80%, a consistent baseline resistance growth is
observed, as well as a decrease in the response value from 14 to 9% and from 44 to 35%
upon detecting 4 and 20 ppm ethanol, respectively. Nevertheless, the sensory response
profile and signal-to-noise ratio remain unchanged over a wide range of relative humidity.
The efficiency of the material in this case is significantly affected by its microstructural
characteristics, and the highly porous state of the hierarchical nanomaterial can provide an
additional improvement of its interaction activity with the surrounding atmosphere.
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