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Abstract: Beer is the most consumed alcoholic beverage; with 177.5 million kiloliters produced
every year, it is one of the most relevant food products. Diacetyl is a typical byproduct of yeast
metabolism that is formed during the fermentation inside breweries. The perception of this high
volatile and butter-like flavor molecule varies according to the kind of beer, from a positive and
highly sought characteristic to a characteristic that is avoided. Furthermore, its toxicity when inhaled
has been proven. Typical diacetyl analysis includes voltametric detection and chromatographic
analysis techniques. Using metal oxide sensors (MOS), this analysis can become fast and cost-
effective, evaluating the differences in diacetyl concentrations through resistance variation. The S3+
(Nano Sensor Systems s.r.l.; Reggio Emilia, Italy; device can recognize volatile compounds through a
tailormade array of different materials. The results can be shown on a PCA that is directly generated
by the instruments and can be used to manage the productive process through an IoT integrated
system. Testing different beer typology through electrochemical sensors allows for the validation
of this new approach for diacetyl evaluation. The results have shown an excellent ability to detect
diacetyl in different beer samples, perfectly discriminating among different concentrations.

Keywords: diacetyl; MOX sensors; beer; real time analysis; IoT device

1. Introduction

Beer is produced worldwide and consumed in over 150 different styles, each one being
characterized by a peculiar attribute [1]. It is the most produced and consumed alcoholic
product in the world, with 177.5 million kiloliters being produced every year [2]. The
alcoholics market is continuously growing, and it is expected to globally increase its value
by 19% from 2018 to 2024 [3]. Through alcoholic fermentation, many different volatile
compounds are produced, which starts from the interaction between yeast and the matrix;
together with the compounds that characterize raw materials, they have a direct impact
on final product’s sensory perception. These chemicals belong to different classes, e.g.,
inorganic compounds, alcohols, organic acids, ester, aldehydes, vicinal diketones including
diacetyl, and many oth ers [4]. The production process and ingredients create significant
differences in the flavors, which is an important driver for food acceptability. Molecules
such as diacetyl or 2,3-Butanedione have a great impact on the flavor of many foods, from
dairy products to fermented matrixes including beer, thanks to its small and highly volatile
characteristics. Because of its butter-like aroma, it is commonly used as a flavoring agent,
and it is considered as GRAS by the FDA [5–7].
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Diacetyl is a vicine diketone produced by yeast action on the fermentation process as
byproducts of valine and isoleucine amino acid synthesis [8]. Diacetyl is converted into
2,3-butanediol thanks to various reductase enzymes [9,10], and its presence in beer can
vary according to the yeast and beer typology [11]. Like many other molecules, it can be
an appreciated characteristic of some food products or become a problem if its presence is
detected in others [6]. This can be noticed in beer samples, where the lager type usually has
a high diacetyl content, with a 0.15 ppm threshold [11,12]; meanwhile, bock beer should
not have it in its formulation because its sensory perception is influenced by different
volatile compounds. Pilsner and English-style ale usually have a higher concentration [13].
Indeed, lighter beers are usually characterized by higher diacetyl perception because in
these samples, the hop and malt do not have a preponderant importance on the flavor.
When its concentration exceeds the cited thresholds, non-compliance is produced [4,8].
This difference in choosing typology characterized by different diacetyl concentrations was
considered for sample selection. Lager beer is a low-temperature fermented and matured
beer, and nowadays, it is the most consumed beer in the world. It is characterized by a
sweet smell and taste with important fresh and malty notes [14]. Ale is a high fermented
beer with fruitier and sweeter notes than lager, and it is referred to a vast amount of sub-
classes. The diacetyl flavor threshold on these products are normally 0.10–0.40 ppm [8].
Indian pale ale (IPA) generally has a 5–8% alcohol volume, and it is characterized by a
pronounced hop aroma and high bitterness. In this typology, diacetyl’s presence can easily
generate non-compliance, and the thresholds are really low [4,15].

Implementing a detection system that is able to recognize diacetyl’s presence is pri-
marily important. Because of its volatility, quantitative analyses are difficult to pursue;
nevertheless, it represents one of the most important analyses in the brewing industries. Its
evaluation is an important tool for investigating the presence of problems related to pitch-
ing and fermentation, for studying the yeast vitality, and as a marker for beer aging [16,17].
Chromatographic analyses are the most often used techniques to detect diacetyl’s presence
in foods because of its good results; meanwhile, other analytical procedures include col-
orimetric assays and voltametric detection [5,8], which can guarantee excellent results for
miniaturizing samples [18]. Implementing electronic noses for beer evaluation is nowadays
a well-known field, as this topic has been investigated in the last 30 years [19,20]. Nowa-
days, many studies are currently undergoing the creation and validation of IoT integrated
devices that are able to detect different target molecules in fermented products [21]; how-
ever, only a few have already been implemented in real production processes. This study
follows this research field with the aim of scaling up and implementing the preliminary
results shown in this paper to a real production process. For this reason, the sample selec-
tion was not only based for different levels of diacetyl presence, but also for the production
processes where this device will be implemented.

Metal oxide sensors (MOS) have been widely studied for their ability to produce an
electrical signal, which starts from chemicals present on sample [22]. An S3+ (Nano Sensor
Systems s.r.l.; Reggio Emilia, Italy; www.nasys.it (accessed on 15 December 2022 ) device
is an innovative tool that has been already used with success in other previous studies
concerning quality control and food technology [23–25]. Thanks to its electrochemical
and nano oxide metal sensors, its ability to interconnect, and possibility to be remotely
controlled, this device can be efficiently used for many applications, including quality
control in production processes. For this reason, its implementation in diacetyl analysis is
based on solid scientific knowledge, starting from its instrumental composition. Before the
sensor’s application in inline devices, they must be calibrated to establish the functional
relationship between the measured values and specific analytical quantities [26]. This
expensive and time-consuming procedure plays a key role in providing reliable sensor
performances [27].

The S3+ device can contribute important information to different stages of the produc-
tion process, starting from the arrival of raw materials to process monitoring, as well as the
analysis of results. Furthermore, implementing data analysis through the PCA technique
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makes it possible to have a fast and easy-to-read data visualization. This process control can
be a great innovation because it can drastically reduce power consumption and food waste.
Indeed, the usually performed traditional analyses are destructive, slow, and expensive.
Implementing a continuous way to control a system can recognize undesired chemicals
when they are present in traces. In this scenario, corrective actions can be very effective and
do not require long and complex treatments. Vice versa, when chemical concentrations are
too high, corrective actions cannot be as effective, requiring expensive treatment that have
important consequences on the product’s final quality or even the possibility of having to
trash the products. Nowadays, the current limitation of electronic noses is the incapability
of performing quantitative analyses [28].

This work aims to analyze the volatilome of different craft beers, specifically investi-
gating how the presence of diacetyl affects final products according to their typology and
aromatic profile. Because the beer market is extremely important and it will grow in the
future, implementing new and developed technology can bring an important impact on
many fields, from reducing resource waste to improving the final quality. An S3+ device
equipped with advanced nanosensors was therefore implemented with the aim of looking
for new emerging applications fields for this technology, thanks to its capability of ensuring
fast, precise, and cost-effective analyses. This study sought to understand sensor response
patterns for this spe cific application. Finally, a post-run analysis was conducted using
the principal component analysis (PCA). Furthermore, creating a robust database allows
for the implementation and design of pattern recognition algorithms in order to provide
fast responses and artificial intelligence algorithms that can predict the situation of interest
in order to assure a higher level of quality in the standards and safety in the food/feed
production chain. These tailormade, noncommercial devices can be implemented for a
selected target molecule on a different matrix, which helps to achieve the digitalization and
automation of entire production lines.

2. Materials and Methods
2.1. Sample Preparation

The analysis was conducted in two different steps. First, a 5% hydroalcoholic solution
was prepared to emulate the principal beer characteristic in a flavor-free matrix. Later,
the analysis was performed on beer samples. Two different 5% hydroalcoholic solutions
with different diacetyl concentrations were created at 100 mg/L (S1: Standard 1) and
1 g/L (S2: Standard 2), respectively. In 500 mL of hydroalcoholic solution, three different
diacetyl concentrations were tested (0.01 mg/L, 0.06 mg/L, and 1 mg/L) to determine
the six best-performing sensors. These concentrations were chosen according to the oral
threshold found in the literature [29]. Later, analyses on three different types of beers were
conducted: IPA, ale, and lager. Beers were chosen according to their aromatic profile, and
we searched for samples with characteristics that were representative of the typology. For
each sample, 500 mL were taken, put in a three-hole Pyrex flask, and allowed to rest at
20 ◦C for 30 min in order to reduce the foam impact. Next, we added a specific quantity of
S1 or S2 to each sample to reach the desired diacetyl concentration. To reach 0.01 mg/L of
the contaminant, 80 µL of S1 was added. From this concentration, 250 µL of S1 was added
to reach 0.06 mg/L; then, 470 µL of S2 was added to reach 1 mg/L. Also considering the
analysis in the beer without added contaminant, four different concentrations were tested.

2.2. Calibration of MOX Sensor Array and S3+ Setup

The sensor calibration followed important strict steps in order to obtain the most
reproducible production.

At first, the sensor underwent a process of annealing in order to promote the stabiliza-
tion of the sensing layer on the substrate. This process can change according to the final
application of the sensor. The changeable parameters were:

• Temperature between 500 ◦C and 800 ◦C;
• Time between 1 h and 10 h.
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Once the annealing was finished, each sensor was subjected to a period of ageing in
air to reduce and standardize the sensing layers electrical resistance (Ω). This period can
change the sensitivity to VOCs, which future applications will demand. Overall, the sensor
was proven in a tried-and-tested system. This one was equipped by the following:

• A chamber test with a standardized dimension, which promote a smooth flow in and
out of the chamber;

• A mass flow program that absorbs and controls the flow from the air and ethanol
pressure cylinders;

• An electronic board that controls the conditioning and monitoring of the sensor at the
working temperature, transduces the chemical signal in an electrical signal, and sends
all the data to the cloud.

The S3+ device was composed of a sensor chamber, fluid dynamic circuit for the distri-
bution of volatile compounds, and electronics control system. In the sensor steel chamber,
six inhouse-developed MOX sensors were contained. These sensors were differently doped:
two of them were created using SnO2, two were SnO2 with Pd, and two were SnO2 with
Au. The working temperature was 500 ◦C (Table 1). It allowed for the separation between
sensors and the environment. The dimensions of the chamber were 11 × 6.5 × 1.3 cm.
The sensors were previously selected for the best performance during the preliminary
tests. The volatile compounds were forced to only pass through an inlet and an outlet
into the sensor chamber. The sensor response is based on the change of its resistance (∆R)
over time, which is caused by its interaction with different kinds of volatile compounds.
The reactions between the oxygen species adsorbed on the surface of the sensor and the
target molecules lead to the variation in the concentration of charge carriers in the sensing
material, affecting its electrical conductance [30]. The environmental parameters inside
the chamber such as temperature, humidity, and flow were constantly monitored. The
dynamic fluid circuit was composed of a pump (Knf, model: NMP05B), polyurethane tubes,
an electro valve (Camozzi Group s.p.a., model: K000-303-K11M), and a metal cylinder with
activated carbon. This was used to filter air, avoiding the passage of environmental odors
that may alter the final response. The solenoid valve was positioned at the inlet of the
chamber to control the flow of the pump, with a maximum of 250 sccm. The electronic
board processed all sensor responses by detecting the outgoing electrical resistance; it also
controlled the operating sensor’s temperature, which is an important parameter for the
detection of volatile compounds. Finally, the system was able to send data to the web app
dedicated to the S3 device via an internet connection [31], being an IoT device.

Table 1. Schematic description of the setup for different sensing elements.

Type of Sensor Doping Working Temperature (◦C)

MOX sensor MOX sensor
MOX sensor

SnO2 500 ◦C
500 ◦C
500 ◦C

SnO2 + Pd
SnO2 + Au

The sample order was randomized, with two analyses performed each day. In total,
22 different analysis were performed during the study, vacuuming the air on the headspace
through a polypropylene (PP) tube, which was held by Parafilm®. Two different carbon
filters were used, with one being attached to the sample in order to filter the air substitution
on headspace and one being attached to the S3+ device. This setup is shown in a schematic
way in Figure 1A, whereas Figure 1B shows the actual setup used. For each analysis,
10 different measurement were taken, for a final total of 220 different measurements. Each
measurement was carried out according to the following parameters: 100 s for the creation
of the baseline by the suction of filtered air, 300 s of sampling from the sample headspace,
and 600 s for signal recovery through the fresh intake of filtered air.
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Figure 1. (A) Schematic representation of the instrumental analysis setup. (B) Analysis conducted on
a lager beer sample. Beer is stored inside a three-hole Pyrex flask (1). One hole is closed, while the
others two are connected with an active carbon filter (2) on the left exit and the S3+ device (3) on the
right exit. Filtered lab air was used as the carrier gas. Furthermore, the S3+ device was connected to a
second active carbon filter (4) to reduce the environmental contribution during the signal recovery.
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2.3. Data Analysis

The outcome results, expressed as the difference in the resistance value, were sent to
the cloud and managed on the Microsoft Azure platform, where they were traduced by the
PCA technique, which emphasized variation and brought out strong patterns in the dataset.
These data were then traduced by a multivariate statistical analysis using MATLAB, R2019b
(MathWorks, Natick, MA, USA). Sensor outputs such as resistance were normalized at
the first acquisition value (R0). For each sensor, the difference between the first value and
the minimum value during the analysis was calculated. Therefore, the R/R0 parameter
and standard deviation was calculated for every sensor during all 10 measurements and
before performing the PCA analysis with 10% maximum uncertainty. Thanks to the PCA,
it was possible to emphasize the variation and bring out strong patterns in the dataset. In
order to do so, all of the outcome PCA were analyzed through specific features selection,
which were specifically defined for each sensor. Features were previously extracted for each
sensor from its recorded track. This decision is thanks to the implementation of a random
forest, which is a tree-based classifier. The selected features (supervised selection) for all
of the outcome PCA were: mean last 60 (mean of the latest 60 samples measurements);
mean (mean of the obtained values); minimum (minimum value of the curve); integral
(signal’s integral, calculated by “Simpson’s Rule”); difference (differences between mean
of last 5 samples minus the mean of the firsts samples); maximum (maximum value of
the curve); and delta-R (difference between higher and lower resistance value). Thanks
to the feature selection, it is possible to maximize the margin among two different classes
according to their importance on the features in the defined dataset [32]. To determine
what can be defined as an outlier, three times the standard deviation (99.7%) was set as the
reaction threshold.

3. Results and Discussion

Data collected by the chosen six sensing elements were recorded and stored into the
web app in order to be easily managed by employers to quickly monitor the production
process on any device. An example of the recorded tracks is visible in Figure 2, where
differences among sensing elements are due to the dissimilar interaction with the sample,
the non-identical dopant used, and structural characteristics. From the track, it is possible
to see how the system is able to make measurements with a good replicability over time.
During the withdrawal phase, a drop can be noticed, with a ∆R value always being greater
or equal to 75%. Furthermore, the recovery phase takes place correctly, returning the
baseline to the starting resistance value.
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Figure 2. Three different recorded tracks made by differently doped sensing elements on the same
sample: Sensor S0: SnO2 + Pd; Sensor S1: SnO2; Sensor S2: SnO2 + Au. The y-axis shows the resistance
value (Ω) while the x axis shows time (s). Once the tracks have been recorded, this project firstly has
the aim of correctly selecting the best-performing sensor array for this specific application. As shown
in Figure 3, the selected sensing elements are able to detect and discriminate 5% hydroalcoholic
solution samples with different diacetyl concentrations. The selected features were mean last 60,
mean, minimum, integral, difference, maximum, and delta-R. All three different concentrations (0.01
mg/L, 0.06 mg/L, and 1 mg/L) are recognized as different among themselves and, for that reason,
this specific sensor’s array was implemented for next steps.
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Figure 3. PCA on the 5% hydroalcoholic solution. Blue: 0.01 mg/L; yellow: 0.06 mg/L; brown:
1 mg/L.

Once the ability to discriminate a simplified solution was demonstrated, the capability
to detect a difference among the different beers was tested. Figure 4 depicts the outcome
PCA of untreated ale, IPA, and lager, which produced three different clusters according
to the different beers’ aromatic patterns through the difference in the detected resistance
by the sensitive elements. The selected features were the integral and delta-R. Through
this representation, it is possible to describe all of the collected dataset by both reduced
principal components, as the sum of these PCs reached 100% of the variance.
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Figure 4. PCA obtained by the different types of beer. Light blue dots: ale; yellow dots: IPA; brown
dots: lager. As described, the second part of the analysis was focused on investigating the S3+ device’s
discriminant capacity in the beer samples. We performed 19 different tests and compared the results
of different types of beers and different diacetyl concentrations. The results of the analysis show that
the S3+ device is able to detect differences in molecule concentrations at levels that are smaller than
the human perception threshold. This ability is demonstrated in Figure 5 with the remarkably high
explained variance on the outcome PCA. Indeed, two different clusters are visible in the IPA samples.
Nevertheless, two different populations (brown dots and light blue dots) are still visible, showing
how the device is able to recognize even very small differences among the samples. The selected
features were mean and difference.
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Figure 5. Comparison between two different IPA samples. Brown dots: IPA beer in an unaltered
state (US); light blue dots: IPA with 0.01 mg/L of diacetyl. All outliers, as shown in Figure 6, were
measured in the first moments of the withdrawals. This can be explained because in the first moments
of the analysis, ethanol, CO2, and other volatile compounds such as diacetyl are accumulated in
the headspace. This could mean that the first data analyzed are affected by this quiet moment and,
as a consequence, abnormal data are collected that affect the outcome PCA. This specific pattern is
recognizable in all of the shown PCA, because no data were considered.
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Figure 6. Collected data during 8 replicas of IPA samples with 0.01 mg/L of diacetyl. Purple samples
are the reported outliers each color correspond to a single one measurement replicate.

Diacetyl’s concentration effectively affects the samples’ volatilome, as shown in
Figure 7. The selected features were the delta-R and integral. Here, the device’s capa-
bility to recognize differences between different beer samples and diacetyl concentrations
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has been tested. The central cluster composed by light blue and purple dots represents
both IPA and lager beers with 1 mg/L of diacetyl. The overlap of these two typologies is
due to the preponderant importance of diacetyl in the collected data. In fact, with 1 mg/L
of the contaminant inserted, the results are extremely affected by these molecules, and
other sensorial differences become less important. This has been observed in every sample,
and for this reason, beers with important aromatic differences are recognized as a single
central cluster.
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Diacetyl, as can be observed in Figure 8, has a direct impact on the sensors’ recorded
tracks. Indeed, a small distance between the clusters confirm that all of the used matrix
belong to the same typology, and the dissimilarity is attributable to differences in diacetyl
increasing the concentration in the lager samples. According to these results, it is possi-
ble to implement this device for a real production process to effectively control diacetyl
developments. The implemented features were the integral e minimum.
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4. Conclusions

Nowadays, there is a limitation mainly with respect to the necessity of using finished
products instead of semi-finished products. Because corrective procedures should be
implemented on semi-finished products during the production process, a study of how
sensors can recognize this non-compliance should be produced in a real matrix. This will
be considered during the next step, where the S3+ device will be implemented in a real
productive process.

The capability of recognize the difference among different beer types was confirmed
by this study. Indeed, all three different beer typologies produced different clusters. This
is evidence of the device’s capability to recognize different products that start from its
volatilome. Furthermore, this device is able to recognize different diacetyl concentrations,
also giving as a result a PCA test with a high value of variance explained. Exceeding a
specific concentration determines the formation of non-compliances. This is motivated by
the fact that regardless of the selected typology, the presence of a specific concentration
turns out to be preponderant and mainly affects the outcome PCA.

Through this device, it is possible to perform and implement a control alongside all of
the production process. This can improve not only the final quality, ensuring compliance
with the imposed standards, but also reduce food and resource waste. Indeed, by applying a
constant and non-destructive control on the process, data can be continuously achieved and
used to create an IoT integrated system that is able to manage all of the production process.
Finally, an analysis through the S3+ device can be performed on other aspects of beer’s
off-flavors such as dimethyl sulfide in order to investigate the MOX sensor’s detection
capability for different chemicals. Implementing knowledge on beer’s contaminants can
improve the capability of quickly recognizing all of the non-compliances. For this reason,
MOX sensors can become an active support and can become a highly functional tool for
beer production lines and more.

Author Contributions: Conceptualization, A.L., D.G. and E.N.-C.; methodology, A.L., D.G. and
E.N.-C.; software, A.L., D.G. and V.S.; validation, E.N.-C., R.D.S., M.R. and V.S.; formal analysis,
E.N.-C. and V.S.; investigation, A.L. and D.G.; resources, M.R. and V.S.; data curation, A.L. and D.G.;
writing—original draft preparation, A.L., D.G. and E.N.-C.; writing—review and editing, A.L., D.G.
and E.N.-C.; visualization, A.L., D.G., E.N.-C., S.C., R.D.S., M.R. and V.S.; supervision, M.R. and V.S;
project administration, M.R. and V.S; funding acquisition, M.R. and V.S. All authors have read and
agreed to the published version of the manuscript.

Funding: Funded by the Project: Virtualization, sensing, and IoT for the innovation of the industrial
process of beverages e-Brewery—ARS01_582 National Operational Programme 2014–2020 of the
Italian Ministry of Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy reason.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Colen, L.; Swinnen, J. Economic Growth, Globalisation and Beer Consumption. J. Agric. Econ. 2015, 67, 186–207. [CrossRef]
2. Garavaglia, C.; Swinnen, J. Economic Perspectives on Craft Beer; Palgrave Macmillan: London, UK, 2018.
3. Baek, C.-W.; Chang, H.-J.; Lee, J.-H. Method Validation and Assessment of Hazardous Substances and Quality control Character-

istics in Traditional Fruit Wines. Foods 2022, 11, 3047. [CrossRef] [PubMed]
4. Preedy, V.R. Beer in Health and Disease Prevention; Academic Press: London, UK, 2009.
5. Shibamoto, T. Diacetyl: Occurrence, Analysis, and Toxicity. J. Agric. Food Chem. 2014, 62, 4048–4053. [CrossRef] [PubMed]
6. Clark, S.; Winter, C.K. Diacetyl in Foods: A Review of Safety and Sensory Characteristics. Compr. Rev. Food Sci. Food Saf. 2015, 14,

634–643. [CrossRef]
7. Wang, J.; Zhang, Q.; Yao, S.; Lu, L.; Li, J.; Tang, Y.; Wu, Y. Diacetyl as new-type of artificial enzyme to mimic oxidase mediated by

light and its application in the detection of glutathione at neutral pH. Microchem. J. 2022, 179, 107529. [CrossRef]

http://doi.org/10.1111/1477-9552.12128
http://doi.org/10.3390/foods11193047
http://www.ncbi.nlm.nih.gov/pubmed/36230125
http://doi.org/10.1021/jf500615u
http://www.ncbi.nlm.nih.gov/pubmed/24738917
http://doi.org/10.1111/1541-4337.12150
http://doi.org/10.1016/j.microc.2022.107529


Chemosensors 2023, 11, 147 12 of 12

8. Krogerus, K.; Gibson, B.R. 125th Anniversary Review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013,
119, 86–97. [CrossRef]

9. Ferreira, I.M.; Guido, L.F. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [CrossRef]
10. Otsuka, M.; Mine, T.; Ohuchi, E.; Ohmori, S. A Detoxication Route for Acetaldehyde: Metabolism of Diacetyl, Acetoin, and

2,3-Butanediol in Liver Homogenate and Perfused Liver of Rats. J. Biochem. 1996, 119, 246–251. [CrossRef]
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