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Abstract: In this work, the feasibility of solid-surface three-dimensional fluorescence (SSTF) in
combination with chemometrics to rapidly and directly determine three PAHs in drill cuttings
recycling products was studied for the first time. Due to the nondestructive characteristics of SSTF
and the “mathematical separation” of chemometric three-way calibration, neither time-consuming
sample pretreatments nor toxic organic reagents were involved in the determination. By using
the smart “mathematical separation” function of the parallel factor analysis (PARAFAC) algorithm,
clear spectral profiles together with reasonable quantitative results for the three target PAHs were
successfully extracted from the total SSTF signals of drill cuttings recycling products without the
need for chromatographic separation. The linearity of the calibration models was good (R2 > 0.96)
and the average spiked recoveries of three target PAHs were between 88.1–102.7% with a relative
standard deviation less than 20%. Nevertheless, given the green, fast, low-cost, and nondestructive
advantages of the proposed strategy, it has the potential to be used as a fast screening approach and
allow for a quick survey of PAHs in drill cuttings recycling products.

Keywords: solid-surface three-dimensional fluorescence; polycyclic aromatic hydrocarbons; chemometrics

1. Introduction

With the development of the economy, the demand for petroleum is increasing sig-
nificantly. In order to meet this demand, more and more petroleum should be exploited.
However, during the exploration of petroleum, a large amount of waste is produced every
year, such as waste drilling fluids and drilling cuttings, oil sludge, and landing crude
oil [1–3]. Oil-based drill cuttings are the hazardous waste generated from oil and gas devel-
opment, which accounts for 50–70% of the total amount of the abovementioned wastes [4,5].
For example, the annual amount of waste drilling cuttings generated in China alone is
more than 3 million tons [6,7]. In order to dispose of these solid wastes, many of them
are treated by some chemical or biological techniques and recycled into paving stones
or construction bricks [8,9]. As is well known, the drilling solid wastes usually contain
high levels of polycyclic aromatic hydrocarbons (PAHs) and have potential risks to the
environment and living bodies [10]. Therefore, it is urgent to develop an inexpensive,
effective, and user-friendly analytical method to monitor and assess the content of PAHs in
drilling solid wastes recycling products.

Up until now, a lot of analytical strategies (mainly chromatographic methods, such
as HPLC-UV [11,12], GC-MS [13,14], and GC×GC-TOFMS [15,16]) have been developed
for determining the contents of PAHs in various environmental matrices. Generally, the
chromatography-based methods provide good separation and low limits of detection.
However, they tend to be expensive, a waste of time, and usually require tedious sample
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pretreatments [17]. Owing to the existence of aromatic rings in molecules, PAHs are intrin-
sically fluorescent, which makes fluorescence spectroscopy possible for their analysis [18].
Fluorescence spectroscopy has superior performance from the perspective of accuracy, cost,
analytical speed, and the operator’s safety and health. For example, Gu et al. [17] proposed
a green chemometrics-assisted fluorimetric detection method for the direct and simultane-
ous determination of six PAHs in oil-field wastewaters, which was proven to be comparable
with the classical GC-MS method. More recently, they proposed three- dimensional flu-
orescence spectroscopy coupled with chemical pattern recognition methods for tracing
the sources of oilfield wastewater [19]. However, as for solid samples [20], traditional
fluorescence spectrometry still faces complex sample extraction steps and may consume
plenty of toxic organic reagents, which would lead to secondary pollution.

In considering the above, solid-surface three-dimensional fluorescence (SSTF) could be
an attractive alternative method to analyze solid samples directly [21]. SSTF spectrometry
offers a simple, fast, non-destructive form of measurement, without any sample preparation
or extraction steps, which has been investigated extensively in food preparation [22]
and pharmaceutical domains [23]. Structurally, SSTF data acquired from multiple solid
samples consist of three dimensions: the excitation dimension, emission dimension, and
sample dimension. This form of data structure enables SSTF spectrometry to achieve the
accurate quantitative analysis of multiple components of interest in complex solid samples
with unknown interferences when combined with chemometric three-way calibration
algorithms, which is known as the “second-order advantage” [24,25].

The purpose of this work was to evaluate the feasibility of SSTF spectrometry cou-
pled with chemometric three-way calibration for the rapid and direct determination of
three common PAHs in drill cuttings recycling products. To achieve this goal, SSTF spec-
tra of two kinds of drill cuttings recycling products, including pretreated waste drilling
cuttings and their recycling product bricks, were acquired and analyzed using the chemo-
metric three-way calibration algorithm: parallel factor analysis (PARAFAC). The analytical
process of this strategy is illustrated in Figure 1, as reported by our previous work [17]. It
was demonstrated that the combination of SSTF spectrometry with chemometric three-way
calibration has the potential to offer a quick survey of PAHs in drill cuttings recycling
products owing to its green, fast, low-cost, and nondestructive characteristics.
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2. Experimental
2.1. Chemicals and Reagents

The standard substances of three common PAHs, including anthracene (ANT), flu-
oranthene (FLA), and pyrene (PYR), were provided by Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China); their mass purity was >99%. Two kinds of drill
cuttings recycling products, including the pretreated waste drilling cuttings and their
recycling product bricks, were sampled from an oil field in the southwest of China. Blank
soils without any PAHs pollution were collected from local farmland in Jingzhou, China,
and were confirmed by GC-MS method. Prior to analysis, the drill cuttings recycling
products and blank soils were naturally dried, crushed by blender, and passed through a
120-mesh sieve.

2.2. Sample Preparation

To quantify the ANT, FLA, and PYR in drill cuttings recycling products, nine calibra-
tion samples (Cal01–Cal09) were prepared by diluting corresponding solid PAHs standards
with blank soils using the grinding method. The calibration ranges of ANT and FLA were
0.5 to 4.5 mg g−1, while the calibration range of PYR ranged from 2 to 10 mg g−1. In
addition, three prediction samples for each kind of drill cuttings recycling products were
made by using their corresponding solid powders directly. Each kind of drill cuttings
recycling product was prepared in triplicate, and the concentration of every target PAH
was the mean value. Furthermore, to prove the accuracy of the proposed analytical method,
three spiked samples (Sp01–Sp03) for each drill cuttings recycling product were constructed
by adding low, middle, and high levels of solid PAHs standards to the prediction samples
mentioned above. The concentrations of the three PAHs in the nine calibration samples
and the three spiked drill cuttings recycling product samples are summarized in Table 1.

Table 1. Concentrations (mg g−1) of three PAHs in nine calibration samples and three spiked drill
cuttings recycling product samples.

Sample ANT FLA PYR

Cal01 0.5 4.5 8
Cal02 1 4 5
Cal03 1.5 3.5 2
Cal04 2 3 9
Cal05 2.5 2.5 6
Cal06 3 2 3
Cal07 3.5 1.5 10
Cal08 4 1 7
Cal09 4.5 0.5 4
Sp01 1 3 3
Sp02 2 2 9
Sp03 3 1 6

2.3. Solid-Surface 3D Fluorescence Measurement

Solid-surface 3D fluorescence was measured by an F-7000 spectrofluorometer config-
ured with a 5J0-0152 solid sample holder accessory (Hitachi, Tokyo, Japan). In order to
obtain the SSTF spectra, the apparatus was run in 3-D scan mode with excitation range of
250 to 430 nm (3 nm interval) and emission range of 400 nm to 511 nm (3 nm interval). The
scan speed was 30,000 nm min−1, and PMT voltage was 500 V. Slit widths of excitation and
emission were both set to 5 nm. In such a way, a three-way SSTF data array with a size of
62 (excitation) × 39 (emission) × 21 (sample) was obtained.

2.4. Chemometric Analysis

The SSTF spectra were recorded by FL solution software (Hitachi, version 4.0). In all
situations, the raw SSTF spectra were transferred from FD3 format into MATLAB readable
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.txt files for further data analysis. PARAFAC decomposition, regression, and prediction of
three PAHs in drill cuttings recycling products were implemented using the in-house code.

3. Results and Discussion
3.1. SSTF Characteristics of Individual PAHs

Considering the adverse effects of Rayleigh and Raman scattering in the SSTF spectra,
they must be eliminated before data analysis. In this study, the Raman scattering was
firstly minimized by deducting the basal blank (i.e., blank soil) from all SSTF spectra. Then,
the Rayleigh scattering was removed and modeled by the interpolation method. Figure 2
shows the STTF spectra of the third calibration sample before and after removing the
Rayleigh scattering. As can be seen, it was successfully eliminated from the raw STTF
spectra. Figure 3 shows the contour plots of the SSTF spectra of the solid standard ANT,
FLA, PYR, and a mixture of them after removing the scattering. It can be clearly seen that
ANT, FLA, and PYR have a wide excitation peak range of 250–400 nm and an emission
peak at around 420, 460, and 440 nm. Moreover, the peak regions of the three PAHs are
significantly overlapped (Figure 3A–C). Due to the high spectral overlap, it is very difficult
to distinguish the presence of one specific PAH in the mixture (Figure 3D) without the
assistance of deconvolution. Moreover, the PAHs usually co-existed with plenty of other
unknown fluorescent interferences in drill cuttings recycling products, making the situation
more complex.
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In this case, a traditional solution is to apply the strategy named “separation followed
by analysis”; that is, to first completely separate target PAHs by some necessary sample
pretreatment procedures, and then to analyze them one by one [26]. In the current work,
we will turn to the chemometric modeling for help; namely, use smart “mathematical
separation” instead of the traditional “physical and/or chemical separation” to extract
the pure spectra of each PAH from the complex mixed SSTF spectra, and then achieve the
rapid and direct analysis of multiple PAHs even in the presence of overlapping peaks and
unknown fluorescent interferences.

3.2. Method Development

In this section, we will use the well-known PARAFAC algorithm [27] to resolve
the overlapping SSTF spectra of ANT, FLA, and PYR. Figure 4 shows the resolved pure
excitation spectra and emission spectra as well as their reference spectra for the three
PAHs in the nine calibration samples. As illustrated in Figure 4, although there are serious
spectral overlaps of the three PAHs in the excitation and emission modes, the proposed
strategy can still extract clear pure excitation and emission spectra for each target PAH
from the mixed SSTF spectra. This means that the proposed strategy can indeed use the
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“mathematical separation” of the PARAFAC algorithm to replace the traditional “physical
and/or chemical separation” and achieve the signal separation of each PAH.
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Figure 4. PARAFAC resolved excitation spectra (A) and emission spectra (B) as well as their reference
spectra for the three PAHs in the nine calibration samples.

The calibration models of the three PAHs based on the relative concentrations against
the real concentrations in the nine calibration samples are shown in Figure 5 and Table 2.
As can be seen, the linearity between the relative concentrations resolved by PARAFAC
and the real concentrations are acceptable (R2 > 0.96); these results demonstrate the feasi-
bility of using the SSTF spectroscopy coupled with the PARAFAC algorithm for resolving
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and quantifying overlapped PAHs. In the following section, the performances of the
proposed method on real complex samples (i.e., drill cuttings recycling products) will be
further investigated.
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Table 2. The calibration equations and their correlation coefficients for the three PAHs.

Analyte Calibration Equation R2 RMSEC (mg g−1)

ANT Y = 5918.43X − 3160.37 0.9785 0.19
FLA Y = 5635.00X − 601.08 0.9811 0.18
PYR Y = 1109.05X − 487.40 0.9607 0.52

3.3. Method Application

As a practical method, we utilized the proposed strategy to quantify the contents of the
three PAHs in two kinds of drill cuttings recycling products. The results are summarized
in Table 3. As can be seen, some the three PAHs were detected in drill cuttings recycling
products. For example, ANT and FLA were detected in pretreated drill cuttings, while only
FLA was detected in bricks. As for the remaining target PAHs, they may not be present or
may not be detected because of the low sensitivity of the SSTF spectroscopy. In order to
prove the accuracy and reliability of the proposed method, the spiked recovery experiments
were carried out; the recoveries are listed in Table 3. We can see that the average recoveries
for the spiked concentration at low levels are a bit worse, while the average recoveries
for the spiked concentration at high levels are good. The reason for this phenomenon
is that the sensitivity of the SSTF spectroscopy is not high enough. Nevertheless, it has
distinct advantages of being simple, fast, green, low-cost, and nondestructive. Given the
complexity of the drill cuttings recycling products, the average recoveries of (88.1 ± 19.6)%
to (102.7 ± 16.4)% can be considered to be reasonable. Therefore, the SSTF spectroscopy
technique has the potential to be used as a preliminary screening approach and allow for a
quick survey of PAHs in complex solid samples, thereby giving priority to prompt analysis.

Table 3. Predicted concentration, RMSEP, and spiked recovery of three PHAs in drill cuttings
recycling products based on SSTF spectroscopy coupled with the PARAFAC algorithm.

Sample Analyte
Concentration (mg g−1)

Recovery (%) RMSEP (mg g−1) Average ± SD b (%)
Unspiked Spiked Found

Pretreated drill cuttings

ANT 0.64
1 1.432 79.2

0.26 100.9 ± 19.22 2.952 115.6
3 3.874 107.8

FLA 1.37
3 4.241 95.7

0.19 102.5 ± 17.62 3.156 89.3
1 2.595 122.5

PYR n.d. a
3 2.277 75.9

1.04 88.1 ± 19.69 9.963 110.7
6 4.656 77.6
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Table 3. Cont.

Sample Analyte
Concentration (mg g−1)

Recovery (%) RMSEP (mg g−1) Average ± SD b (%)
Unspiked Spiked Found

Brick

ANT n.d.
1 1.215 121.5

0.20 102.7 ± 16.42 1.910 95.5
3 2.736 91.2

FLA 0.43
3 3.145 90.5

0.27 94.9 ± 18.62 2.736 115.3
1 1.219 78.9

PYR n.d.
3 2.529 84.3

0.44 96.0 ± 11.89 8.631 95.9
6 6.474 107.9

a not detected; b average ± standard deviation.

4. Conclusions

This study has established the capability of SSTF spectroscopy for the rapid and direct
determination of three PAHs in drill cuttings recycling products for the first time. The
acquired SSTF spectral data were firstly stacked along the sample dimension to construct a
three-way data array and then decomposed by the well-known PARAFAC algorithm to ex-
tract the pure excitation and emission spectra of each individual PAH, even in the presence
of overlapping peaks and unknown interferences. The calibration models based on the
relative concentrations resolved by the PARAFAC algorithm against the real concentrations
in the calibration samples are good. By applying the proposed strategy to real drill cuttings
recycling products, some target PAHs could be detected, and reasonable average spiked
recoveries were obtained. In conclusion, the proposed SSTF spectroscopy coupled with
chemometrics has the potential to be used as a preliminary screening method for PAHs in
drill cuttings recycling products.

Author Contributions: Conceptualization, T.G. and W.C.; methodology, T.G. and W.C.; software,
T.G.; validation, Z.L. and X.G.; formal analysis, Z.L. and X.G.; investigation, T.G.; resources, Z.W. and
X.L.; data curation, T.G.; writing—original draft preparation, T.G.; writing—review and editing, W.C.;
visualization, T.G.; supervision, Z.W., X.L. and W.C.; project administration, Z.W. and X.L.; funding
acquisition, W.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Open Project Program of State Key Laboratory of
Petroleum Pollution Control (Grant No. PPC2020012), CNPC Research Institute of Safety and
Environmental Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kazamias, G.; Zorpas, A.A. Drill cuttings waste management from oil & gas exploitation industries through end-of-waste criteria

in the framework of circular economy strategy. J. Clean. Prod. 2021, 322, 129098. [CrossRef]
2. Pereira, L.B.; Sad, C.M.S.; da Silva, M.; Corona, R.R.B.; dos Santos, F.D.; Gonçalves, G.R.; Castro, E.V.R.; Filgueiras, P.R.; Lacerda, V.

Oil recovery from water-based drilling fluid waste. Fuel 2019, 237, 335–343. [CrossRef]
3. Al-Doury, M.M.I. Treatment of oily sludge using solvent extraction. Pet. Sci. Technol. 2019, 37, 190–196. [CrossRef]
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