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Abstract: This work proposes a high-performance asymmetric gold/graphene/platinum photode-
tector. The new photodetector, operating without bias, integrates interdigitated 100 nm spaced
metallic contacts that induce a built-in potential and a short carrier path, allowing an improvement
in the separation and collection of the photocarriers. A chemical vapor deposition graphene layer
is transferred onto the interdigitated electrodes elaborated using high-resolution electron-beam
lithography. Three devices with different side dimensions (100, 1000, and 3000 µm) are fabricated,
and their photoresponsivities are evaluated at different wavelengths. The 100 µm device shows the
highest photoresponsivity of 358 A/W at a 400 nm illumination. These promising results confirm the
proposed design’s ability to increase the photodetector’s active area, improve light absorption, and
achieve high separation and collection of photogenerated carriers. This makes it of great interest for
optoelectronic applications.

Keywords: graphene; photodetector; interdigitated electrode; 100 nm gap; asymmetric structure;
electron-beam lithography

1. Introduction

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice [1–4]. The
extremely high mobility of the photogenerated carriers [3,5–7], the flat light-absorption spec-
trum [6,8,9], high flexibility [10], and high conductivity [8,11–13] of graphene have attracted
increasing attention for wide-range wavelength photodetector applications [14,15], despite
the emergence of several new two-dimensional (2D) materials, including transition metal
dichalcogenides (TMDs) [16,17] and black phosphorus [18]. However, the use of graphene
in photodetectors has been limited due to its small photo absorption [8] and extremely short
carrier lifetime [19–23]. To overcome the shortcomings of graphene—and considering the
efficiency of graphene/semiconductor interfaces for generating, separating, and transmit-
ting photocarriers—hybrid graphene/semiconductor heterojunctions were proposed and
demonstrated by combining zero-dimensional quantum dots, one-dimensional nanowire
semiconductors, and other two-dimensional layered materials [24–28]. Despite the device’s
improved quantum efficiency, its absorption band was determined by the material added,
losing the intrinsic advantage of graphene’s broad spectral photoelectric response [15]. Due
to graphene’s short carrier lifetime, the only generated photocarriers in graphene that can
contribute to the photocurrent are those near the metal contacts [29,30]. This problem can
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be resolved by fabricating interdigitated electrodes (IDEs), providing a larger photoab-
sorption area [31–33], and increasing the number of photogenerated carriers responsible
for photocurrent generation. Several metals can be used as electrodes with symmetric or
asymmetric configurations. Graphene-based photodetectors using the same metals on both
electrodes are restricted by the symmetric band structure and field profile in the channel
or between two adjacent fingers. Thus, the net photocurrent will not flow unless a drain
bias is applied, because the photocarriers generated on the source and drain side have
opposite charges and are compensated in the center of the graphene channel [23,31,34,35].
For this reason, many researchers have proposed photodetectors based on graphene with
different metal contacts for electrodes, including gold/palladium, gold/aluminum, and
gold/titanium [31,34–37]. Asymmetric contact electrodes with different work functions
induce a strong built-in potential across the graphene that imparts apparent photovoltaic
activities to the devices and allow them to act as self-driven photodetectors [38,39].

On the other hand, it has been found that contacts on the bottom of graphene yield
resistivities four times lower than contacts on top of graphene [40,41]. The bottom electrode
structure has significantly reduced contact resistivity due to the direct contact of graphene
with high work function metal, fewer side effects during the fabrication process, and
improved density of states at the Dirac point of the graphene edges. This architecture
was proposed to achieve a lower resistance than traditional metal-on-top contact. This
reduction was attributed to the cleaner interface between graphene and metals obtained by
the metal-on-bottom process. It has been found that growth defects in graphene film also
reduce the resistivity by a factor of two [41], contributing to an increase in the photocurrent.

Reducing the distance between the metal fingers can also increase the photocurrent [31,42].
In graphene photodetectors, the built-in field extends to several 100 nm wide at the interface
where the charge transfer between metal and graphene takes place [43], and the absolute
magnitude of the photocurrent is relatively small (in the nA range). For these reasons, at most,
a finger gap of 100 nm is required. A small gap size (100 nm) can significantly enhance the
light–graphene interaction and, thus, increase the light absorption in graphene. This is because
the incident light is concentrated in these nanogaps between the electrodes, and the nanogap
dimension is smaller than λ/2 of light [44,45]. This design can greatly enhance the light–
graphene interaction (absorption) and bypass the short carriers’ lifetime in the graphene layer
by collecting all generated photocarriers in the region within the source and the drain, thanks
to the size of the fingers nanogap (100 nm) [34,46]. The 100 nm gap can be achieved using
nanolithography, and it represents a trade-off between the response time and the difficulty of
the lithographic process. The aspect ratio reduction cannot be pursued below a certain value
because it could cause a significant increase in the photodetector series resistance, particularly
for larger sizes up to 3000 µm. Yoo et al. studied asymmetric metals’ contact with gold (Au)
and titanium (Ti) and reported a maximum photoresponsivity of 52 mA/W [34].

Choosing the right synthesis method is another critical step in fabricating graphene-
based electronic devices. Many approaches are used to synthesize graphene for electronics
applications, including mechanical exfoliation from highly oriented pyrolytic graphite
using a ribbon, epitaxial growth on silicon carbide (SiC) substrate, and chemical vapor
deposition (CVD) [47]. However, mechanical exfoliation is not an alternative when a large
graphene area is required. Graphene on centimeter-sized copper substrates or SiC wafers
paves the way for the large-scale production of high-quality graphene sheets for a wide
range of industrial applications [48]. Graphene grown on SiC wafers has the advantage
of growing natively on a transparent insulating substrate, which enables the transfer-free
fabrication of optoelectronic devices. However, graphene epitaxially grown on a SiC
substrate is hardly transferrable, it is too expensive for mass production, and its film size is
limited by the SiC substrate. Thanks to its low cost and high versatility, CVD is the most
popular technique that can scalably produce graphene, allowing it to be transferred to
virtually any type of substrate.

Transferring graphene is also an essential step in the fabrication of graphene devices.
Aside from automated, continuous transfer systems [49], which are not yet generally
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accessible, wet graphene transfer limitations are largely user-related and require a trained
hand to get reproducible outcomes. The etching process for Cu-containing metallic particles
(from the FeCl3 solution) and the removal and rinsing of PMMA residues are two major
sources of contamination. CVD graphene exhibits both p-type doping and electrical
property degradation due to these contaminations [50,51]. In order to dissolve the metallic
contamination from etchants such as FeCl3, PMMA-coated graphene has been rinsed in DI
water solution with 1–2% HCl [52]. In the process of dissolving the copper foil, air bubbles
can cause undissolved copper clusters. To remove the Cu clusters more effectively, fresh
FeCl3 solutions can be used, followed by sequential dissolutions. Regardless, small Cu atom
clusters and ions always appear on the graphene surfaces after transfer. As these particles
occur on the top side of graphene (most residues are trapped at the substrate-graphene
interface), they should not affect graphene surface processes. In order to guarantee a
reliable transfer at a negligible contamination level, even without any post-treatment at
high temperatures, an anisole mixture balancing the average molecular weight and weight
percentage in PMMA was developed by Liao et al. [53].

In most studies, the graphene used in photodetectors is made by mechanical exfolia-
tion because it yields the best quality graphene. Electrodes are made on top of graphene
because of their ease of fabrication. However, few reports investigate the use of chemi-
cal vapor deposition (CVD) techniques to fabricate graphene-based photodetectors with
asymmetric interdigitated electrodes. In this context, the present work used a combination
of CVD graphene, asymmetric IDEs, and 100 nm spaced adjacent fingers to achieve a
metal/graphene/metal heterojunction that offers greater optical absorption enhancement
and improves the collection of the generated photocarriers. Au and Pt, with different work
functions, create an internal field that enables photodetection over the entire device area.
This allows the devices to sum the individual contributions to the total photocurrent and
operate the detector without applying an external drain-source bias. This is a significant
advantage compared to the symmetrical electrodes used in a graphene detector reported by
Ye et al., where a photoresponsivity of 4.6 mA/W was achieved, and required an external
bias of −4 V to work [54]. Three devices with different side dimensions (100, 1000, and
3000 µm) were fabricated, and a comparative study as a function of the device’s dimensions
is presented. This device’s architecture leads to high photoresponse that extends from the
visible to the IR.

2. Materials and Methods
2.1. Fabrication of the Interdigitated Nanogap Electrodes

High-resolution electron-beam lithography (Vistec EBPG5200 100 kV, Vistec Electron
Beam GmbH, Jena, Germany) was used to fabricate the interdigitated electrodes. Resist
patterning with EBL is an attractive, highly automated method, allowing good flexibility
in layout design, as well as a precisely controlled pattern with direct writing and an
intrinsically high nanoscale resolution [55,56]. The main manufacturing process is shown
schematically in Figure 1. The IDEs mask was designed using the libreCAD software, as
shown in Figure S1. Two contacts were added at the device’s top right corner, as shown
in Figure S1b. Three square devices with side dimensions of 100, 1000, and 3000 µm
were prepared.

The IDE devices were fabricated on a boron-doped silicon substrate with a 100 nm
SiO2 layer (from Swansea). The experimental process started by cleaning the silicon dioxide
wafer using acetone and isopropanol. Then, 9 nm of chromium (Cr) was deposited on
the wafer as an adhesion layer for metals, followed by 20 nm of Au. The reason for this
is that this material has the ability to adhere well to common substrate materials, such as
Si or SiO2. At the same time, thin layers of Cr (5–10 nm) typically have no effect on the
fabricated device’s properties. The sites in the thin adhesion layer also aid in the nucleation
of the next deposited material, which would otherwise not stick. In fact, platinum (Pt) and
gold (Au) could not be used without an adhesion layer; they flake away from the sample.
For the second finger set, to avoid the intermixing and the diffusion of Pt atoms into the
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Au layer during the deposition process, an appropriate barrier layer material is required.
Tantalum (Ta), which has excellent thermal stability and good electrical conductivity, was
deposited at 3 nm, followed by platinum (Pt) at 20 nm. Finally, 10 nm of aluminum trioxide
(Al2O3) was deposited on top of the device using physical vapor deposition (PVD).

Figure 1. The fabrication steps of the graphene photodetector interdigitated electrodes device:
(1) deposition of all the metals and the photoresist; (2) lithography and ion milling; (3) second
lithography and ion milling of Pt metal; (4) graphene transfer.

To remove organic and inorganic contaminants and improve the photoresist adhesion,
a hydrophobic surface was achieved using low-temperature oxygen plasma etching for
6 min. A wet etch was afterward performed using tetramethylammonium hydroxide
(TMAH) to remove the damage caused by the dry etch. The sample was then kept under
an hexamethyldisilazane (HMDS) atmosphere for 15 min in a desiccator (Vapor Prime
Oven YES-310TA, Yield Engineering Systems, Livermore CA, USA) to help the photoresist
adhesion. The spin coating of the resist was performed immediately after the HMDS
treatment. A negative resist was used; the layer to be etched was relatively thin (56 nm).
Therefore, a photoresist layer of 80 nm was sufficient. Finally, the sample was inserted into
the EBL machine.

2.2. CVD Growth and Transfer of Graphene

Graphene was grown on a 25 µm thick copper foil (purity > 99.99 wt.%) by chemical va-
por deposition in a quartz tube 3-zone furnace (FirstNano EasyTube®3000, CVD Equipment
Corporation, Central Islip, NY, USA). A gaseous mixture of methane/hydrogen was used
during the growth process. Graphene transfer on the IDE device started by spin-coating
a polymethyl methacrylate (PMMA) layer on the as-synthesized graphene/copper film.
Then, the PMMA/graphene/copper film was floated on a 0.5 M ferric chloride solution for
2 h to etch the copper foil. After completely removing the copper, the PMMA/graphene
film was soaked in an HCl solution for 30 min and then rinsed in deionized water for
10 min. The films were transferred to the device and air-dried overnight. Finally, the
PMMA/graphene/IDEs device was placed in an acetone bath for 3 h to remove the PMMA.

2.3. Characterization

A Raman spectrophotometer (Alpha300 R Confocal Raman System, WITec GmbH,
Ulm, Germany) with a 532 nm laser was used to measure the Raman spectra of graphene.
Simultaneously, this Raman spectrophotometer was used to perform 40 × 40 µm2 Raman
mapping of the position-G band (Pos (G)) and position of 2D band (Pos (2D)) of graphene.
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The objective used was 50× (Zeiss EC Epiplan, Zeiss, Oberkochen, Germany), and the
motorized stage was used to scan the sample. Scanning electron microscopy (SEM), high-
resolution SEM Quanta 650 FEG ESEM (FEI, Hillsboro, OR, USA), was used to study
surface features and provide an energy-dispersive X-ray spectroscopy (EDX) analysis. For
the electrical properties, IV curves of all devices (graphene) for different dimensions were
measured with a source meter (Keithley 6470, Keithley Instruments, Solon, OH, USA)
under ambient conditions. For all devices, IV curves were recorded in the dark and in the
light for voltages between −3 and 3 mV for different wavelengths in the visible range. For
these experiments, the light power was calibrated by a silicon photodetector.

3. Results and Discussion

During the lithography process, prior dose testing is required due to the high density
of the pattern. The effect of the E-beam dose was examined to obtain the appropriate
dose for the electrode’s width and spacing of 100 nm. Dose tests have been repeated, with
proximity effect correction activated. The dose tests were carried out with three different
doses (550, 617, and 683 µC cm−2). After developing, the sample’s relief was examined
using a scanning electron microscope (SEM) to determine the appropriate nominal dose to
obtain the required profile. Figure 2 shows SEM images of devices; the best doses were 550
and 617 µC cm−2. For the full exposure, the dose was set to 583 µC cm−2, an intermediate
value between 550 and 617 µC cm−2.

A Nordiko 7500 ion milling machine (Hampshire, UK) performed the physical etching
at 130◦ (40◦ from normal incidence). A second EBL procedure was used to complete the
fabrication of the device. As shown in Figure 3, the second exposure was successful, and
the bottom left corner of the devices has the best alignment, as it was exposed first.

Figure S2 shows optical images of the devices before and after the second ion milling
process. Note that the zone in the bottom is an area that was protected with tape during
the first ion milling, to give some signal in the second ion milling.

The SEM analysis in Figure 4a,b was collected after oxygen plasma ashing and 13 min
of resist stripping. They show the presence of both areas (Au and Au/Pt) with different
contrasts. Figure 4c shows the EDX analysis of the Au/Pt and Pt zones. The peaks of Au
and Pt are very close and difficult to distinguish. Cr and Ta cannot be seen because of their
small thickness (2–3 nm).

Ion milling was performed for 20 s to ensure the roughness of the samples had not
increased. Figure 5a,b shows scanning electron microscopy (SEM) images of the fabricated
IDEs after this cleaning. Figure S3 shows that, in comparison with Figure S2b, the color of
the pads is changed, which could be due to the removal of the Ta layer. The SEM images
show clear and uniform nanogaps, confirming the successful fabrication of the IDE arrays.
The IDE devices are then ready for the graphene transfer.

Figure 6 shows the Raman spectrum of the graphene sample grown by CVD after
being transferred onto the top of the electrodes. Raman spectroscopy was performed under
a laser excitation of 532 nm (1.8 mW laser power), with an acquisition time of 10 s and a
600 groove/mm grating. The first two intense peaks at ca. 1596 and 1347 cm−1 correspond
to graphene’s characteristic G and D bands [57,58]. The G peak corresponds to the E2g
phonon at the center of the Brillouin zone [59]. The D peak is due to the breathing modes
of six-atom rings and requires a defect for its activation [60,61]. The peak at 2686 cm−1

corresponds to the 2D band (also referred to as G’), and is the second order of the D
peak [62]. Figure S4a,b shows the peak position maps of the G band (~1590 cm−1) and 2D
band (from 2685 to 2688 cm−1), respectively [63,64]. The I2D/IG intensity ratio was about
2.6. The Raman ID/IG value was 0.6, and the full width at half maximum (FWHM) of the
2D band was measured to be 42 and 21 cm−1 for the G band. All these Raman properties
confirm that the used film is monolayer graphene with some structural disorder [65].
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Figure 2. Scanning electron microscope (SEM) images at the center (a,d,g), edge (b,e,h), and
overview (c,f,i) of the devices for 550 µC cm−2, 617 µC cm−2, and 683 µC cm−2 doses, respectively.

Figure 3. SEM images of the device after the second EBL (a) at the center; and (b,c) at the edge.
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Figure 4. (a,b) SEM images of the device edge after oxygen plasma ashing and 13 min of resist
stripping; and (c) EDX of Au/Pt and Pt zones.

Figure 5. (a,b) SEM images of IDEs after the final fabrication step.

Figure 6. Raman spectrum of a graphene sample grown by a CVD.

To determine the photon-to-electron conversion efficiency of the photodetectors, pho-
tocurrent measurements were made as a function of the applied voltage between the source,
VDS, for the three fabricated graphene/IDEs devices (100, 1000, and 3000 µm) under dark
and continuous illumination. The devices were exposed to different wavelength lights
(400, 500, 600, 700, 800, and 900 nm), which all ranged in the visible region. These devices
can be considered transistors where no gate voltage was applied (VG = 0 V); thus, they
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could be assimilated into standard photoconductors. The current as a function of the
applied voltage between the source and drain, I(VDS), is measured at room temperature
in the dark and under light (Figure 7). The I(VDS) for all devices increases with voltage
due to the increased carrier drift velocity and collection efficiency, which is due to the
increased electric field between the source and drain electrodes. The I(VDS) characteristics
for all devices display an increase in the current with illumination compared to the dark
(black curve), which is explained by the generation of photoexcited charge carriers. The
three devices consistently show higher dark currents. For the 100 µm device, the dark
current under (−3 mV) voltage is about 10−6 A; for the 1000 µm device, it is about triple
(3 × 10−6 A); for 3000 µm device, it is about 6 × 10−6 A. This high dark current could be
due to the large difference in work function between the two asymmetric contacts (Au-Pt).
One can also notice a staircase behavior similar to the Coulomb staircase features found by
Liu et al., in their work on defects in the 2D materials tunnel barrier [66]. This is a general
behavior in the case of asymmetric tunnel barriers between defects and contacts. A series
of reproducible discrete steps in current as a function of the source-drain voltage can be a
signature of single-electron transport and is termed the Coulomb staircase [67,68].

Figure 7. I(VDS) of the graphene/IDE devices in the dark and under light with different wavelengths
(400 to 900 nm). (a) 100 µm; (b) 1000 µm; and (c) 3000 µm. The inset shows a zoom of the curves
obtained under continuous illumination.

The responsivity, Rλ, is defined as the ratio of the photocurrent, Iph, or photovoltage,
Vph, over the incident light power density (i.e., light power per active area), Pin, as expressed
by Equation (1) [28,69,70].

Rλ =
Iph or Vph

Pin
(1)

This parameter is often used to evaluate the photodetector’s ability to generate a
photocurrent or a photovoltage after illumination. Figure 8 shows the bias-dependent
photoresponsivity, Rλ, of all devices at the powers listed in Table S1. The sensitivity is
measured at VDS swept from −3 to 3 mV for VG = 0 V. A linear relationship between the
source–drain bias and the detector photoresponsivities can be seen. In fact, photorespon-
sivity increases monotonically as the applied voltage increases. The voltage dependence of
the photodetector’s responsivity might be due to the influence of the applied bias on the
produced photocurrent. The maximum external photoresponsivity is estimated to be at a
bias of −3 mV for all devices. The photoresponsivity decreases when increasing the device
size; this may be due to an increase in the resistance of the conduction line. At zero bias,
the extracted photoresponsivity is non-zero for the three devices, which may be due to the
internal potential created by the asymmetric structure of these devices (R400nm = 2.028 A/W
for 100 µm; R400nm = 0.695 A/W for 1000 µm; and R400nm = 0.007 A/W for 3000 µm).
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Figure 8. Responsivity, Rλ (V), of graphene/IDE devices as a function of the wavelength (400 to
900 nm). (a) 100 µm; (b) 1000 µm; and (c) 3000 µm.

Figure 9 shows the variation of responsivity with the wavelength. Due to the resonant
nature of the plasmonic design, the sensitivity (photocurrent divided by total power
incident on the sample) exhibits a strong wavelength dependence for the same device
design. The higher value of Rλ is recorded at 400 nm for all devices.

Figure 9. Responsivity Rλ (λ) of graphene/IDE devices as a function of the wavelength (400 to
900 nm). (a) 100 µm; (b) 1000 µm; and (c) 3000 µm.

The high responsivity of all photodetectors can have several origins. Incident light
is tightly concentrated in the region between the different fingers [44]. This can signifi-
cantly enhance the light–graphene interaction and bypass the short carriers’ lifetime in the
graphene layer. This is achieved by collecting all generated photocarriers in the region
within the source and the drain, thanks to the size of the fingers nanogap (100 nm) [34,46].
The high photoresponsivity of the graphene photodetector may be a result of the photogat-
ing effect. This phenomenon is mainly attributed to the generation of photocarriers in the
p-type Si substrate [71,72].

The higher photocurrent can be explained by the high difference between the work
functions of the source and the drain (∆Eeff = 0.59 eV) compared to the work of Yoo et al. [34]
(∆Eeff = 0.34 eV), which leads to a good separation of photocarriers. The bonding of the
graphene layer to Pt and Au surfaces is so weak (≤0.04 eV per carbon atom) that its elec-
tronic band structure is preserved and does not undergo strong modification. As schemati-
cally shown in Figure 10, the difference in the work functions of graphene (WG = 4.5 eV),
Au (WAu = 5.54 eV), and Pt (WPt = 6.13 eV) metals induces doping of the graphene
layer, resulting in charge transfer at the contact interface up to the equilibrium of Fermi
levels, EF [73–75]. Depending on the metal, different types and doping levels can be
achieved [34,73,76,77]. As a result, Pt (ΦG = 4.87 eV) shifts the Fermi energy by approxi-
mately ∆EF = 370 meV, while Au (ΦG = 4.74 eV) shifts about ∆EF = 240 meV [74]. These



Chemosensors 2023, 11, 181 10 of 14

values confirm that Pt and Au contacts induce p-type doping of the graphene layer. There-
fore, an asymmetric metal arrangement provides additional benefits in enhancing the
photovoltaic effect. Indeed, in some cases, the defects can effectively behave as dopants,
thus increasing the carriers’ concentration. The defect induces mid-gap states that create a
region exhibiting metallic behavior around the vacancy defects.

Figure 10. Schematic diagram of the Au/graphene/Pt band structure. WAu: Au work function, and
WPt: Pt work function. E0 is the vacuum level, and ∆EF represents the doping state of the graphene
channel. The black-filled (empty) circle is an electron (hole) generated by light absorption.

Table 1 compares key parameters of graphene-based photodetectors found in other
published works with the herein-obtained results. Yoo et al. [34] and Sevak Singh et al. [32]
have proposed graphene photodetectors with asymmetric contact, which can operate with-
out external voltage. The graphene/silicon photoconductor developed by Gao et al. [78]
has a higher responsivity than that of Chen et al. [79], which can be explained by the small
gap between the electrodes (200 nm). The highest responsivity reported by Chen et al., at
632 nm, might be due to the mechanism of electron/hole pair separation in the Schottky
junction, and to the high carrier mobility in graphene. Graphene-antennas structured with a
nanogap (40 nm), proposed by Ye et al. [54], can improve light-absorbing and photocarriers
collection. However, their responsivity is still below 1 A W−1. The herein-obtained devices
deliver a higher responsivity in a broad spectrum, extending from the visible range to the
infrared region (900 nm), making them very competitive in terms of light sensitivity.

Table 1. Comparison of the obtained photodetector’s parameters with typical graphene photodetectors.

Photodetectors Dark Current
(µA)

Photoresponsivity
(A/W)

Applied
Voltage (V)

Wavelength
(nm) Gap (nm) Source

Au/graphene/Pt 10 358
2.028

3 × 10−3

0
400 - This work

Au/graphene/Ti 70 × 10−3 52 × 10−3 0 - - [34]
Au/graphene/Al 2 4.9 × 10−3 0 632.8 - [36]

Graphene-silicon - 104
0.23 5 632

1550 105 [79]

Graphene-silicon 20 2.36 1 1550 200 [78]
JC-antennas-graphene - 4.8 × 10−3 0.1 - 40 [54]

Au/graphene/Ti * - 13.4 × 10−3 0 247 6 [80]
Au-NPs/ReS2 - 2.1 0 554 [81]
Au-NPs/MoS2 - 38.57 0 532 [82]

* theoretical work.



Chemosensors 2023, 11, 181 11 of 14

4. Conclusions

A CVD-graphene-based photodetector with asymmetric bottom-side interdigitated
gold-platinum (Au-Pt) contacts with a spacing of 100 nm was proposed. The device
fabrication process began with the deposition of five metals, Cr/Au/Ta/Pt/Al2O3, by
physical vapor deposition (PVD). Due to the high density of the pattern, dose tests were
performed to optimize the fabrication of metal contacts. SEM images have confirmed that
583 µC cm−2 was the appropriate dose to obtain the suitable electrode width and spacing.
Three IDEs devices with different dimensions (100, 1000, and 3000 µm) were fabricated. A
CVD graphene monolayer, confirmed by Raman characterization, was transferred to the
top of the IDEs to get a metal-graphene-metal structure. To compare the performance of
the three fabricated photodetectors, I(V) characteristics were performed. As the dimension
sizes of the devices decreased, the performance of the photodetectors increased to reach
R400nm = 358 A/W for a 100 µm device size. Such results were achieved thanks to the
high work function difference between the Au and Pt (≈0.59 eV) electrodes, small fingers
spacing, and the asymmetric interdigitated structure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11030181/s1. Figure S1. Illustration of the devices’
design using LibreCAD software, including (a) the overview of all devices, (b) zoom on 100 µm
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