
Citation: Zhang, Z.; Zhou, Q.; Qiu, S.;

Zhou, J.; Huang, J. Efficient Monitoring

of Microbial Communities and

Chemical Characteristics in

Incineration Leachate with Electronic

Nose and Data Mining Techniques.

Chemosensors 2023, 11, 229. https://

doi.org/10.3390/chemosensors11040229

Academic Editors: Stéphane Le Calvé,

Irene Lara-Ibeas and Yoav Broza

Received: 27 February 2023

Revised: 23 March 2023

Accepted: 3 April 2023

Published: 7 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

chemosensors

Article

Efficient Monitoring of Microbial Communities and Chemical
Characteristics in Incineration Leachate with Electronic Nose
and Data Mining Techniques
Zhongyuan Zhang 1, Qiaomei Zhou 1, Shanshan Qiu 1,2,*, Jie Zhou 1 and Jingang Huang 1,2

1 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2 The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: qiuss@hdu.edu.cn

Abstract: Incineration leachate is a hazardous liquid waste that requires careful management due
to its high levels of organic and inorganic pollutants, and it can have serious environmental and
health implications if not properly treated and monitored. This study applied a novel electronic
nose to monitor the microbial communities and chemical characteristics of incineration leachate.
The e-nose data were aggregated using principal component analysis (PCA) and T-distributed
stochastic neighbor embedding (TSNE). Random forest (RF) and gradient-boosted decision tree
(GBDT) algorithms were employed to establish relationships between the e-nose signals and the
chemical characteristics (such as pH, chemical oxygen demand, and ammonia nitrogen) and microbial
communities (including Proteobacteria, Firmicutes, and Bacteroidetes) of the incineration leachate.
The PCA-GBDT models performed well in recognizing leachate samples, achieving 100% accuracy for
the training set and 98.92% accuracy for the testing data without overfitting. The GBDT models based
on the original data performed exceptionally well in predicting changes in chemical parameters, with
R2 values exceeding 0.99 for the training set and 0.86 for the testing set. The PCA-GBDT models
also demonstrated superior performance in predicting microbial community composition, achieving
R2 values above 0.99 and MSE values below 0.0003 for the training set and R2 values exceeding
0.86 and MSE values below 0.015 for the testing set. This research provides an efficient monitoring
method for the effective enforcement and implementation of monitoring programs by utilizing
e-noses combined with data mining to provide more valuable insights compared with traditional
instrumental measurements.

Keywords: electronic nose; incineration leachate; microbial community; chemical characterization;
monitoring; prediction

1. Introduction

Incineration leachate is a complex type of organic wastewater that is generated during
the treatment of municipal solid waste that includes proteins, volatile fatty acids, and
refractory organics [1]. The treatment of incineration leachate can pose a challenge because
of its intricate structure and potentially harmful contents, such as carcinogens and toxins.
Proper monitoring and treatment are crucial in order to prevent these pollutants from
polluting the surrounding environment [2,3].

The primary emphasis of research on incineration leachate has been on investigating
the properties of the concentrated leachate [4], the molecular changes that occur in organic
matter during treatment [5,6], and the alterations in microorganisms [7,8] that occur during
different processes. These studies indicate that the headspace gas above leachate may
contain valuable information for monitoring or processing the leachate. So far, only a small
number of comprehensive studies have been carried out to extract information from large
quantities of raw data on the types, concentrations, and changes in these materials.
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An electronic nose (e-nose) is a promising candidate designed to mimic the sense of the
human nose by detecting and analyzing volatile organic compounds (VOCs) in headspace
gas [9]. With a combination of sensors, such as metal oxide sensors, conducting polymers,
and quartz crystal microbalance sensors, an e-nose can measure the changes in electrical
resistance or impedance that result from the interaction of headspace gas in samples [10].
Sensor data are then processed and analyzed using machine learning to identify specific
compounds and determine their concentration [11]. With the advantage of providing rapid
and non-invasive analyses, e-noses are suitable for use in a wide range of industries and
applications [12,13]. However, studies on leachate detection based on e-nose technology
are rare, according to our best knowledge.

For incineration leachate, the variety and quantity of microorganisms in each pro-
cess are quite important, as they result in different treatment effects of waste incineration
plants [14]. The relationship between headspace gas and microorganisms in leachate is
noteworthy and complicated [15]. Microorganisms consume oxygen and carbon dioxide in
headspace gas through respiration and metabolism, and they produce nitrogen, nitrous
oxide, and other organic substances [16]. Therefore, microorganisms play important regula-
tory roles in the composition of headspace gas. In addition, the growth of microorganisms
is influenced by the oxygen content and pH value of the leachate [17], which consequently
have feedback effects on the headspace gas and leachate. Overall, the relationship between
headspace gas and microorganisms is a complex system of mutual influence and regula-
tion [18]. Studying this relationship is essential for understanding the biological processes
of leachate and optimizing leachate treatment technology. However, molecular biology
techniques have low specificity and require a significant amount of time to perform. In
this study, e-nose technology was applied to mine headspace gas information to study
microorganism changes.

Our main objectives were: (1) to monitor the changes in leachate headspace gas based
on e-nose technology; (2) to process sensor signals based on data reduction and machine
learning (random forest and gradient-boosted decision tree); and (3) to mine information
on the relationship between headspace gas and microorganisms in leachate based on e-nose
data. This research offers a more efficient monitoring method for the effective enforcement
and implementation of monitoring programs by utilizing e-nose technology combined
with machine learning to analyze the relationships among leachate gas emissions, chemical
parameters, and microorganisms, thus providing more valuable insights compared with
traditional instrumental measurements.

2. Material and Methods
2.1. Sample Collection

Leachate incineration samples were obtained from a local waste incineration power
plant (Xiaoshan Jinjiang Green Energy Co., Ltd., Hangzhou, China), as a subsidiary of
Zheneng Jinjiang Environment Holding Co., Ltd., (Hangzhou, China). This company is
a pioneer and leader in China’s WTE (waste-to-energy) industry. The incineration power
plant is located in the southeast part of Hangzhou next to the East China Sea and has a
treatment scale of 1900 tons per day of WTE.

On 15 August 2022, six water outlets provided leachate samples. As shown in Figure 1,
the samples were labeled as LRW (leachate raw water), LE (leachate effluent), internal
circulation reactor effluent (ICRE), AeroE (aerobic effluent), ANE (anaerobic effluent), and
MBRE (MBR effluent). The samples were stored in a fridge at below 4 ◦C and transported
to a lab for analysis.
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tary information of the whole headspace gas instead of specific materials. 

Table 1. Sensors and their main applications in the commercial PEN2 E-Nose [19]. 
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thane) CH4, 100 mg/L 

To protect the e-nose sensors, Wahaha purified water with a conductivity of ≤5 us/cm 
(Hangzhou Wahaha Group Co., Ltd., Hangzhou, China) was adopted to dilute the leach-
ate samples. The ratio of purified water and leachate was 4:1. First, 5 mL of liquid diluted 
leachate samples was placed into a 500 mL beaker sealed by plastic wrap, and the beaker 
was kept still for 30 min. The gas flow rate was set to 200 mL/min, and 80 s were taken for 
e-nose detection. After detection, the sensor chamber was cleaned with clean air. Then, 
144 samples (24 samples for each water outlet, with six water outlets) were selected. 

  

Figure 1. Leachate samples from six collections: (a) leachate raw water (LRW); (b) leachate effluent (LE);
(c) internal circulation reactor effluent (ICRE); (d) aerobic effluent (AeroE); (e) anaerobic effluent (ANE);
(f) MBR effluent (MBRE).

2.2. E-Nose Diagnose for Leachate Characteristic in the Headspace Gas

The headspace gas of the leachate samples was detected with a commercial PEN2
E-Nose (Airsense Analytics, GmBH, Schwerin, Germany). This device’s core components
are MOS sensors, as described in Table 1. The MOS sensors transform the gas types and
concentrations into electrochemical signals (R/R0, where R is the sensor resistance in the
sample headspace gas and R0 is the sensor resistance in clear air), presenting complemen-
tary information of the whole headspace gas instead of specific materials.

Table 1. Sensors and their main applications in the commercial PEN2 E-Nose [19].

No. Sensor Name General Description Sensitivity

S1 W1C Aromatic compounds Toluene, 100 mg/L
S2 W5S Very sensitive to negative signals, broad range sensitivity, and react with nitrogen oxides NO2, 1 mg/L
S3 W3C Very sensitive to aromatic compounds Benzene, 10 mg/L
S4 W6S Mainly hydrogen, selectively (breath gases) H2, 100 mg/L
S5 W5C Alkanes, aromatic compounds, and less polar compounds Propane, 1 mg/L
S6 W1S Sensitive to methane (environment); broad range, similar to S8 CH4, 100 mg/L
S7 W1W Reacts with sulfur compounds or sensitive to many terpenes and sulfur organic compounds H2S, 0.1 mg/L
S8 W2S Detects alcohols, partially aromatic compounds; broad range CO, 100 mg/L
S9 W2W Aromatic compounds and sulfur organic compounds H2S, 1 mg/L
S10 W3S Reacts with high concentrations > 100 mg/L, sometimes very selective (methane) CH4, 100 mg/L

To protect the e-nose sensors, Wahaha purified water with a conductivity of ≤5 µs/cm
(Hangzhou Wahaha Group Co., Ltd., Hangzhou, China) was adopted to dilute the leachate
samples. The ratio of purified water and leachate was 4:1. First, 5 mL of liquid diluted
leachate samples was placed into a 500 mL beaker sealed by plastic wrap, and the beaker
was kept still for 30 min. The gas flow rate was set to 200 mL/min, and 80 s were taken
for e-nose detection. After detection, the sensor chamber was cleaned with clean air. Then,
144 samples (24 samples for each water outlet, with six water outlets) were selected.

2.3. Chemical Parameters Detection for Incinerator Leachate

Chemical parameters (pH, chemical oxygen demand (COD), and ammonia (NH4+-N))
were detected on site according to the national standard. The electrode method [20] was
applied to detect pH values. The chlorine emendation method [21] was used to detect
the contents of COD instead of the dichromate method. The concentration of ammonia
nitrogen was measured using Nessler’s reagent spectrophotometry [22].
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2.4. Microbial Community and Functional Potential

Genomic DNA was isolated from the sediment of the leachate deposit and quantified
using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Technology, Waltham, MA,
USA). The quality of the DNA was further confirmed with gel electrophoresis. Six samples
(LRW, LE, ICRE, AeroE, ANE, and MBRE) were analyzed. To amplify the target genomic
16S rRNA (V3–V4 region), we utilized the PCR primer sets 338F
(5′-ACTCCTACGG-GAGGCAGCA-3′) and 806R (5′-TCGGACTACHVGGGTWTCTAAT-3′)
in conjunction with an Applied Biosystems 2720 thermal cycler. To amplify the target
genomic 16S rRNA (V3–V4 region), we employed an Applied Biosystems 2720 thermal
cycler and the PCR primer sets 338F (5′-ACTCCTACGG-GAGGCAGCA-3′) and 806R
(5′-TCGGACTACHVGGGTWTCTAAT-3′). The amplification program consisted of an
initial denaturation step at 98 ◦C for 2 min, followed by 30 cycles of denaturation at 98 ◦C
for 15 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 30 s. A final extension step
was performed at 72 ◦C for 5 min. After amplification, the products were purified using
the Axygen gel recovery kit and quantified with a microplate reader (BioTek, FLx800).
The sequencing results were clustered into OTUs at a 97% similarity level using the
QIIME software. Comparisons of bacterial richness and diversity were performed us-
ing the Chao1, ACE, Shannon–Wiener, and Simpson indices. Analyses were performed
using the Personalbio online analysis platform.

2.5. Data Reduction for E-Nose Sensor Signals
2.5.1. Principal Component Analysis

Principal component analysis (PCA) is a mathematical technique utilized to decrease
the dimensionality of a dataset by mapping the data onto a space with fewer dimensions.
PCA works by finding the directions in data that have the highest variance (i.e., the
directions that contain the most information) and projecting the data onto these directions.
This results in a new set of variables, called principal components (PCs), that are orthogonal
to each other and capture the most important information in the data. This method can be
used to visualize high-dimensional data in lower dimensions. Below is an overview of the
details of PCA:

(1). Normalize the continuous input data range.
(2). Calculate the covariance matrix to detect associations.
(3). Perform eigenvalue and eigenvector computations on the covariance matrix to discover

the dominant factors.
(4). Generate a feature vector to determine which principal components should be retained.
(5). Transform the data onto the principal component axes.

2.5.2. T-Distributed Stochastic Neighbor Embedding

T-distributed stochastic neighbor embedding (TSNE) is also a dimensionality reduction
technique that is often used to visualize high-dimensional data in lower dimensions by
preserving the distances between data points. TSNE allows data to be visualized on a
two- or three-dimensional scatter plot where similar data points are clustered together and
dissimilar data points are separated from each other. It is effective at visualizing data with
complex, non-linear structures, such as clusters of different shapes and sizes. The details of
TSNE are as follows:

(1). Find the pairwise similarity between nearby points in a high-dimensional space.
(2). Map the points in high-dimensional space to a low-dimensional map according to

their pairwise similarity.
(3). Use gradient descent based on Kullback–Leibler divergence to minimize the difference

between two points and find a low-dimensional representation of the data.
(4). Calculate the similarity between two points in low-dimensional space using a

Student distribution.
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2.6. Data Treatment
2.6.1. Random Forest

A random forest (RF) is an ensemble learning algorithm used for classification and
regression tasks. An ensemble is a collection of individual models that are combined to
make a single, more powerful model. An RF consists of individual decision trees that are
trained on different subsets of data and then combined to perform a prediction. An RF is
easily implemented and can handle both continuous and categorical data; additionally, its
resistance to overfitting means that an RF can be generalized well to new data.

2.6.2. Gradient-Boosted Decision Tree

A gradient-boosted decision tree (GBDT) is also an ensemble learning algorithm,
similar to an RF. However, a GBDT works by sequentially training decision trees on the
residuals (errors) of previous trees. This means that each tree is trained to correct the
mistakes of previous trees, and the final model is a combination of all trees. A GBDT is also
flexible and can be customized using different loss functions and regularization techniques.
However, a GBDT can be computationally intensive and can overfit training data if not
properly regularized, so it is important to carefully tune the model’s hyperparameters.

2.7. Model Evaluation

In total, 144 samples were collected; 100 samples were set as the training data, and
the rest were set as the testing data. A receiver operating characteristic (ROC) curve was
deployed to display the performance of a classifier (RF and GBDT). An ROC curve shows
the trade-off between the true positive rate (sensitivity) and the false positive rate across
different thresholds. The area under an ROC curve (AUC) is a common metric used to
summarize the overall performance of a classifier, with values closer to 1 indicating better
performance [23]. Each model was run 20 times, and the results are given as the average
value of those 20 model runs.

For prediction models, the R2 coefficient and mean square error (MSE) were selected
as the evaluation parameters. The higher the R2 and the lower the RMSE, the more accurate
the prediction model.

3. Results and Discussion
3.1. E-Nose Sensor Signals

The response values of the e-nose sensors are presented as R/R0, where R and R0
are the sensor responses of the sample gas and the zero gas, respectively. Figure 2 shows
the means and standard deviations of the e-nose sensor signals for each leachate sample,
and it can be seen that the signal characteristics were quite different. The sensor that
showed the strongest responses to volatile compounds was S2. According to Table 1, S2
was very sensitive, with negative signals and reactions with nitrogen oxides, which might
mean that the leachate samples had high abundances of nitrogen compounds. Sensors
S4, S6, S7, S8 and S9 all exhibited strong responses to the samples, suggesting that the
leachate’s headspace gas contained relatively high levels of methane and sulfur compounds.
The signals provided by sensors S1, S3 and S10 indicated that there were no significant
differences among procedures.

The Pearson correlations between e-nose sensor signals are displayed in Figure 3. The
10 sensors showed different correlations. S1 had high correlations (positive or negative)
with S2, S3, S5, S6, and S8. S1 had high correlations with S1, S2, S3, S5, S6, S7, S8, and S9.
These correlations were observed frequently among the e-nose sensors, suggesting that the
headspace gas information could be detected by all sensors but may have overlapped. It’s
important to have varied cross-sensitivity within a sensor array, and these findings indicate
that e-nose technology is capable of discriminating leachate samples. To make better use of
e-nose data, signals should be reduced to extract valid information.
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3.2. Data Reduction Based on PCA and TSNE

Data reduction can be used to aggregate original data into a representative subset of
data or transform them into a more compact representation [24]. Here, PCA was applied
to reduce the size and the complexity of the original e-nose dataset while preserving as
much information as possible [25]. By converting the original e-nose data into a new linear
combination of variables set as principal components (PCs), we used PCA to extract a new
dataset with variables orthogonal to each other. To assess the performance of the PCA, the
accumulative variance of the variables was applied. Then, the variance of each PC was
set as the feature importance, as displayed in Figure 4a. The accumulative variance of the
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first three PCs was more than 85% in total variance. Figure 4b shows the distribution of
144 samples in three dimensions. Those clusters (LRW, LE, ICRE, and ANE) were clearly
separated from each other. The borders between Aero and MBRE were not well-defined,
with some samples completely overlapped. This might imply that the headspace gases in
the AeroE and MBRE samples were very similar.
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As a dimensionality reduction technique used to visualize high-dimensional data, TSNE
has been successfully applied to e-nose data. By reducing the high-dimensional e-nose data
(10 dimensions) into a lower-dimensional space, the samples in this study could be easily visual-
ized in three-dimensional space. Here, TNSE ran for a fixed number of iterations determined
by the loss value, with each iteration improving the alignment between the high-dimensional
and low-dimensional probability distributions. When the iteration number reached 120, the loss
value was not optimized; see Figure 5a. Therefore, the iteration number was set to 120 for e-nose
data. As seen in Figure 5b, those clusters (LRW, LE, ICRE, and ANE) were clearly separated
from each other and more gathered compared with the PCA results shown in Figure 4b. Similar
phenomena can be seen in Figure 5b in that the borders between Aero and MBRE were not
well-defined, with some samples totally overlapped.
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3.3. Leachate Chemical Characterization

Leachate characterization is highly variable and heterogeneous. In this study, the
chemical characteristics of incineration leachate, including pH, COD, and ammonia nitro-
gen, were detected. Table 2 shows the chemical parameter results of six procedures with
statistically significant differences (Turkey HSD, p < 0.05). The pH value varied from 8.29
to 6.45, and the changes were not very regular. The changes in COD and ammonia nitrogen
were very noticeable, with LE showing the highest values (33,860 mg/L for COD and
2472 mg/L for ammonia nitrogen) and MBRE showing the lowest values (361.2 mg/L for
COD and 7.44 mg/L for ammonia nitrogen). The conversion of LRW to MBRE resulted in a
COD removal efficiency of 97.71%, which was higher than the maximum removal efficiency
(63.59%) achieved with the contaminant coagulation treatment process [4]. The procedure
used in this study achieved a high ammonia nitrogen removal efficiency of 99.34%, which
was higher than the 98.98% removal efficiency previously obtained with a spacer tube
reverse osmosis membrane [26].

Table 2. Average values of leachate chemical parameters.

LRW LE ICRE ANE AeroE MBRE

COD (mg/L) 15,800 b 33,860 a 3311 c 677.2 d 496.6 d 361.2 d

Ammonia nitrogen (mg/L) 1134 c 2472 a 2040 b 354 d 17.46 e 7.44 e

PH 7.80 b 6.45 d 8.29 a 7.83 b 7.18 c 7.83 b

a The values are the average of three leachate sample replications. A mean in the same row followed by different
inline letters (a, b, c, d, e) is statistically different, as confirmed with Tukey’s HSD test (p < 0.05).

Significantly, the chemical parameters of the LE reached their highest (COD and
ammonia nitrogen) or lowest (pH) values because during this procedure, the incineration
leachate was concentrated. The processed leachate was discharged into a municipal pipe
network with chemical parameters that were up to standard.

3.4. Microbial Community Composition and Functional Potential Prediction

The microbial communities in the waste incineration leachate were assessed in terms
of amplified 16S rDNA fragments. This type of data is commonly generated through
the DNA sequencing of bacterial communities, where the relative abundance of different
bacterial taxa can be inferred based on the number of sequencing reads corresponding to
each taxon. The profiles of the bacterial communities were complex, and the data revealed
that there was a high degree of variation between samples. Table 3 displays the respective
phylum- and genus-level abundances of microbial communities. In the leachate samples,
Proteobacteria, Firmicutes, and Bacteroidetes were the top three phyla, accounting for more
than 90% abundance of the total bacterial community. These findings were similar to those
described in previous investigations of fresh incineration leachate [27]. Notably, the relative
content (but not absolute content) of Proteobacteria increased with the changing processing
procedures. On the contrary, the relative contents of Firmicutes and Bacteroidetes decreased
with the changing processing procedures. The microbial communities in the processed
leachate were established as meeting the required standards before being released into the
municipal pipe network.

Using PICRUSt 2 and the KEGG database (https://www.arb-silva.de/, version: silva_132),
metabolic pathways were predicted to determine the functional composition associated with
leachate samples, as shown in Figure 6. The analysis of the functional gene families involved
categorizing them into various groups that included metabolism, genetic information process-
ing, cellular processes, environmental information processing, organismal systems, and human
diseases. Metabolism emerged as the top-performing pathway among these categories, as it was
responsible for more than 85% of the total abundances. The dominant level 2 metabolism path-
ways were the metabolisms of cofactors and vitamins (13.5–15.3%), carbohydrate metabolism
(13.2–14.1%), amino acid metabolism (13.7–14.9), metabolisms of terpenoids and polyketides
(11.3–12.5%), and metabolisms of other amino acids (7.8–10.2%). These results indicated high

https://www.arb-silva.de/
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bacterial activity. Human disease-related pathways were uncommon. Environmental informa-
tion processing pathways included signal transduction (0.8–1.9%) and membrane transport
(1.1–2.3%).

Table 3. Bacterial taxonomic identification and relative abundances at the phylum level in each
leachate sample at different water outlets.

LRW LE ICRE ANE AeroE MBRE

Proteobacteria 0.1156 0.0131 0.0615 0.4086 0.4227 0.9803
Firmicutes 0.4256 0.9337 0.3360 0.0692 0.0508 0.0042

Bacteroidetes 0.3992 0.0289 0.3234 0.1082 0.0923 0.0031
Chloroflexi 0 0.0002 0.0055 0.1073 0.1249 0.0047

Calditrichaeota 0 0.0001 0 0.1056 0.1 0.0009
Planctomycetes 0 0 0 0.0541 0.0872 0.0010
Patescibacteria 0.0004 0.0001 0.024 0.0337 0.0241 0.0001

Epsilonbacteraeota 0.0076 0 0.0703 0.0021 0.0005 0.0001
Actinobacteria 0.0116 0.0196 0.0033 0.0166 0.0161 0.0022

Tenericutes 0.0033 0.0001 0.0621 0.0009 0.0001 0.0001
Others 0.0366 0.0042 0.1138 0.0937 0.0813 0.0032
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3.5. Recognition Based on E-Nose Data
3.5.1. Monitoring Based on Random Forest

In this study, the area under the curve (AUC) and receiver operator characteristic
(ROC) curves were applied to evaluate the performance of the classification models. A high
AUC score indicated that the model had a good balance between the true positive rate (TPR)
and the false positive rate (FPR), meaning that it could accurately distinguish samples
and be useful for the monitoring task. The closer the AUC score was to 1, the closer the
model could achieve perfect classification. As shown in Figure 7(a1,b1,c1), the AUC scores
for the RF models based on the original e-nose data, PCA-processed e-nose data, and
TNSE-processed data were 0.9926, 0.998, and 0.998, respectively. Thus, the RF models could
successfully classify the six leachate samples. To further analyze the classification results,
ROC curves were used to organize classifiers and visualize the results. In the ROC graphs,
the closer the curve is to the (0, 1) point, the better the performance of the classifier. As
seen in Figure 7(a2,b2,c2), the classification accuracies for each leachate sample were very
different for the training set. Regarding the RF models, the classification model based on
TNSE showed a higher accuracy than models based on original data and data processed
with PCA. Models based on original data and data processed with PCA misclassified
samples for each class, and models based on TNSE only misclassified ANE and MBRE
samples, possibly because the ANE and MBRE classes overlapped (as seen in Figure 4a)
and the headspace gases of the ANE and MBRE samples were very similar, resulting in
models that were difficult to classify.
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original data, (b1) AUC based on the PCA data, and (c1) AUC based on the TNSE data; (a2) ROC
curve based on the original data, (b2) ROC curve based on the PCA data, and (c2) ROC curve based
on the TNSE data. Class S1 refers to LRW, class S2 refers to LE, class S3 refers to ICRE, class S4 refers
to AeroE, class S5 refers to ANE, and class S6 refers to MBRE.

To ensure accurate classification performance, testing datasets were used, and each model
was run 100 times to reduce the impact of volatility. The average results are displayed in
Table 4. The classification model based on TNSE-RF had the best performance, with 99.49%
accuracy for the training set and 97.36% accuracy for the testing set, suggesting that the
TNSE-RF model had a more stable robustness than the original-RF and PCA-RF models.
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Table 4. The classification results for the training and testing sets based on RF models (100 times).

Model Accuracy for the Training Set (%) Accuracy for the Testing Set (%)

Original-RF 96.47 87.92
PCA-RF 98.43 89.81
TNSE-RF 99.49 91.81

3.5.2. Monitoring Based on Gradient-Boosted Decision Tree

According to the AUC graphs shown in Figure 8(a1,b1,c1), the best classification result
was achieved by the PCA-GBDT model, with an AUC value of 0.9995. The models based on
original-GBDT and TNSE-GBDT did not exhibit performance levels that were comparable
to the models based on original-RF and TNSE-RF, as shown in Figure 7(a1,c1). As shown in
Figure 8(a2,b2,c2), the classification accuracy rates of the RF models were very different.
The PCA-GBDT model showed the best accuracy among all models (original-RF, PCA-RF,
TNSE-RF, original-GBDT, and TNSE-RF), with no samples misclassified. The models based
on original-GBDT and TNSE-RF misclassified samples at different levels.

Chemosensors 2023, 11, x FOR PEER REVIEW 12 of 17 
 

 

very different. The PCA-GBDT model showed the best accuracy among all models (origi-

nal-RF, PCA-RF, TNSE-RF, original-GBDT, and TNSE-RF), with no samples misclassified. 

The models based on original-GBDT and TNSE-RF misclassified samples at different lev-

els. 

 

Figure 8. Evaluation of GBDT classification based on different datasets: (a1) AUC based on the orig-

inal data, (b1) AUC based on the PCA data, and (c1) AUC based on the TNSE data; (a2) ROC curve 

based on the original data, (b2) ROC curve based on the PCA data, and (c2) ROC curve based on 

the TNSE data. Class S1 refers to LRW, class S2 refers to LE, class S3 refers to ICRE, class S4 refers 

to AeroE, class S5 refers to ANE, and class S6 refers to MBRE. 

The GBDT models were run 100 times to decrease their instability, and the classifica-

tion results of the training and testing data are displayed in Table 5. The results suggest 

that the PCA-GBDT model had excellent classification performance, achieving 100% ac-

curacy for the training set and 98.92% accuracy for the testing set. As summarized in Ta-

bles 4 and 5, the PCA-GBDT models showed satisfying performance for both the training 

and the testing datasets, with no overfitting in the modeling. 

Table 5. The classification results for the training and testing sets based on GBDT models. 

Model Accuracy for the Training Set (%) 
Accuracy for the Testing Set  

(%) 

Original-GBDT 100 89.03 

PCA-GBDT 100 98.92 

TNSE-GBDT 100 87.92 

3.6. Prediction Results of Chemical Parameters and Microbial Community Contents Based on  

E-Nose Data 

3.6.1. Prediction Results of Chemical Parameters and Microbial Community Contents 

Based on RF 

An RF is considered a powerful and flexible tool for predicting continuous numerical 

values. While modeling, multiple CARTs are trained on different subsets of training data 

using random selection (bagging and boosting), helping to reduce model variance and 

overfitting while making the model more robust to noise in the data. In this study, the 

number of CARTs was set to 35 according to the R2 and MSE values. As with the 

Figure 8. Evaluation of GBDT classification based on different datasets: (a1) AUC based on the
original data, (b1) AUC based on the PCA data, and (c1) AUC based on the TNSE data; (a2) ROC
curve based on the original data, (b2) ROC curve based on the PCA data, and (c2) ROC curve based
on the TNSE data. Class S1 refers to LRW, class S2 refers to LE, class S3 refers to ICRE, class S4 refers
to AeroE, class S5 refers to ANE, and class S6 refers to MBRE.

The GBDT models were run 100 times to decrease their instability, and the classification
results of the training and testing data are displayed in Table 5. The results suggest that the
PCA-GBDT model had excellent classification performance, achieving 100% accuracy for
the training set and 98.92% accuracy for the testing set. As summarized in Tables 4 and 5,
the PCA-GBDT models showed satisfying performance for both the training and the testing
datasets, with no overfitting in the modeling.

Table 5. The classification results for the training and testing sets based on GBDT models.

Model Accuracy for the Training Set (%) Accuracy for the Testing Set (%)

Original-GBDT 100 89.03
PCA-GBDT 100 98.92
TNSE-GBDT 100 87.92
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3.6. Prediction Results of Chemical Parameters and Microbial Community Contents Based on
E-Nose Data
3.6.1. Prediction Results of Chemical Parameters and Microbial Community Contents
Based on RF

An RF is considered a powerful and flexible tool for predicting continuous numerical
values. While modeling, multiple CARTs are trained on different subsets of training data using
random selection (bagging and boosting), helping to reduce model variance and overfitting
while making the model more robust to noise in the data. In this study, the number of CARTs
was set to 35 according to the R2 and MSE values. As with the classification procedure, the
prediction models were run 100 times to reduce volatility. The average R2 and MSE values for
the prediction RF models based on the original e-nose dataset, the PCA-processed dataset,
and the TNSE dataset are displayed in Tables 6–8, respectively.

Table 6. Comparison of the RF prediction models based on the original e-nose dataset.

R2

(Training)
MSE

(Training)
R2

(Testing)
MSE

(Testing)

Proteobacteria 0.9694 0.0033 0.7911 0.0221
Firmicutes 0.9947 0.0006 0.9651 0.0034

Bacteroidetes 0.9831 0.0004 0.8972 0.0022
COD 0.9948 7.91 × 105 0.9653 5.06 × 106

Ammonia nitrogen 0.9957 4017 0.9732 2.41 × 104

pH 0.9796 0.0071 0.8729 0.0418

Table 7. Comparison of the RF prediction models based on PCA.

R2

(Training)
MSE

(Training)
R2

(Testing)
MSE

(Testing)

Proteobacteria 0.9768 0.0025 0.8535 0.0158
Firmicutes 0.9900 0.0010 0.9204 0.0080

Bacteroidetes 0.9795 0.0005 0.8598 0.0030
COD 0.9887 1.7 × 106 0.9125 1.3 × 107

Ammonia nitrogen 0.9868 1.2 × 105 0.9014 8.8 × 105

pH 0.9770 0.0081 0.8348 0.0554

Table 8. Comparison of the RF prediction models based on TSNE.

R2

(Training)
MSE

(Training)
R2

(Testing)
MSE

(Testing)

Proteobacteria 0.9716 0.0031 0.8099 0.0202
Firmicutes 0.9910 0.0009 0.9277 0.0070

Bacteroidetes 0.9741 0.0006 0.8451 0.0033
COD 0.9935 9.90 × 105 0.9443 7.95 × 106

Ammonia nitrogen 0.9882 1.11 × 105 0.9268 6.60 × 105

pH 0.9641 0.0126 0.8814 0.0422

The e-nose signals provided complete information on leachate headspace gas, which
predominantly contained volatile organic compounds such as hydrogen sulfide, methyl
mercaptan, acetylene, and other similar compounds. The results of the testing data were
not as good as those of the training data because the model was applied to new, unseen
data that may have had different characteristics or distributions. The other reason why the
data were different between the training and testing datasets was the concept of overfitting,
which could have led to poor generalization performance. The overall performance of the
training dataset was better than that of the testing dataset, but the results of the testing
dataset were not bad, with R2 > 0.80, which was acceptable.

Regarding microbial community composition, the relative contents of Proteobacteria,
Firmicutes, and Bacteroidetes were predicted by the RF models. For the training dataset,
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the three models (original-RF, PCA-RF, and TNSE-RF) were able to predict the contents
of microbial community composition well, with R2 values of over 0.96. However, the
predictive ability of the RF models for the testing set was inferior to that for the training
set. For Proteobacteria, the PCA-RF model demonstrated good predictive power, with an
R2 of 0.9768 and an MSE of 0.0025 for the training set and an R2 of 0.8535 and an MSE of
0.0158 for the testing set. For Firmicutes, the original-RF model exhibited strong predictive
ability, achieving an R2 value of 0.9947 and an MSE value of 0.0006 for the training set and
an R2 value of 0.9651 and an MSE value of 0.0034 for the testing set. The original-RF model
showed excellent predictive performance for Bacteroidetes, with an R2 value of 0.9831 and
an MSE value of 0.0004 for the training set and an R2 value of 0.8972 and an MSE value of
0.0022 for the testing set. As seen in Tables 6–8, the TSNE-RF models outperformed the
original-RF model and the PCA-RF model for each parameter in the continuous numerical
prediction of chemical parameters.

3.6.2. Prediction Results of Chemical Parameters and Microbial Community Content
Results Based on GBDT

A GBDT works by iteratively adding decision trees to an ensemble, with each tree
attempting to correct the errors of previous trees. This process is repeated until a stopping
criterion, such as the maximum number of trees or a minimum improvement in performance,
is met. In this study, a loss function was chosen to stop the modeling. As with the RF modeling,
the GBDT prediction models were run 100 times to reduce volatility. The average R2 and MSE
values for the prediction RF models based on the original e-nose dataset, the PCA-processed
dataset, and the TNSE dataset are displayed in Tables 9–11, respectively.

Table 9. Comparison of the GBDT prediction models based on the original e-nose dataset.

R2

(Training)
MSE

(Training)
R2

(Testing)
MSE

(Testing)

Proteobacteria 0.9851 0.0016 0.7587 0.0256
Firmicutes 0.9977 0.0002 0.9549 0.0044

Bacteroidetes 0.9893 0.0002 0.8891 0.0023
COD 0.9991 1.43 × 105 0.9613 5.60 × 106

Ammonia nitrogen 0.9983 1554 0.9658 3.11 × 105

pH 0.9982 0.0011 0.8612 0.0458

Table 10. Comparison of the GBDT prediction models based on PCA.

R2

(Training)
MSE

(Training)
R2

(Testing)
MSE

(Testing)

Proteobacteria 0.9971 0.0003 0.8674 0.0142
Firmicutes 0.9990 0.0001 0.9655 0.0032

Bacteroidetes 0.9981 4.25 × 10−5 0.8984 0.0024
COD 0.9996 5.53 × 104 0.9321 9.78 × 106

Ammonia nitrogen 0.9974 2458 0.9007 8.88 × 105

pH 0.9953 0.0016 0.8450 0.0521

Table 11. Comparison of the GBDT prediction models based on TNSE.

R2

(Training)
MSE

(Training)
R2

(Testing)
MSE

(Testing)

Proteobacteria 0.9913 0.0009 0.8085 0.0204
Firmicutes 0.9985 0.0002 0.9161 0.0081

Bacteroidetes 0.9824 0.0004 0.8096 0.0041
COD 0.9994 8.63 × 104 0.9338 9.40 × 106

Ammonia nitrogen 0.9986 1343 0.9156 7.5646 × 105

pH 0.9781 0.0077 0.7531 0.0812
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As can be observed in Tables 6–11, the GBDT models overall performed better than the
RF models. The PCA-GBDT models demonstrated superior performance in predicting microbial
community composition, achieving R2 values above 0.99 and MSE values below 0.0003 (due to
the use of relative contents for three microbial communities) for the training set and R2 values
exceeding 0.86 and MSE values below 0.015 for the testing set. The original-GBDT models
exhibited exceptional performance in forecasting microbial community composition, with R2

values surpassing 0.99 for the training dataset and 0.86 for the testing dataset.

4. Conclusions

Waste incineration is one of the most effective methods for waste disposal, with advantages
of waste volume reduction, waste-to-energy benefits, reductions in greenhouse gas emissions,
and land saving. This study applied e-nose technology to detect the headspace gas of incinera-
tion leachate and to assess the relationship among e-nose signals, chemical characterization, and
microorganism changes. Some conclusions can be drawn:

(1). The chemical parameter results in six studied procedures showed statistically significant
differences. Proteobacteria, Firmicutes, and Bacteroidetes were the top three phyla,
accounting for more than 90% abundance of the total bacterial community.

(2). The changes in the headspace gas of the leachate samples were detected with e-nose
sensors. The information in the e-nose sensor signals overlapped according to Pearson
correlations. PCA and TNSE were applied to extract valid e-nose information. According
to three-dimensional plots, the borders between the Aero and MBRE samples were not
well-defined, with some samples totally overlapped in both PCA and TNSE.

(3). RF and GBDT models were applied to assess the relationship among e-nose signals of the
leachate headspace gas, chemical parameter changes, and microorganism changes with
PCA and TNSE. The PCA-GBDT models showed satisfying performance for both the
training data (100% accuracy) and the testing data (98.92% accuracy), with no overfitting
in the modeling. Regarding numerical prediction, the GBDT models performed better
than the RF models in this study. The original-GBDT models exhibited exceptional
performance in forecasting chemical parameter changes, with R2 values surpassing
0.99 for the training dataset and 0.86 for the testing dataset. The PCA-GBDT models
demonstrated superior performance in predicting microbial community composition,
achieving R2 values above 0.99 and MSE values below 0.0003 for the training set and R2

values exceeding 0.86 and MSE values below 0.015 for the testing set.

Up until now, there have been few in depth studies conducted to gather information
regarding headspace gas, chemical parameters, and microorganism changes in leachate
samples. This research offers a more efficient monitoring method for the effective en-
forcement and implementation of monitoring programs by utilizing e-nose technology
combined with machine learning to provide more valuable insights compared with tradi-
tional instrumental measurements.
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