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Abstract: An electrochemical biosensor based on the immobilization of glucose oxidase into an
electropolymerized p-coumaric acid membrane on a Pt electrode has been developed and evaluated
for glucose detection in the range of 1 to 30 mM. The glucose biosensor exhibits a sensitivity of
36.96 mA/mMcm2, a LOD of 0.66 mM, and a LOQ of 2.18 mM. The biosensing membrane was
electropolymerized by cyclic voltammetry in 100 mM phosphates pH 7.00 and 3% ethanol containing
glucose oxidase and p-coumaric acid. The glucose biosensors’ stability, repeatability, reproducibility,
and selectivity were estimated. The biosensing membrane shows permselective properties and an-
tifouling effects. The applicability of the developed glucose biosensor was evaluated in the presence of
20 mg/mL proteins, and any signal associated with biofouling was observed. The glucose biosensors
were employed for the determination of the glucose concentration in three commercial beverages.

Keywords: p-coumaric acid; electropolymerization; cyclic voltammetry; glucose biosensor; amperometry;
permselective membrane; commercial beverages

1. Introduction

Diabetes mellitus is a disease produced by several factors involving genetic, as well
as lifestyle, factors. It can cause body dysfunction, such as renal failure and neuropathy,
as well as cardiovascular diseases [1,2]. The International Diabetes Federation (DIF) has
estimated that in 2021, around 10.5% of the world’s population lived with diabetes, and
by 2045, the population with the disease will be 12.2% [3]. Nowadays, diabetes mellitus
cannot be cure with medical treatment; however, it could be controlled, reducing the medi-
cal complications. The treatment includes diabetes education, diet, medication, and glucose
monitoring [4]. The glucose monitoring provides information to the physician to evaluate
human body conditions and provide the proper treatment. Currently, glucose monitoring
is achieved by fingertip blood sampling utilizing a self-monitoring blood glucometer or by
the use of implantable continuous glucose monitoring (CGM) biosensors. The biomedical
devices employ a miniaturized potentiostat and a glucose biosensor. In the biomedical field,
the expansion of biosensors is the objective of several investigations; the main goal is the
development of biosensors with high sensitivity, selectivity, repeatability, reproducibility,
storage stability, and biocompatibility. To improve the current glucose biosensors, the use
of different materials as transducers, redox mediators, and immobilization methods had
been explored.

For the immobilization of recognition elements, different methods have been used.
One of these methods is the use of polymers, which possess the capability of providing
stable biosensing membranes that retain macromolecules, maintaining their biological
properties [5]. The use of polymers for immobilization includes different techniques, such
as deep coating, drop casting, and spin coating. Usually, once the polymer covers the
electrode surface, the enzymes or biorecognition elements are immobilized by adsorption
onto the polymeric membrane, covalent binding, encapsulation, or entrapment [6–10].
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Another polymer formation and deposition technique is the electropolymerization of con-
ductive or non-conductive polymers. Electropolymerization has the advantage of covering
electrodes of any shape and size. The thickness of the polymer can be controlled either
by the number of cycles at the proper scan rate or by the time of the suitable potential or
proper current applied for the electropolymerization. In the case of conductive polymers,
such as poly-pyrrole (PPy), poly-aniline (PANI), and poly (3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS), the foundation of conductive membranes helps with
the electron movements during the charge transfer in the oxidation or reduction of the ana-
lyte at the detection step [9,11–14]. In the case of non-conductive polymers, the polymeric
films present high resistivity. The membranes are typically thinner due to the self-limited
growth of these materials, compared to conductive polymeric membranes. Usually, the
films based on non-conductive polymers are permselective, which is a useful property
in the construction of biosensors, preventing interfering species that could contaminate
biosensors’ response to a specific analyte [15]. The non-conductive polymers phenol and
its derivates, as well as phenylenediamine and overoxidized polypyrrole, had been used
for the development of biosensors [16–20]; due to their thickness, the analytes reach the
electrode surface fast, producing a quick biosensor response, which is a requirement for the
batch, as well as implantable biosensors (CGMs) [4,21]. The electropolymerization allows
the incorporation of the recognition agent (enzymes) at the same time that the polymer
layer is forming; thus, the biosensing membranes can be achieved in one step, maintaining
the polymer properties [8,11,17,22,23].

In the development of polymeric membranes for biosensor construction, the evaluation
of other monomers that comply with the biosensing requirements needs to be explored. In
this context, the electropolymerization of natural phenolic antioxidants is currently being
investigated [24–27]. Our research group explores the electropolymerization of 4-hydroxy-
cinnamic acid, commonly known as p-coumaric acid (p-CA), in developing electrochemical
sensors onto carbon paste electrodes [26].

The p-CA is a derivate of cinnamic acid, which can be found in fruits, vegetables,
and cereals, and thus is regularly present in the human diet. The p-CA possesses anti-
inflammatory, antibacterial, and antioxidant properties; hence, it has been used in the
pharmaceutical, alimentary, and chemical industries [28–31]. It was found that p-CA can
be electropolymerized, its oxidation is pH-dependent, and it can form a polymeric film
covering the electrode surface [32]. The p-CA polymer has been used for electrode (glassy
carbon and carbon paste) modification for heavy metals determination and the amino acid
(L-cysteine) [25,26,33].

Considering the current requirements in the growth of the glucose biosensors field
and the advantages of the use of non-conductive polymers, we present the construction
and evaluation of glucose biosensors based on a polymeric membrane constructed in one
step by electropolymerization through cyclic voltammetry of p-coumaric acid and glucose
oxidase (GOx) onto a Pt electrode.

2. Materials and Methods

Mono-basic sodium phosphate, mono-acid potassium phosphate, sodium chloride,
glucose oxidase (GOx) from Aspergillus Niger type X-S, protein standard (80 mg/mL),
D-glucose, uric acid, acetaminophen, ascorbic acid, p-coumaric acid, bovine serum albumin
(BSA), hydrogen peroxide 30%, sulfuric acid, and sodium hydroxide were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Absolute ethanol was acquired from J.T. Baker. Real
samples (juice and milk samples) were purchased from a local supermarket. All chemicals
were analytical grade, and all chemicals, as well as real samples, were used without further
purification. Aqueous solutions throughout the experiments were prepared with ultra-pure
deionized water (DI) 18.2 MΩ cm−1.

Electrochemical measurements were performed in a potentiostat BAS 100B employing
a 3-electrode electrochemical cell. The working electrode was a Pt disk 1.6 mm in diameter,
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the used reference electrode was a saturated Ag/AgCl, and a Pt wire was used as an
auxiliary electrode.

2.1. Biosensor Membrane Fabrication

Before bio-membrane electropolymerization, the Pt disk was electrochemically cleaned
through cyclic voltammetry (CV), and the electrodes were cycled from −325 to 1250 mV
vs. Ag/AgCl in H2SO4 100 mM until a stable and well-defined poly-crystalline Pt signal
was obtained. The Pt electroactive area was calculated from the voltammogram signal
according to [34,35].

Once the Pt electrode was electrochemically clean, it was washed with DI water.
Subsequently, the biosensing membrane was fabricated in a 2.5 mM p-CA prepared
in 97% phosphate buffer pH 7.0 and 3% of ethanol solution (PB/et) containing GOx
(50 U/mL). Cyclic voltammetry was performed from −325 to 1250 mV vs. Ag/AgCl at a
scan rate of 20 mV/s during 20 cycles. The following step was to wash the biosensor with DI
water to remove the monomer and enzyme that were not attached to the biosensing mem-
brane. To stabilize the biosensor membrane, a constant potential (600 mV vs. Ag/AgCl) for
15 min was applied to the glucose biosensor in PB solution. After biosensor stabilization,
glucose calibrations were performed by amperometry at 600 mV, with glucose additions in
the range from 1 to 30 mM covering the hypo- and hyperglycemia levels.

2.2. Biosensor Electro-Analytical Evaluation and Characterization

The potential for detecting the oxidation of H2O2 produced by the enzymatic reaction
was the same used for additions of hydrogen peroxide employing an electrode coated only
with a membrane of poly-p-coumaric acid electropolymerized under similar conditions to
the biosensing membrane lacking the GOx enzyme.

The analytical parameters of the biosensors were obtained from glucose calibrations
performed at the constant potential of 600 mV vs. Ag/AgCl.

Biosensor sensitivity was obtained from calibrations, glucose additions were carried
out in the range from 1 to 30 mM, and the current density was obtained from the current
and Pt area for each prepared biosensor. The Pt area for each prepared glucose biosensor
was obtained as described by [34,35].

Selectivity was performed for ascorbic acid, uric acid, and acetaminophen at different
concentrations, including the low, normal, and high levels of these analytes in blood. The
electrochemical response was compared with the biosensor response to 5 mM glucose. The
selectivity was calculated as the percentage of the current generated by 5 mM glucose plus
the endogenous spice and compared to the glucose response.

The stability of the glucose biosensors was evaluated under four different criteria:
(a) stability upon consecutive glucose calibration (stability of the biosensor sensitivity–
repeatability), (b) stability of a glucose response for a given concentration during a given
time, (c) stability of the biosensor sensitivity at different days, (d) stability of the biosensor
membrane for a given storage period.

The glucose biosensors’ reproducibility was evaluated by preparing and testing biosen-
sors under the same experimental conditions (independent experiments). The sensitivity of
the glucose biosensors is estimated.

Glucose biosensors were calibrated in the presence of proteins at similar conditions
in interstitial fluid (20 mg/mL) [36]. The biosensors also were employed to determine the
glucose concentration in commercial juices and milk samples.

3. Results and Discussion

Before each biosensor preparation, the Pt disk electrode was electrochemically cleaned
by cyclic voltammetry in a 100 mM H2SO4 solution; a typical voltammogram for Pt in
H2SO4 is shown in Figure 1A. The Pt, real surface area, was determined as suggested
by [34,35]. After the cleaning process, the electropolymerization of p-CA was performed
in 2.5 mM p-coumaric acid prepared in a PB/et solution. The potential was cycled from
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−325 mV to 1250 mV vs. Ag/AgCl, during 20 cycles at a scan rate of 20 mV/s. Afterward,
the electrode was thoroughly washed with DI water to remove the unattached monomer.
To confirm the presence of the polymeric membrane on the top of the Pt electrode surface,
cyclic voltammetry in PB at a scan rate of 50 mV/s (one cycle) was performed; a typical
voltammogram for a Pt electrode before and after polymerization in PB solutions is shown
in Figure 1B. Employing the same electrochemical system, cyclic voltammetry for H2O2 at
different concentrations was carried out. The cyclic voltammograms showed that the H2O2
oxidation starts to take place at 350 mV, where the current starts to increase and remains
constant from 400 mV and up to 900 mV; thus, the H2O2 can be detected at 350 mV. However,
at this potential, the sensitivity, as well as linear range, is low. An option to extend the
sensitivity and linear range is to apply a more positive potential. Under the experimental
conditions, a potential from 500 to 800 mV could be applied. Nevertheless, endogenous
species can easily be oxidized as the applied potential increases. Considering this, the
electro-analytical evaluation of the biosensor was performed at 600 mV vs. Ag/AgCl.
Figure 1C shows the voltammograms for different H2O2 concentrations. As is observed
in Figure 1C, H2O2 can diffuse through the polymeric membrane, reach the Pt electrode
surface, and be electrochemically oxidized. The glucose electrochemical detection at the
biosensor is carried out by the H2O2 oxidation at the Pt electrode surface. The hydrogen
peroxide is generated by the enzymatic reaction, as is shown in Scheme 1.
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3.1. Biosensing Membrane Electropolymerization

The glucose biosensors were prepared by the electropolymerization of p-CA in the
presence of GOx (poly(p-CA-GOx)) in PB/et, onto a Pt disk electrode. Under this exper-
imental condition (pH = 7.00), the p-CA molecule (pKa1 = 4.65 and pKa2 = 9.92) [37] is
partially protonated. The electropolymerization was performed through cyclic voltammetry.
The process starts from cathodic to anodic potential, and the typical electropolymerization
results are shown in Figure 2A. As can be observed, at the forward scan in the first cycle, an
oxidation signal is detected at 750 mV (I OX). The signal is attributed to the oxidation of the
phenolic group of the semi-protonated p-CA molecule, and at the backward scan, a reduc-
tion signal around 200 mV (II RED) is observed. The electrochemical signal can be attributed
to the reduction of the olefinic group, which is favored by the presence of ethanol and the
Pt surface, as is mentioned at [32,38]. At the second and successive scans, the first oxidation
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peak disappeared, while the reduction signal (II RED) was preserved. At the second cycle,
2 new oxidation signals appeared around 450 mV (II OX). The signal is due to the reversible
redox process from the olefinic group in the p-CA, and 900 mV (I′ OX) of the signal is due
to the shift to a more positive potential of the oxidation of the phenolic group in the p-CA,
in which the molecule is partially protonated. The p-CA molecule is incorporated in the
surface of the electrode to form the polymeric membrane. The phenolic oxidation originates
phenolic free radicals that form the dimers, trimers, and tetramers that are coupled to form
a structure as crown ether. As mentioned by Janeiro [32], the GOx can be incorporated
into the polymeric membrane into the crown structure. The currents for both oxidation
signals rise as the number of cycles increases. The behavior found is different from the
performance described by [25,26]. In those cases, the first oxidation signal is maintained,
with a decrease of the current; at the second cycle, two new oxidation signals were observed
at a more negative potential. In those cases, the current increases until it remains constant
after several cycles. The difference in the electropolymerization behavior could be due to
the employed substrate (Pt electrode) and pH solutions, and the presence of ethanol in
the supporting electrolyte (PB/et), but not due to the GOx presence. This is confirmed by
the electropolymerization behavior found over the Pt electrode, which was similar with
and without enzyme in the employed electropolymerization solution. Figure 2B shows
the results described above. The fact of preparing the electropolymerization solution in
3% of ethanol could help with the incorporation of more monomer and GOx units into the
biosensing membrane. Figure 2C shows the electropolymerization of p-CA in the presence
of GOx in phosphate buffer media without ethanol. To verify the presence of the biosensing
membrane on the surface of the Pt electrode (Pt/poly(p-CA-GOx)), cyclic voltammetry
in phosphate buffer was recorded. The results in Figure 2D show the voltammogram for
the Pt electrode before (bare) and after electropolymerization (Pt/poly(p-CA-GOx) of the
biosensing membrane.

3.2. Glucose Biosensor Evaluation

After the electropolymerization step, the biosensor was carefully washed with DI
water to remove the unattached enzyme and monomer. To stabilize the biosensing mem-
brane, amperometry in PB solution at 600 mV was performed until a stable current was
obtained (15 min approximately). Once the current remained constant, the buffer solution
was replaced with new solutions, and amperometry was carried out under the same pa-
rameters (600 mV vs. Ag/AgCl). Once the current was stable, glucose was added into
the electrochemical cell from the range from 1 to 30 mM; the rise in the current is due to
electrochemical oxidation of H2O2 produced by the enzymatic reaction, and it is directly
correlated to the glucose concentrations in the testing sample. Figure 3A shows the glucose
calibration plot for five successive glucose calibrations at one glucose biosensor exhibiting
stability of the sensitivity signal. From the data of the calibration plot, two linear zones
can be observed, the first zone at low glucose concentrations from 1 to 5 mM and the
second zone for 5 mM to 30 mM, covering most of the clinical range of interest in blood
samples (2.2 to 38.9 mM) [39]. In this regard, the biosensors can be utilized for glucose
detection in blood or interstitial fluid at normal glucose levels or samples in the hypo- and
a wide range of hyperglycemic levels; they likewise could be used in other real samples.
As can be observed, the sensitivity of the glucose biosensor remains constant for successive
glucose calibrations, showing acceptable repeatability for the same biosensing system. The
glucose biosensors sensitivity for concentrations lower than 5 mM exhibit a sensitivity
of 54.06 mA/mMcm2 and 33.86 mA/mMcm2 in the linear range from 5 to 30 mM glu-
cose. In both cases, the determination coefficient R2 is 0.99. If the whole tested glucose
range is considered, the sensitivity is 36.96 mA/mMcm2 with an R2 = 0.986. The limit of
detection (LOD) is 0.66 mM, and the limit of quantitation (LOQ) is 2.18 mM; these were
calculated as LOD = 3σ

m and LOQ = 10σ
m respectively. In Figure 3B, the current stability

for continuous monitoring of two different glucose concentrations is presented. As can
be seen, the current remains practically constant for about 10 min (100.21 ± 4.79 mA/cm2
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concentration 1 and 168.51 ± 4.91 mA/cm2 glucose concentration 2). The current rises
as the glucose concentration increases. The signal stability is one of the most important
analytical parameters of implantable biosensing systems. Thus, the biosensing membrane
shows potential applications in continuous monitoring electrochemical biosensors, such
as CGM’s.

Chemosensors 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. (A) Cyclic voltammograms for the electropolymerization of p-CA and GOx onto a Pt disk 
electrode in PB/et solution. (B) Typical cyclic voltammogram for p-CA electropolymerization in 
phosphate buffer in 3% ethanol (PB/et) without GOx. (C) Cyclic voltammogram for p-CA and GOx 
electropolymerization in phosphate buffer (PB) without ethanol. (D) Cyclic voltammograms in 
phosphate buffer pH 7.0 for a bare Pt electrode and Pt/poly(p-CA-GOx) glucose biosensor. Electro-
polymerization experiments (A–C) were carried out at a scan rate of 20 mV/s; the biosensing mem-
brane presence on the Pt electrode was confirmed by cyclic voltammetry in PB at a scan rate of 50 
mV/s. 

3.2. Glucose Biosensor Evaluation 
After the electropolymerization step, the biosensor was carefully washed with DI wa-

ter to remove the unattached enzyme and monomer. To stabilize the biosensing mem-
brane, amperometry in PB solution at 600 mV was performed until a stable current was 
obtained (15 min approximately). Once the current remained constant, the buffer solution 
was replaced with new solutions, and amperometry was carried out under the same pa-
rameters (600 mV vs. Ag/AgCl). Once the current was stable, glucose was added into the 
electrochemical cell from the range from 1 to 30 mM; the rise in the current is due to elec-
trochemical oxidation of H2O2 produced by the enzymatic reaction, and it is directly cor-
related to the glucose concentrations in the testing sample. Figure 3A shows the glucose 
calibration plot for five successive glucose calibrations at one glucose biosensor exhibiting 
stability of the sensitivity signal. From the data of the calibration plot, two linear zones 
can be observed, the first zone at low glucose concentrations from 1 to 5 mM and the sec-
ond zone for 5 mM to 30 mM, covering most of the clinical range of interest in blood sam-
ples (2.2 to 38.9 mM) [39]. In this regard, the biosensors can be utilized for glucose 

Figure 2. (A) Cyclic voltammograms for the electropolymerization of p-CA and GOx onto a Pt
disk electrode in PB/et solution. (B) Typical cyclic voltammogram for p-CA electropolymerization
in phosphate buffer in 3% ethanol (PB/et) without GOx. (C) Cyclic voltammogram for p-CA and
GOx electropolymerization in phosphate buffer (PB) without ethanol. (D) Cyclic voltammograms
in phosphate buffer pH 7.0 for a bare Pt electrode and Pt/poly(p-CA-GOx) glucose biosensor. Elec-
tropolymerization experiments (A–C) were carried out at a scan rate of 20 mV/s; the biosensing
membrane presence on the Pt electrode was confirmed by cyclic voltammetry in PB at a scan rate
of 50 mV/s.

The selectivity of the glucose biosensors was tested for the electrochemical response
at 5 mM glucose and 5 mM glucose in the presence of three different electroactive spices
commonly present in real samples: ascorbic acid (AA), uric acid (UA), and acetaminophen
(APAP) at low, middle, and high (pathological) levels of the analytes in human blood. The
electrochemical response was compared to the current produced by only 5 mM glucose. The
results showed that at the high AA level, the electrochemical response rises to 18% relative
to the signal for 5 mM of glucose, which could provide a false glucose reading. For lower
and middle ascorbic acid levels, the signal also rises; however, the signal increases just
3 and 7%, respectively, relative to the current for 5 mM of glucose. In the case of UA and
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APAP, the results showed similar behavior to AA, where at high UA and APAP, the signal
increases significantly to the 5 mM glucose signal. The results are shown in Figure 4.
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Figure 4. Glucose biosensor selectivity. The signal percentage for glucose 5 mM; glucose 5 mM + ascorbic acid
at 20, 45, and 83 µM; glucose 5 mM + uric acid at 150, 250, and 400 µM; and glucose 5 mM + acetaminophen
0.140, 1.150, and 1.710 mM.

The reproducibility of the methodology for the glucose biosensors fabrication was
tested by preparing and evaluating 10 independent biosensors under similar experimental
conditions; the results showed a coefficient of variation (CV) of 5.05% in the sensitivity of
the biosensors. Figure 5A shows the average calibration plot for the 10 independent sensors.
Figure 5B represents the sensitivity of each of the 10 independent glucose biosensors (for
this comparison, the sensitivity was calculated in the entire glucose range).
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Figure 5. (A) Average glucose calibration for 10 independent biosensors prepared under similar condi-
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of the methodology).

The stability of the biosensors was tested by performing glucose calibrations every day
for 30 days; after carrying out the calibration, the biosensors were washed with DI water
and kept dry at room temperature until their use the following day. Figure 6A shows the
typical calibration plots every 5 days. It can be seen that in the first 10 days, the sensitivity
remains at 95%. During the following 5 days, the sensitivity decreases to 85%, and at
the end of 30 days, the sensitivity decreases to 57%; the results are shown in Figure 6B.
Considering that there were any special storage conditions and that the average room
temperature was 20 ± 2 ◦C, the lifetime could be improved by maintaining the sensor
under a lower temperature.
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Figure 6. Glucose biosensor stability evaluation. (A) Glucose biosensor calibrations performed on a
different day. (B) Sensitivity percentage for glucose biosensors evaluation carried out on a different
day; comparison of the sensitivity is relative to the sensitivity on the first day.

Storage stability was tested for the sensitivity of the glucose biosensors at day 1 and
at day 30; during this period, the biosensor was kept at room temperature 20 ± 2 ◦C.
Considering the whole glucose range, at day 30, it was observed that the sensitivity
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decreased 28% relative to day 1. However, the major diminution in the sensitivity was at
glucose higher than 5 mM, where the sensitivity decreased 67%, while at concentrations
lower than 5 mM, the sensitivity decreased only 15% relative to day 1. The results are
shown in Figure 7A,B.
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3.3. Glucose Biosensors Applications

The glucose biosensors were used in a solution containing 20 mg/mL of proteins
to emulate the conditions that can be found in blood or interstitial fluid. The results in
Figure 8A,B show that the sensitivity of the sensor in the presence of proteins in the whole
range decreases 12% relative to the sensitivity obtained before biosensor calibration in the
presence of proteins. The following step was to calibrate the glucose biosensors in phos-
phate buffer. The sensitivity increases by 1% compared to the first calibration. Nevertheless,
this increment could be only a regular variation between consecutive calibrations. As can
be observed from data in Figure 8A, the calibration plot in the presence of proteins starts
at a more positive current; this is attributed to the protein solution matrix, although the
testing matrix, the sensors, preserve a good glucose sensitivity. By performing the second
calibration in a phosphate buffer, where practically the same response as at first calibration
was obtained, it is possible to conclude that the biosensing membrane could present an
anti-fouling effect, which could be favorable for continuous monitoring, and the biosensors
could be utilized in different sorts of testing media.

Glucose biosensors were utilized for glucose determination in beverage samples (semi-
skimmed flavored milk, flavored soy milk, and pasteurized apple juice) purchased from
a local supermarket. It should be mentioned that due to the amount of glucose in each
sample, which is higher than the linear range of the biosensor, the glucose determination
was carried out by multipoint standard addition, and the matrix effect of these samples
was diminished by the phosphate buffer required for the test. The glucose determinations
are summarized in Table 1. As can be seen, the glucose determinations provide acceptable
results for each of the three samples, making the biosensor suitable for application in these
kinds of liquid samples.

The analytical parameters of the glucose biosensors developed in this work were
compared with some of the latest electrochemical glucose sensors, which include enzymatic
and non-enzymatic sensors [40–46]; the results are summarized in Table 2.
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Table 1. Glucose determination at three commercial beverages.

Sample Total Sugar g/100 mL Concentration (Label) * Total Sugar g/100 mL Concentration
Utilizing This Glucose Biosensor

Flavored soy milk 4 3.92 ± 0.06

Semi-skimmed flavored milk 7.1 7.26 ± 0.33

Fruit juice 10.5 10.41 ± 0.30

* Information provided by the manufacturer.

Table 2. Comparison of analytical parameters for the latest electrochemical glucose sensors.

Sensor Structure Application Sensitivity LOD Linear Range Applied Potential Reference

GOx/CTs/GS/PB (GCGP) sweat 1.79 nA/mMcm2 2.45 µM 8.17–100 µM 0.075 V vs. Ag/AgCl [40]

Cu2O—coated CF 3739 mA/mMcm2 97.08 µM 0–500 µM 0.5 V vs. Ag/AgCl [41]

GOx—gel—rGO—Au/SPGE sweat 27.4 µA/mMcm2

53.7 µA/mMcm2 1.25 µM 1.25–850 µM
0.85–7.72 mM −0.3 V vs. Ag/AgCl [42]

GOxEPC-DenAu/CC (FcOH) serum 72.45 µA/mMcm2 6.7 µM 0.02–31.7 mM 0.28 V vs. Ag/AgCl [43]

GPE/PThBN/AuNPs/GOx 0.1326 µA/mMcm2 0.034 mM 2.97 µM–2.087 mM −0.5 V vs. Ag/AgCl [44]

GOx/Pt-HEC/LSG sweat 69.64 µA/mMcm2 0.23 µM 5–3000 µM 0.60 V vs. Ag/AgCl [45]

GOx-AuNPs-PEDOT:PSS/PB-G 0.15 µM 0.5–500 µM 0.0 V vs. Ag/AgCl [46]

Pt/poly(p-CA-GOx) Proteins and
commercial beverages

54.06 mA/mMcm2

33.86 mA/mMcm2 0.66 mM 1.5 mM
5–30 mM 0.60 V vs. Ag/AgCl This work

As can be observed, the glucose biosensor developed in this work excels in sensitivity
and linearity, besides the potential applications in the biomedical and food industries.

4. Conclusions

This study shows the possibility of using p-coumaric acid to prepare a polymeric
biosensing membrane by cyclic voltammetry and, in one step, incorporate recognizing
agents, such as enzymes, in the present research, glucose oxidase fabricating a glucose
biosensor. The fabricated biosensors show good reproducibility, repeatability, stability, and
sensitivity. The glucose biosensor exhibits 2 linear ranges, the first from 1 to 5 mM and
the second from 5 to 30 mM, allowing it to be used for glucose detection in biofluids in
the hypo- and hyperglycemic ranges and its potential applications in other liquid samples.
The biosensors have been used in the presence of proteins, maintaining the biosensor
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sensitivity. The biosensors have also been employed in the glucose determinations in other
complex matrices (milk and fruit juice), demonstrating that, in the case of proteins, the
polymeric membrane presents an anti-biofouling effect. The polymeric membrane allows
the H2O2 diffusion to the Pt electrode surface, followed by H2O2 electrochemical oxidation.
However, other electroactive species, such as ascorbic acid, uric acid, and acetaminophen,
cannot easily reach the electrode surface; thus, the polymeric membrane gives a grade of
selectivity to the biosensor towards some electroactive compounds that can be present
in real samples. The results show the potential applications of the biosensing membrane
for biomedical applications (CGMs) and the food industry. The reproducibility of the
methodology for glucose biosensor fabrication of 10 independent sensors prepared under
similar conditions showed a coefficient of variation (CV) of 5.05%, making it a promising
platform for mass production and for methodology applications with other recognition
elements for different analytes.
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