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Abstract: Hydrogen (H2) is a renewable energy source that has the potential to reduce greenhouse gas
emissions. However, H2 is also highly flammable and explosive, requiring sensitive and safe sensors
for its detection. This work presents the synthesis and characterization of WO3/graphene binary and
WO3/graphene/Pd (WG-Pd) ternary nanocomposites with varying graphene and Pd contents using
the microwave-assisted hydrothermal method. The excellent catalytic efficacy of Pd nanoparticles
facilitated the disintegration of hydrogen molecules into hydrogen atoms with heightened activity,
consequently improving the gas-sensing properties of the material. Furthermore, the incorporation of
graphene, possessing high conductivity, serves to augment the mobility of charge carriers within the
ternary materials, thereby expediting the response/recovery rates of gas sensors. Both graphene and
Pd nanoparticles, with work functions distinct from WO3, engender the formation of a heterojunction
at the interface of these diverse materials. This enhances the efficacy of electron–hole pair separation
and further amplifies the gas-sensing performance of the ternary materials. Consequently, the WG-Pd
based sensors exhibited the best gas-sensing performance when compared to anther materials, such as
a wide range of hydrogen concentrations (0.05–4 vol.%), a short response time and a good selectivity
below 100 ◦C, even at room temperature. This result indicates that WG-Pd ternary materials are a
promising room-temperature hydrogen-sensing materials for H2 detection.

Keywords: WO3; graphene; Pd; microwave; hydrothermal; H2; sensors; room temperature

1. Introduction

Hydrogen, an eco-friendly and renewable energy source, has gained considerable
interest in its wide range of applications, including automobile, fuel cell and space rocket
applications [1,2]. However, hydrogen exhibits a colorless, odorless and explosive nature
with a low ignition energy (0.02 mJ) and a wide flammable range of 4–74 vol.% in air, leading
to many safety issues [3,4]. Therefore, rapid and accurate detection of hydrogen leakage is
necessary for large-scale utilization of hydrogen. In recent years, chemiresistive hydrogen
sensors based on metal oxide semiconductors (MOS), such as ZnO, SnO2, MoO3, WO3,
etc., have been widely applied to hydrogen detection due to their low cost, high sensitivity
and short recovery time [5–8]. Among these MOS, WO3, with its unique morphological
structure, gasochromic properties, and high diffusion coefficient of oxygen vacancies, has
proven to be one of the most attractive sensing materials [9]. However, the pure WO3
sensors need a high working temperature (200–400 ◦C) to detect hydrogen, which may lead
to power consumption and source of ignition [10,11].

Based on recent research findings, incorporating graphene or its derivatives (such as
graphene oxide or reduced graphene oxide) has emerged as a promising strategy to lower
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the operating temperature of MOS-based sensors. This is attributed to the remarkable
properties of graphene, including excellent conductivity, high carrier mobility at room tem-
perature, low electrical noise and a large surface area [12–14]. Moreover, graphene and its
derivatives have various active sites (such as oxygen functional groups, defects, vacancies
and π-π covalent bonds) that can selectively adsorb target gases, thereby enhancing the sen-
sitivity and selectivity of the sensors. Furthermore, a heterogeneous structure (p–n or p-p
junction) can be formed at the interface between graphene and metal oxides. This structure
can facilitate the adsorption or resistance modulation of target gas molecules, which can
improve the sensing performance of the material [15]. Consequently, chemiresistive sensors
based on WO3 sheets, hemispheres, aerogels, etc., combined with graphene have demon-
strated lower working temperatures (<150 ◦C) towards target gases. For instance, Chu
et al. reduced the optimal operating temperature of WO3 from 180 ◦C to 100 ◦C by adding
0.1 wt% graphene [16]. Gui et al. fabricated hemispherical WO3/graphene nanocomposites
with hollow structures to achieve triethylamine sensing at room temperature [17]. Zhao
et al. synthesized mesoporous WO3@graphene aerogel nanocomposites, which exhibited a
good response to acetone at 150 ◦C [18].

The hydrogen-sensing properties (e.g., sensitivity, response time and selectivity) of
MOS can also be enhanced by decorating them with noble metals (such as Au, Ag, Pt or Pd).
This enhancement results from the chemical and electronic sensitization of noble metals,
where the former is achieved by the dissociation of hydrogen molecules and the latter by
the change of electron depletion layers generated by heterogeneous structures [19]. Among
these noble metals, Pd is considered to have the greatest effect on improving the hydrogen-
sensing performance. It can spill over hydrogen molecules into atoms, which combine with
Pd to form palladium hydride, resulting in a significant change in resistance. This reaction
is reversible at room temperature. For example, Zhu et al. synthesized PdNPs@WO3NPs,
which showed a fast response (1.2 s) to hydrogen at 50 ◦C [20]. Le et al. fabricated a fast
and efficient hydrogen gas sensor using PdAualloy@ZnO core–shell nanoparticles [21].

In this study, we examined the morphology and distribution of WO3/graphene binary
materials and WO3/graphene/Pd ternary materials (WG-Pd) fabricated by microwave-
assisted hydrothermal method. The structure of both binary and ternary materials was
influenced by the content of graphene and Pd. Moreover, we investigated the relationship
between the content of graphene in WO3/graphene binary materials and their hydrogen-
sensing properties to determine the optimal graphene content for hydrogen sensing. Addi-
tionally, we evaluated the working temperature, repeatability and selectivity of WG-Pd
ternary materials. Finally, we discussed the sensing mechanism of WG-Pd.

2. Materials and Methods
2.1. Materials

GO suspension (GO-1, Hangzhou Gaoxi Technology Co., Ltd, Hangzhou, China);
absolute ethanol (99.7%, Sinopharm, Shanghai, China); HCl (99.5%, Sinopharm, Shanghai,
China); Na2WO3 (Sigma-Aldrich, St. Louis, MO, USA); PdCl2 (Sigma-Aldrich, St. Louis,
MO, USA). All reagents were of analytical grade without further purification, and the
deionized water was used in all experiments.

2.2. Fabrication of WO3/Graphene/Pd Ternary Materials

A certain amount of GO was dispersed in 190 mL deionized water followed by
ultrasonication. Next, 1.06 g of Na2WO3 was added into GO dispersion, and 50 mL of HCl
(2 M) was added drop-by-drop into the mixture under vigorous stirring for 30 min. The
suspension was poured into autoclaves and subjected to microwave heating at 180 ◦C for
1 h using a Multiwave PRO oven (Anton Paar, Graz, Austrian). The precipitate was then
collected and washed by centrifugation in deionized water and absolute ethanol, followed
by freeze-drying under vacuum at room temperature. The WO3/graphene nanomaterials
were synthesized with different GO/WO3 mass ratios of 0.5, 1, 2 and 3:50, and denoted
as W0.5G, WG, W2G and W3G, respectively. Pure WO3 was also prepared in the same
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way without GO for comparison. A quantity of 50 mg of WG and a specific amount of
PdCl2 were dispersed in 5 mL of absolute ethanol using ultrasonication for a duration of
30 min. The resulting mixture was then dried in an oven at a temperature of 80 ◦C for a
period of 12 h, followed by thermal annealing in a nitrogen atmosphere at a temperature of
300 ◦C for 2 h. The samples obtained from this process, with PdCl2 masses of 1, 5 and
10 mg, respectively, were designated as WG-1Pd, WG-5Pd and WG-10Pd.

2.3. Characterization

Scanning electron microscopy (SEM, JEOL JSM-7610F, Tokyo, Japan) and transmis-
sion electron microscopy (TEM, FEI Talos, Columbia, SC, USA) were used to observe
the morphologies of ternary nanomaterials. The phases of samples were analyzed by
X-ray diffraction (XRD, Bruker D8 Advance, Billerica, MA, USA). The chemical composi-
tions of ternary nanomaterials were measured using Thermo Fisher (Waltham, MA, USA)
ESCALAB 250 XI X-ray photoelectron spectroscopy (XPS).

2.4. Fabrication and Test of Gas Sensors

The WG and WG-Pd powders were blended with terpineol in a 1:2 mass ratio, while
finely grinding them in a mortar. The resultant paste was uniformly coated on an Al2O3
tube with a pair of Pt wires. To heat the gas sensor, a Ni-Cr heating wire was inserted into
the tube. The sensors were pre-treated at 100 ◦C for 5 days to enhance their stability before
the tests. The gas-sensing measurements were carried out using a CGS-8 Gas Sensing
Measurement System (Beijing Elite Tech Company Limited, Beijing, China) with a 500 mL
test chamber. The sensors’ resistance was stabilized at the desired temperature before a
known volume of gas was injected into the chamber. The tests were performed under
ambient conditions of 25 ± 5 ◦C and 40 ± 5% relative humidity.

The gas response was calculated as (Rair − Rgas)/Rair, where Rair and Rgas are the
sensor resistance in air and target gas, separately. The response time and recovery time are
the time intervals required for the sensor response to reach 90% of its total change upon
exposure to the target gas or air, respectively.

3. Results
3.1. Morphology and Structure

In order to characterize the surface morphology and distribution of WO3, WG and
WG-Pd, SEM and EDS were utilized. As shown in Figure 1a, WO3 obtained by the
microwave-assisted hydrothermal method showed a nanoribbon-like structure with a
length of about 200 nm and a thickness of about 30 nm. The two-dimensional structure
had a high surface-to-volume ratio and abundant surface functional groups, which offer
a large number of adsorption sites for the target gas and oxygen molecules. This leads to
effective physisorption and chemisorption of gas molecules at low temperature. Hence,
two-dimensional materials have some advantages in providing fast and complete diffusion
of H2 gas throughout the structure and are widely used as gas-sensing materials [22–24].
Following the incorporation of GO, WG was interconnected by delicate folded RGO layers
amid multiple WO3 nanoribbons. The folded configuration of RGO primarily resulted
from lamellar distortion induced by partial reduction of GO during the microwave-assisted
hydrothermal process (Figure 1b–e) [25,26]. In the case of W0.5G with a lower graphene
content, only a limited number of WO3 nanoribbons were linked by graphene (Figure S1a).
Conversely, with a higher graphene content in W2G, a significantly larger proportion
of WO3 nanoribbons were connected by graphene, albeit some were enveloped by it
(Figure S1b). As the graphene content increased, porous structures gradually formed
within the composite due to graphene stacking, enveloping the WO3 nanoribbons and
leaving only a few exposed (Figure S1c). Subsequent to Pd loading onto the surface of WG,
a substantial amount of Pd was uniformly distributed, as evidenced by the EDS image
(Figure 1f–h).
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Figure 1. (a–e) SEM images of WO3, WG and WG-Pd, (f–h) corresponding EDS elemental mapping
and EDS spectra of WG-10Pd.

The hierarchical structures of WG and WG-Pd were characterized by TEM. As shown
in Figure 2a–c, in addition to large nanoribbons, there were a few nanosheets of WO3
around 10–20 nm of WG, which should be grown on the surface of graphene. There
were a few nanosheets of WO3 of around 10–20 nm on the surface of WG, indicating
that they were grown on the graphene surface. After loading Pd onto WG, spherical Pd
nanoparticles appeared on the surface of graphene (Figure 2d–f). With a Pd content of 1%,
Pd nanoparticles were sporadically distributed on graphene nanosheets with a size of 3 nm.
When increasing the Pd content, the number and size of Pd nanoparticles also increased.
When the Pd content increased to 10%, Pd nanoparticles were more densely distributed
and had a larger size of 10 nm. Moreover, even for the WG-Pd with the highest content
of Pd, no significant aggregation of Pd nanoparticles was observed. This phenomenon
stemmed from the mutual interaction between the abundant oxygen-containing functional
groups on the surface of graphene oxide and Pd ions, which led to their adsorption and
uniform growth on the surface of graphene nanoflakes and prevented the aggregation
of Pd nanoparticles. This phenomenon can be attributed to the interaction between the
abundant oxygen-containing functional groups on the surface of graphene oxide and Pd
ions. This interaction leads to the adsorption and uniform growth of Pd nanoparticles on
the surface of graphene nanoflakes, preventing their aggregation.

Figure 3 shows XRD patterns of WO3 and WG-Pd. WO3 exhibited distinct diffrac-
tion peaks of orthorhombic phase of WO3·0.33H2O (JCPDS 72-199) [27,28], indicating the
presence of crystal H2O before thermal annealing. For the WO3/graphene composite
nanomaterials, the characteristic peaks at 22.7◦, 28.1◦, 36.5◦, 49.9◦ and 55.3◦ were slightly
different from those of pure-phase WO3. This was attributed to the interaction between the
functional groups (hydroxyl, carbonyl and carboxyl groups) on the graphene surface and
Na2WO3, which influenced the WO3 growth. Moreover, slight deviation from stoichiome-
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try (WO3−x) could also affect the peak position. They also exhibited a broad characteristic
peak around 20◦, which was caused by the imperfect restacking due to the curvature of
graphene sheets [29] (Figure S2). After loading with Pd and thermal annealing, WG-1Pd,
WG-5Pd and WG-10Pd had different XRD patterns with WG. As shown in Figure 3b–d,
there were diffraction features matching hexagonal phase of WO3 due to the dehydration
after annealed [30]. Furthermore, characteristic peaks of Pd (JCPDS 46-1043) and PdO
(JCPDS 43-1024) appeared in WG-Pd, applying the presence of Pd and PdO attributed to
the particle oxidization of Pd nanoparticles in air [31].
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In order to accurately analyze the content and valence state of elements in WG-10Pd,
XPS analysis was utilized (Figure 4). As shown in Figure 4a, the material was mainly
composed of W, C, O and Pd. Figure 4b demonstrates the deconvoluted Pd (3d) XPS spectra
of WG-10Pd. It can be found that Pd element was mainly metallic Pd0 located at 335.3
and 340.55 eV. Additionally, there were other peaks of oxidized Pd2+ located at 336.6 and
341.85 eV and Pd4+ located at 338.2 and 343.45 eV [32]. This also corresponds to the XRD
spectra. A small amount of oxidized Pd came from the partial oxidation of surface atoms
of Pd nanoparticles by air due to their high activity.
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3.2. Hydrogen Gas Sensing

The effects of graphene content and working temperature on the hydrogen response
performance of WO3/graphene nanomaterials are shown in Figure 5. As can be seen from
Figure 5a, at 50 ◦C, WO3, W0.5G and W3G had no response to hydrogen. Among them,
WO3 and W0.5G had large resistances (7130 MΩ and 2500 MΩ, respectively) that exceeded
the instrument resistance range (500 MΩ) and could not be measured. This was because
WO3, as a metal oxide semiconductor, had a large resistance at low temperatures, and even
with a small amount of graphene added, it still could not meet the measurement require-
ments. WG had the best response performance, but due to the low working temperature,
it only responded to hydrogen concentrations above 0.4%. Although W2G and W3G had
higher graphene contents than WG, their response performance was reduced. This was
attributed to the excess graphene that could cover or even wrap around WO3 and provide
an additional path for current flow, resulting in a significant increase of the conductivity
of the sample, which made resistance variation in reducing environment less noticeable.
As the working temperature increased to 100 ◦C and 150 ◦C, the response performance of
WG, W2G and W3G were all improved. The response of WG, W2G and W3G to 1% H2 at
100 ◦C was 30.8, 28.9 and 2.5%, respectively. After heating at 150 ◦C, the corresponding
responses increased to 90.5, 56.3 and 7.9%, respectively. This result indicated that WG
had the highest response performance. At the same time, as the working temperature
increased from 50 ◦C to 150 ◦C, WG’s response time to 1% hydrogen was shortened from
223 s to 67 s (Figure 5d,e). Meanwhile, WG showed p-n switching phenomenon at different
temperatures, which was mainly caused by the combination of different semiconductor ma-
terials and the change of charge transfer path at different working temperatures. Graphene
(p-type semiconductor) and WO3 (n-type semiconductor) formed a composite, in which
the carriers of both graphene and WO3 participated in the conduction path, showing a
mixed p-n characteristic. At low temperature, WO3 transferred electrons to GO, showing
p-type behavior. At high temperature, WO3 received electrons from GO, showing n-type
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behavior. However, WG still had no response to hydrogen at room temperature and needed
to be composited with Pd to further improve its response performance. Therefore, we used
WG as the base material and composite different contents of Pd nanoparticles to study the
effects of Pd content and working temperature on the hydrogen response performance.
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The effect of Pd content and working temperature was studied by testing these gas
sensors at different temperature ranging from 25 to 100 ◦C as shown in Figure 6. For WG-
1Pd and WG-5Pd, there was no evident response to 500 ppm of H2 at 25 ◦C, applying low
content of Pd was not sufficient for H2 sensing at room temperature. However, WG-10Pd
with larger content of Pd showed response to 500 ppm of H2 at 25 ◦C with value of 2.3%.
WG-1Pd, WG-5Pd and WG-10Pd were more sensitive to H2 at higher working temperature.
The response to 500 ppm H2 of WG-1Pd, WG-5Pd and WG-10Pd increased to 86.1%, 92.6%
and 94.6% at a working temperature of 100 ◦C, respectively. This phenomenon stemmed
from the lower gas activation energy of adsorption/desorption at higher temperature.
Meanwhile, WG-10Pd still showed a higher response to H2 than the others. Compared
with the WO3/graphene binary materials without Pd, the hydrogen-sensing performance
of the WO3/graphene/Pd ternary composite improved significantly. WG exhibited no
noticeable response to 500 ppm hydrogen, while the response value increased to 86.1%
with the addition of 1% Pd nanoparticles, indicating that Pd had a remarkable effect on
enhancing the hydrogen response.

The dynamic response of WG-10Pd was studied at various H2 concentrations (ranging
from 0.05–4%) and at temperatures of 25, 50, 75 and 100 ◦C. As shown in Figure 7a, WG-
10Pd showed excellent response to hydrogen in the range of 0.05–4% at room temperature.
The response value increased gradually with the increase of the concentration of H2. At 4%
of H2, the response value reached 96.1%. On the contrary, the response time was gradually
shortened. The response time was reduced to within 40 s at 4% of H2. After heating to
50, 75 and 100 ◦C, the response value was further improved and the response time was
shorter. At 100 ◦C, the response value of 0.05% H2 could reach 94.6%, and the response
time was shortened to 6 s. However, the response curves reached a plateau at relatively low
concentrations, proving its insensitivity to high concentration of H2. Therefore, WG-10Pd
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was more suitable for the measurement of low-concentration hydrogen below 0.05% after
heating. The saturation phenomenon was ascribed to the increased catalytic effect of Pd at
high temperature, which generated abundant chemisorbed water and occupied the active
sites for oxygen adsorption.
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Figure 6. The response of WG-Pd for 500 ppm H2 at different temperatures ranging from 25 to 100 ◦C.
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Figure 7. (a) The response value and (b) response time of WG-10Pd to 0.05–4% H2 at different
temperature ranging from 25 to 100 ◦C; (c) the response of WG-10Pd to 1% H2, CH4, CO and NH3;
(d) the response of WG-10Pd to 1% H2 for 30 days; (e) the response and (f) the resistance in air of
WG-10Pd under different RH.

WG-10Pd hydrogen-sensing material had excellent selectivity and stability. As demon-
strated in Figure 7c, the response value of WG-10Pd to 1% H2 at room temperature was
significantly higher than that of CH4, CO and NH3 with the same concentration, showing
high selectivity of H2, due to the catalytic properties of Pd to hydrogen dissociation. After
30 days of uninterrupted testing, the change of response value was still maintained within
5%, implying the high stability of WG-10Pd.

The effect of relative humidity (RH) on the sensing performance of WG-10Pd at
room temperature was also investigated. Figure 7e,f shows that the response of WG-10Pd
decreased with increasing RH. This phenomenon was caused by the water vapor occupying
the adsorption sites and hindering the oxygen adsorption. The response values of WG-10Pd
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to 1% H2 were 77.8%, 73.1%, 69.4%, 65.9% and 60.6% under 24%, 43%, 55%, 71% and 89%
RH, respectively. The response variation (calculated as 1 − Response (89RH%)/Response
(24RH%)) was 22%, indicating that RH had a significant influence on the hydrogen sensing.
Meanwhile, the resistance in air decreased from 42.5 to 35.4 MΩ as RH changed from 24%
to 89%. Therefore, the resistance variation was about 16.7%.

Similarly, the response of WG-1Pd and WG-5Pd at 50–100 ◦C were studied (Figure 8).
The variation trend of response value and response time was basically the same as that of
WG-10Pd, but the response value was slightly reduced and the response time was extended.
The responses to 0.05% H2 at 100 ◦C of WG-1Pd and WG-5Pd were 86.1% and 92.6%,
respectively, while the response times were 25 s and 9 s, respectively.
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Figure 8. (a) The response value and (b) response time of WG-1Pd to 0.05–4% H2 at different
temperature ranging from 25 to 100 ◦C; (c) the response value and (d) response time of WG-5Pd to
0.05–4% H2 at different temperatures ranging from 25 to 100 ◦C.

4. Discussion

The WG-Pd ternary materials had a good response to H2 from room temperature to
100 ◦C due to their chemical composition and morphological structure (Figure 9). Accord-
ing to the surface depletion layer model, when the material contacts oxygen in the air, it
forms oxygen negative ions (O2− , O−, O2−, etc.) on the surface by adsorbing electrons [33].
This increases electrical resistance. At different temperatures, oxygen anions have different
valence states. Below 100 ◦C, it is mainly O2

− ions. Between 100–300 ◦C, O− dominates.
Above 300 ◦C, oxygen anions are mostly O2− [34,35]. Thus, the adsorbed oxygen ions
on the surface of WG-Pd material are mainly O2

−, as the operating temperature is below
100 ◦C. When it contacts hydrogen, O2

− reacts with hydrogen to form water vapor and
releases electrons to the material, causing a drop in resistance [36]. The resistance de-
crease is proportional to the hydrogen concentration, allowing measurement of hydrogen
concentration through resistance change. The reaction process is as follows:

2H2 + O2
− → 2H2O + e− (1)
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In the WG-Pd ternary composites, the three components showed different functions.
As the material with the highest content, WO3 played the main role in gas sensing. The
abundant oxygen defects on its surface provided active sites for oxygen adsorption [37].
Pd nanoparticles could dissociate H2 molecules into highly active hydrogen atoms, thus
accelerating the reaction of O2− with H2. H2 could also be directly dissolved into metal Pd
to form Pd-H complex, thus significantly reducing the Schottky barrier on WO3-Pd inter-
face, enabling more electrons to enter the conduction band of the material and improving
the electrical conductivity of the material [6]. However, electron transfer between different
WO3/Pd nanosheets was still hindered by the Schottky barrier between interfaces, while
graphene sheets could significantly reduce that, providing multiple paths for electron trans-
fer, thus further reducing the resistance [38]. Graphene itself had a high specific surface
area and oxygen-containing functional groups, which improved response performance [39].
Moreover, the hydrogen-sensing performance could also be enhanced by the heterogeneous
structure formed at the interface between graphene and WO3. WO3 is an n-type semicon-
ductor material with more electrons than holes as the main carriers. Graphene sheets are
p-type semiconductor materials with more holes than electrons as the main carriers, due to
the intrinsic properties of graphene. Thus, there are many heterojunctions (p-n junctions)
at the interface between p-type graphene and n-type WO3. Because of the different work
functions of graphene and WO3, the holes transfer from graphene to WO3 and the electrons
transfer from WO3 to graphene at the p-n junction. After the carrier exchange, the holes
and electrons with opposite charges recombine. This leads to the decrease of concentration
of effective carriers and formation of electron depletion layer and hole depletion layer
at the interface of WO3 and graphene, respectively. The depletion layer can increase the
resistance of WG-Pd ternary composites in air and facilitate the adsorption or resistance
modulation of H2 gas molecules, which can improve the hydrogen-sensing properties at
room temperature. Through the synergistic effect among the three components of WG-Pd,
a sensitive response to hydrogen is achieved at temperatures lower than 100 ◦C.

5. Conclusions

In this paper, we fabricated WO3/graphene binary materials and WG-Pd ternary
materials with different contents of graphene and Pd using the microwave-assisted hy-
drothermal method. The sensing results showed that WG with 1% graphene exhibited the
best hydrogen performance at 100 and 150 ◦C compared to other WO3/graphene binary
materials with different contents of graphene. However, WG still exhibited no noticeable
response to hydrogen below 100 ◦C. For WG-Pd ternary materials, WG-10Pd showed the
highest response to H2 at room temperature. Moreover, it showed a wide range of hydrogen
concentrations (0.05–4 vol.%), a short response time (40 s) and a good selectivity. Its sensing
properties were further enhanced after heating to 50, 75 and 100 ◦C. The excellent sensing
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properties resulted from the synergistic effect among the three components of WG-Pd. In
summary, WG-Pd ternary materials are promising sensing materials for detection of H2
leakage at temperatures lower than 100 ◦C, even at room temperature.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/chemosensors11070410/s1, Figure S1: SEM images of (a) W0.5G, (b) W2G
and (c) W3G; Figure S2: XRD patterns of (a) W0.5G, (b) WG, (c) W2G and (d) W3G.
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