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Abstract: Electrochemiluminescence (ECL) has attracted increasing attention owing to its intrinsic ad-
vantages of high sensitivity, good stability, and low background. Considering the fact that framework
nanocrystals such as metal–organic frameworks and covalent organic frameworks have accurate
molecular structures, a series of framework-based ECL platforms are developed for decoding emis-
sion fundamentals. The integration of fluorescent ligands into frameworks significantly improves the
ECL properties due to the arrangement of molecules and intramolecular electron transfer. Moreover,
the various framework topologies can be easily functionalized with the recognition elements to trace
the targets for signal readout. These ECL enhancement strategies lead to a series of sensitive analytical
methods for protein biomarkers, DNA, small biomolecules, and cells. In this review, we summarize
recent advances in various functions of frameworks during the ECL process, and constructions
of framework-based ECL platforms for biosensing. The framework-based ECL nanoemitters and
enhancement mechanisms show both theoretical innovation and potential applications in designing
ECL biosensing systems. Perspectives are also discussed, which may give a guideline for researchers
in the fields of ECL biosensing and reticular materials.
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1. Introduction

Electrochemiluminescence (ECL) is a classic and powerful analytical technique in-
volving a redox process at electrodes where excited states are electrochemically generated
and emit light [1,2]. Benefitting from its unique light-free luminescence mechanism, ECL
has many advantages for an analysis, such as a high sensitivity, good stability, and low
background [3]. Nowadays, ECL is widely applied in the areas of environmental moni-
toring [4], cell sensing [5], imaging [6], food [7], and water safety [8]. ECL-driven tumor
photodynamic therapy (PDT) was proposed through the effective energy transfer from ECL
emission to photosensitizer chlorin e6 [9]. With a high spatiotemporal controllability, stable
luminescence, and high photon flux of ECL, ECL microscopy may be more fascinating
than fluorescence [10], bioluminescence [11], and surface-enhanced Raman scattering [12].
Over several decades of research, the variety of ECL emitters has substantially increased,
and they can be broadly classified into an inorganic system (such as Ir or Ru complexes),
an organic system (such as luminols), and semiconductor nanomaterials [13]. Recently,
several novel nanomaterials have been used as luminophores in ECL, such as Au nanoma-
terials [14], quantum dots [15], and frameworks [16]. The combinations of ECL techniques
and these new materials broaden the scope of ECL applications.

Frameworks containing metal–organic frameworks (MOFs), covalent–organic frame-
works (COFs), and hydrogen-bonded organic frameworks (HOFs) have been developed
rapidly since the 21st century [17,18]. Owing to their flexible, synthetically controllable,
and adjustable structure, frameworks have been utilized in various areas such as energy
storage, sewage treatment, gas separation, catalysis, and biosensing [19]. Although there
are some deficiencies for electrochemical reactions in frameworks, such as an intrinsic
poor electroconductivity and low mass permeability [20], frameworks have been gradually
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regarded as one of the most promising nanomaterials in ECL assays. Different from other
ECL luminophores like metal complexes and quantum dots, predesignable structures of
frameworks make them more suitable and efficient in ECL processes. For example, Yin’s
group designed an ECL-active MOF by using a ruthenium complex as a ligand and more
intense ECL emission was observed with the aid of grapheme oxide [21]. By combining
a predesigned structure with post-modification, frameworks provide various strategies
to regulate their ECL signals for adapting the requirement. Furthermore, the structures
of frameworks are utilized dexterously to create novel ECL enhancement mechanisms for
developing sensitive and stable analytical methods. Overall, the variation of an ECL signal
highly depends on the optoelectronic properties of frameworks, which are adjustable with
designation or post-modification [22].

In order to design self-luminescent reticular nanoemitters, three types of methods
have been developed. First, frameworks can be synthesized with ECL-active luminophore
ligands, such as porphyrin [23], pyrene [24], and aggregation-induced emission lumino-
gen [25], for constructing emitters with an improved ECL efficiency. Second, the doping
of transition metal elements is a promising way to deal with an intrinsic low conductivity
of MOFs in ECL reactions. Classic Ru complexes [26] and novel lanthanide ions [27] are
already applied in biosensing with this method. Third, non-emitting monomers can be
endowed with intense ECL emission through a rational design. Typically, by utilizing well-
designed donor/acceptor units, a high ECL efficiency of COFs could be realized [28,29].

Therefore, integrating the frameworks and ECL methods is of great significance to
construct high-performance biosensing platforms. In recent years, the roles of frameworks
in ECL processes develop rapidly with multifunctions in biosensing. Initially, frameworks
were used as carriers of classic luminophores or catalysts to accelerate the ECL reactions,
but they later became ECL emitters for biosensing platform establishment, achieving a
successful analysis of proteins, nucleic acids, small molecules, and cells.

In this review, the various functions of frameworks in ECL emission are first analyzed
to show the rapid development in this area (Figure 1). Then, framework-enhanced ECL
biosensing applications in recent years are introduced and analyzed. Finally, perspectives
and potential issues are proposed, which may guide the great development of framework-
based ECL biosensing systems.
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2. The Roles of Frameworks in ECL Processes

Although the combination of frameworks with ECL demonstrates great potentials in
signal readout, low conductivities and inert electrochemical properties of frameworks may
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result in a poor sensing performance. Therefore, frameworks were often used as a carrier of
efficient ECL emitters like quantum dots (QDs) or Ru complexes, or a catalyst to strengthen
ECL emission during the initial period. After the report of the electroactive MOF [16],
frameworks gradually began to be used as emitters in ECL processes and various ECL-
active frameworks were extensively applied in biosensing with several emerging signal
amplification strategies.

2.1. The Carriers of ECL Luminophores

The outstanding features of frameworks, such as an adjustable reticular structure,
large surface area, tunable pore sizes, and functionalized sites, make them competent to
be used as a carrier. In early reports, classic ECL luminophores (Ru complexes, luminol,
QDs, et al.) were integrated with frameworks using encapsulation or post-modifications.

The encapsulation of ECL luminophores into frameworks is a widely applied strategy
to make frameworks better in an ECL performance. Through introducing guest materials,
host frameworks receive an improved ECL efficiency while largely maintaining their own
original properties. Therefore, encapsulation gives a flexible way to prepare frameworks
with promising ECL activity. In view of the porous structure of frameworks, Qin et al.
prepared Ru(bpy)3

2+-functionalized MOF thin films using the self-assembly approach
(Figure 2a). Plenty of Ru(bpy)3

2+ molecules in Ru-MOF films showed an intense ECL
emission and excellent behavior in the detection of the human-heart-type fatty-acid-binding
protein [30]. Also, classic luminol-based frameworks are conducted through this method.
Tang et al. synthesized porous Zn-based MOF, which loaded a large amount of luminol by
encapsulating into its pores. The resulting Zn-MOF@luminol as the signal probe achieved a
strong ECL signal for detecting concanavalin A [31]. Furthermore, luminophores with large
sizes, such as QDs or g-C3N4, can be encapsulated in frameworks with high surface areas.
As shown in Figure 2b, Fe-MIL-88B-NH2@ZnSe was successfully prepared via the one-pot
method. By using Fe-MIL-88B-NH2 as an efficient coreaction accelerator, the biosensor
realized the sensitive detection of a squamous cell carcinoma antigen in human serum [32].
Qin et al. designed a triethanolamine-functionalized MOF on graphene oxide nanosheets
to accomplish creating a rapid label-free ECL immunosensor for the detection of human
copeptin [33].

Chemosensors 2023, 11, x FOR PEER REVIEW 3 of 20 
 

 

2. The Roles of Frameworks in ECL Processes 
Although the combination of frameworks with ECL demonstrates great potentials in 

signal readout, low conductivities and inert electrochemical properties of frameworks 
may result in a poor sensing performance. Therefore, frameworks were often used as a 
carrier of efficient ECL emitters like quantum dots (QDs) or Ru complexes, or a catalyst to 
strengthen ECL emission during the initial period. After the report of the electroactive 
MOF [16], frameworks gradually began to be used as emitters in ECL processes and vari-
ous ECL-active frameworks were extensively applied in biosensing with several emerging 
signal amplification strategies. 

2.1. The Carriers of ECL Luminophores 
The outstanding features of frameworks, such as an adjustable reticular structure, 

large surface area, tunable pore sizes, and functionalized sites, make them competent to 
be used as a carrier. In early reports, classic ECL luminophores (Ru complexes, luminol, 
QDs, et al.) were integrated with frameworks using encapsulation or post-modifications. 

The encapsulation of ECL luminophores into frameworks is a widely applied strat-
egy to make frameworks better in an ECL performance. Through introducing guest mate-
rials, host frameworks receive an improved ECL efficiency while largely maintaining their 
own original properties. Therefore, encapsulation gives a flexible way to prepare frame-
works with promising ECL activity. In view of the porous structure of frameworks, Qin 
et al. prepared Ru(bpy)32+-functionalized MOF thin films using the self-assembly ap-
proach (Figure 2a). Plenty of Ru(bpy)32+ molecules in Ru-MOF films showed an intense 
ECL emission and excellent behavior in the detection of the human-heart-type fatty-acid-
binding protein [30]. Also, classic luminol-based frameworks are conducted through this 
method. Tang et al. synthesized porous Zn-based MOF, which loaded a large amount of 
luminol by encapsulating into its pores. The resulting Zn-MOF@luminol as the signal 
probe achieved a strong ECL signal for detecting concanavalin A [31]. Furthermore, lumi-
nophores with large sizes, such as QDs or g-C3N4, can be encapsulated in frameworks 
with high surface areas. As shown in Figure 2b, Fe-MIL−88B-NH2@ZnSe was successfully 
prepared via the one-pot method. By using Fe-MIL−88B-NH2 as an efficient coreaction 
accelerator, the biosensor realized the sensitive detection of a squamous cell carcinoma 
antigen in human serum [32]. Qin et al. designed a triethanolamine-functionalized MOF 
on graphene oxide nanosheets to accomplish creating a rapid label-free ECL immunosen-
sor for the detection of human copeptin [33]. 

 
Figure 2. (a) Schematic diagram of the synthesis of (Ru(bpy)32+)-functionalized MOF (Ru-MOF). 
Reproduced from [30] with permission from the American Chemical Society. (b) Illustration for 
the construction of Fe-MIL−88B-NH2@ZnSe/Ab. Reproduced from [32] with permission from Else-
vier. 

Figure 2. (a) Schematic diagram of the synthesis of (Ru(bpy)3
2+)-functionalized MOF (Ru-MOF).

Reproduced from [30] with permission from the American Chemical Society. (b) Illustration for the
construction of Fe-MIL-88B-NH2@ZnSe/Ab. Reproduced from [32] with permission from Elsevier.

On the basis of porosity and a large surface area, frameworks are considered to be
suitable for post-modification with functional materials to obtain specific properties [34],
which can be conducted through covalent or noncovalent bonding. For example, Wang et al.
combined zeolitic imidazolate frameworks and luminol-capped Ag nanoparticles to form a
luminol-AgNPs@ZIF-67 system via electrostatic interaction, which had ~115-fold-enhanced
ECL compared to the luminol system [35]. In addition, QDs were merged onto MIL-53
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through noncovalent adsorption and the resulting MIL-53@QDs platform demonstrated a
large ECL intensity enhanced by the surface plasmon resonance process between AuNPs
and CdS QDs for kanamycin and neomycin biosensing [36]. Furthermore, Liu’s group
developed a nanoreactor based on Ru(bpy)3

2+-doped nanoporous zeolite nanoparticles
(Ru@zeolite) [37], in which frameworks not only served as a carrier of Ru complexes
through post-modification but were also spatially confined for efficient collision reactions
in in situ ECL reactions.

2.2. The Catalyst in ECL Processes

By integrating catalytically active components, frameworks have been utilized as
electrocatalysts, such as in an oxygen reduction reaction and CO2 reduction, for a long
time [38,39]. A more intense ECL emission will be observed when decisive elementary
reactions are accelerated during the ECL process. For instance, Zn tetrakis(carboxyphenyl)-
porphyrin (TCPP) linkers in MOF-525 acted as ECL active centers to facilitate the conversion
from dissolved oxygen to singlet oxygen for enhanced ECL (Figure 3a). Based on MOF-525-
Zn as signal amplifying probes, an ultrasensitive ECL sensor was proposed for the detection
of protein kinase A activity with a linear range from 0.01 to 20 U mL−1 and detection limit
of 0.005 U mL−1 [40]. Furthermore, the inorganic Zr–O clusters of MOF-525 simultaneously
served as the recognition sites of phosphate groups for a specific bioanalysis.

On the other hand, MOFs were utilized as a coreactant accelerator to enhance the ECL
of CdTe QDs through accelerating the generation of the sulfate radical anion (SO4

•−), which
is critical in producing excited states of QDs, further realizing an ultrasensitive bioanalysis
of the cardiac troponin-I antigen [41]. Similarly, 2D Fe-Zr metal–organic layers were applied
for the construction of an ECL immunosensor by utilizing their peroxidase-like activity,
which could effectively enhance the ECL signal of luminol through H2O2 catalysis [42].
Additionally, Song et al. designed a signal-amplified ECL sensor chip via the synergistic
catalysis of Au–Pd bimetallic nanocrystals and mixed-valence Ce-based MOFs for the fast
reduction of dissolved O2 (Figure 3b). By integrating a three-electrode detection system
into the self-assembled microfluidic chip, the developed sensor showed a high sensitivity
for procalcitonin detection with the automation and portability of the detection process [43].
In a word, by introducing active catalytic sites or utilizing intrinsic properties, frameworks
have nanozyme-like functions for ECL catalytic enhancement.
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ECL catalysis mechanism for Au−Pd/O2 + Ce(III, IV)-MOF system. “*” represents the excited state.
Reproduced from [43] with permission from the American Chemical Society.

2.3. ECL Nanoemitters

Considering the structures of framework units, introducing ECL luminophores as
linkers is thought to be a proper approach to establish framework-based ECL emitters. Due
to intrinsic structural features, framework-based emitters are considered to be promising
material for ECL biosensing based on the combined advantages of framework emitters and
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ECL techniques [44]. Because of efficient energy migration [45], Ru-complex-based linkers
have been applied for designing ECL-active frameworks since 2010. Ru(II) bipyridine
(Ru(bpy)3

2+) derivatives as ligands can be synthesized into frameworks using coordination
with metal ions or clusters [46]. For example, functionalized Ru-based MOF nanosheets
comprising carboxyl-rich tris(4,4′-dicarboxylic acid-2,2′-bipyridyl) Ru(II) and Zn2+ nodes
exhibited a good water solubility and excellent ECL performance (Figure 4a). By employing
Ru-MOF as an ECL probe, a “signal-on” ECL immunosensor was designed for the selective
detection of cardiac troponin I in the range from 1 fg/mL to 10 ng/mL [47]. However,
Ru complexes are costly when adjusting their structures and large in steric size, which
inevitably restrict their application in direct framework synthesis. In fact, Ru complexes
are more often modified onto frameworks through a post-synthesized route, which makes
frameworks work like a carrier rather than a nanoemitter [48,49]. Meanwhile, other ECL-
active organic ligands, such as a porphyrin derivative, perylene-3,4,9,10-tetracarboxylate,
and 9,10-anthracene dibenzoate (DPA), were utilized in constructing MOF emitters for
proprotein convertase subtilisin/kexin type 9, microRNAs, and MCU1 detection, respec-
tively [50–52].

Inspired by aggregation-induced emission (AIE) luminophores, which show a stronger
photoluminescence in the aggregated state than that of the isolated one [53,54], frame-
works constructed with AIE molecules become attractive in ECL sensing. Typically,
tetraphenylethylene (TPE)-based AIEgens are mostly reported in recent research thanks to
designable molecular structures. For instance, a fiber-like MOF, synthesized with the coor-
dination of Zn2+ and 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane (TPPE), showed a more
intense ECL emission than its ligand TPPE in the presence of 1,4-diazabicyclo[2.2.2]octane
(DABCO) (Figure 4b,c). More significantly, different from the constant ECL intensity using
a tri-n-propylamine (TPrA) coreactant, DABCO exhibited a time-dependent ECL inten-
sity due to the intrareticular electron transfer through coordination interaction between
DABCO and Zn2+ [55]. In another work, Wei’s group synthesized a dumbbell-plate-shaped
MOF consisting of 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene and Zr(IV) cations, which
was utilized as an ECL tag for neuron-specific enolase detection with a sandwich-type im-
munoreaction [56]. In addition, a two-dimensional AIEgen-based MOF was also fabricated
into an efficient ECL biosensing platform [57], which restricted the intramolecular free
rotation and vibration of these ligands and then reduced the non-radiative transition. The
combination of AIE ligands and frameworks paved a potential way for better ECL sensors;
that is, the large surface area and porous properties of MOFs make ECL reactions more
effective while the AIE molecular motion is restricted by the rigid MOF structure, which
is theoretically beneficial to AIE emission [58]. Similar to the term aggregation-induced
emission, the strong ECL emission based on the restricted AIE molecules within MOFs has
been named ‘aggregation-induced ECL’ (AIECL) [59], which is also successfully used in
COFs [60] and polymers [61].

Identically, luminophores can be introduced into frameworks by serving as ion nodes.
Due to a good photoluminescent emission and successful applications in biosensing [62],
self-luminescent lanthanide MOFs (Ln-MOFs) are considered promising luminophores in
ECL reactions. Dai’s group synthesized La3+-BTC MOFs as an ECL emitter and highly
active reactor simultaneously to construct a gene sensor. With the assistance of crystal
violet, a good performance toward a p53 gene analysis was obtained through the co-
quenching effect mechanism [63]. Furthermore, Eu-based Ln-MOFs were prepared with
5-boronoisophthalic acid and Eu (III) ions. The ECL emission mechanism was identified to
be that 5-bop was excited with ultraviolet photons to generate a triplet state, which then
triggered Eu (III) ions for red emission. The Eu-MOFs showed a great sensitivity in an ECL
immunoassay for Cytokeratin 21-1 detection [64].
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In order to obtain a better biosensing performance, a higher ECL efficiency is urgently
needed. Conventional coreactant ECL is convenient in operation but inefficient in electron
transfer due to the intermolecular route. Thanks to a shortened pathway of mass transport
and electron transfer, the intramolecular electron transfer process is recognized as a promis-
ing solution [65]. Inspired by this theory, a mixed-ligand MOF (m-MOF) was designed for
proof of concept by integrating it with two ligands, one as a luminophore and the other
as a coreactant, on one metal node for self-enhanced ECL [66]. As shown in Figure 5a,b,
the resulting m-MOF had a highly ordered crystalline unit proved by comparing the ex-
perimental PXRD pattern and theoretical simulation. Then, the m-MOF exhibited greatly
enhanced ECL compared to its ligand and Zn-DPA MOF, indicating a high efficiency of
the intrareticular charge transfer process (Figure 5c). Finally, the proposed stepwise ECL
mechanism of the m-MOF was given as a result of local excitation in the DPA unit, which
was identified through a density functional theory calculation (Figure 5d). Overall, the
mixed-ligand approach successfully shortens the pathway of charge transfer, providing a
new idea in ECL platform designs.
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Figure 5. (a) Three-dimensional structure of m-MOF. (b) PXRD pattern of m-MOF (black), simulated
result (red), and their difference (blue). (c) ECL curves of DPA-modified GCEs (red) in presence
of DABCO, and of DPA-(green), s-MOF-(blue), and m-MOF (orange)-modified GCEs in 0.1 M PBS.
(d) Stepwise ECL mechanism of m-MOF. “*” represents the excited state. Reproduced from [66] with
permission from American Chemical Society.
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As a novel member of frameworks, COFs gradually became fascinating in ECL appli-
cations. Firstly, Li et al. gave general advice on how to design COFs with highly efficient
ECL [67]. Meanwhile, Lei’s group provided a detailed mechanism on the enhanced ECL of
COFs [68]. Based on donor–acceptor (D-A) units, a luminescent t-COF was synthesized
as an ECL emitter by integrating triazine and triphenylamine as donor and acceptor units
in the reticular skeleton, respectively (Figure 6a). Revealed with a PXRD analysis, the
t-COF showed a crystalline structure with diffraction peaks at 2θ = 4.4, 7.7, 8.9, 11.8, and
22.5◦, which were assigned to the 100, 110, 200, 210, and 001 facets, respectively (Figure 6b).
Compared to the other two COFs, t-COF had a magnificent ECL performance in TPrA/PBS
(Figure 6c), indicating the importance of a D-A structure in t-COF during an ECL reaction.
The simulated charge density difference between the first excited state and ground state of
COF demonstrated an electron density loss on the triazine units and an electron density
gain on the triphenylamine units, confirming the charge transfer between triphenylamine
and triazine units (Figure 6d). Furthermore, the efficient charge transfer could be identified
with the movement of HOS/LUS to the Fermi level when holes/electrons were doped
(Figure 6e). Finally, the competitive oxidation mechanism involved the triazine unit gaining
electrons from TPrA• while the triphenylamine unit was oxidized by oxidative TPrA+•

(Figure 6f, left) or the electrode (Figure 6f, right), leading to dual ECL emissions.
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Figure 6. (a) Structure of TFPA-based COFs. (b) PXRD patterns of t-COF and their difference. (c) ECL
curves of three COF-modified GCEs in the presence of 20 mM of TPrA. (d) The difference in charge
density between the first excited state and ground state of t-COF. (e) Density of states of t-COF doped
with different electron/hole numbers. (f) Competitive oxidation mechanism via intrareticular charge
transfer. Reproduced from [68] with permission from the Nature Publishing Group.

HOFs comprised solely of pure organic or metal–organic units connected by inter-
molecular H-bonds were also found to have ECL enhancement properties compared to
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their monomers. Zhang et al. synthesized a triazinyl-based HOF through N···H hydro-
gen bond self-assembly aggregation. The resulting HOF showed a highly enhanced ECL
efficiency (21.3%) relative to the Ru(bpy)3

2+ standard, and was applied for ultrasensitive
kanamycin biosensing [69]. Benefiting from the densely stacked structure, Lei’s group
proposed the HOF-based ECL enhancement mechanism via the intrareticular electron cou-
pling (IREC) pathway [70]. Utilizing multiple H-bonds and π-interactions, HOF-101 with
1,3,6,8-tetra(4-carboxylphenyl)pyrene as a ligand was synthesized (Figure 7a). Compared
with 1,3,6,8-tetracarboxypyrene-based HOF-100 and a bare electrode, HOF-101 modified
GCE showed significantly enhanced ECL in the presence of TPrA due to the IREC effect
(Figure 7b). Through model simulation, the charge density difference between S1 and S0
of HOF-101 was illustrated (Figure 7c), showing a mutual electron density depletion and
accumulation of vertical stacking units. This IREC pathway in HOF-101 achieves ECL
enhancement by accelerating electron transfer between anion radicals and cation radicals
(Figure 7d).
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3. Framework-Enhanced ECL for Biosensing

The sensitive, specific, and reliable detection of tumor markers is vital for the early
diagnosis of cancer, which brings hope to human patients for cancer prevention. Based on
unique physical properties, chemical compositions, and functional methods, framework-
enhanced ECL may provide an ultrasensitive and comprehensive assay for monitoring
these markers. By combining with biological tools, framework-based biosensors can
distinguish various biomarkers such as proteins, nucleic acid, cells, and small molecules in
a clinical analysis.
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3.1. Proteins

Proteins are typical biomacromolecules that are generally analyzed through immunoas-
says. Once a protein is clinically certified as a disease-related biomarker for a diagnosis,
it will receive much attention in ultrasensitive detection. For example, to improve the
survival of patients, cancer markers are of great significance in the guidance of an early
tumor diagnosis and introducing appropriate targeted therapies [71]. Integrating with
highly specific immunoreactions, ECL immunoassays are powerful tools for protein de-
tections. Alpha-fetoprotein (AFP) is a well-known biomarker for the diagnosis of a liver
malignant tumor [72]. Zhao et al. synthesized bimetallic NiZn MOF nanosheets to amplify
cathodic luminol ECL through the synergistic effect of the bimetallic catalyst in AFP im-
munodetection [73]. Li et al. designed a signal-off ECL biosensor for AFP detection by
utilizing the MnO2 nanosheet/polydopamine dual-quenching effect towards a Ru(bpy)3

2+-
functionalized MOF [74].

Cytokeratin 19 fragment 21–1 is recognized as an essential biomarker of non-small-cell
lung cancer with a high specificity. Wei’s group constructed a “signal-on” ECL immunosen-
sor for this biomarker detection by using a copper-doped terbium MOF as a luminescent tag,
which exhibited a strong ECL emission with K2S2O8 as a coreactant through electrocatalyz-
ing the reduction of S2O8

2− [75]. In the same group, a biocompatible tris(4,4′-dicarboxylic
acid-2,2′-bipyridyl)ruthenium(II) [Ru(dcbpy)3

2+]-functionalized γ-cyclodextrin MOF not
only served as a carrier to immobilize the detection antibody via a Pd-N bond but also facil-
itated the electron transfer rate to amplify the ECL signal [76], providing the ultrasensitive
method for an early diagnosis of lung cancer.

Through potential-resolved ECL, a reticular biosensor could detect multiple protein
biomarkers in a single run. Zhang et al. developed a MOF-based ECL tag with both
anodic and cathodic emission [77]. A useful strategy with the isolated anodic and cathodic
coreactants was applied to improve the analytical performance of this potential-resolved
ECL sensor, leading to a successful analysis of a carcinoembryonic antigen (CEA) and
neuron-specific enolase (NSE) simultaneously.

According to the different roles of frameworks in ECL processes, various signal
transductions can be realized in an analysis of the same targets. For example, a hollow
hierarchical MOF was employed as a carrier to graft Ru complexes as a signal amplification
with the catalytic hairpin assembly strategy [78], showing an excellent selectivity and high
sensitivity for thrombin determination. By tuning the reaction time, a series of porphyrin
Zr-MOFs (PCN-222) with different specific surface areas, pore sizes, structures, and surface
charge states were synthesized (Figure 8a), which served as an ECL emitter, coreactant
promoter, and connection in the ECL immunoassay [79]. Furthermore, Xiao’s group
designed a COF-based ECL biosensor with conductivity- and pre-reduction-enhanced ECL,
which overcame the intrinsic poor conductivity of COF [80]. With the aid of the signal
amplification of the aptamer/protein-proximity-binding-induced 3D bipedal DNA walker,
the constructed ECL sensor realized the supersensitive detection of thrombin (Figure 8b).

In addition, some proteins can be detected by utilizing their bioactive properties. For
example, telomerase can extend the length of specific DNA, indicating its possible role as a
signal switch. By monitoring bioactivity, telomerase was already analyzed with several well-
designed ECL methods [81,82]. In Lei’s group, an ECL telomerase biosensor was proposed
with a BODIPY-based MOF nanoemitter composed of pyridine-substituted BODIPY, a
terephthalic acid ligand, and Zn nodes (Figure 9a) [83]. The BODIPY-based MOF showed
the P6/m trigonal crystal system, reducing the over-aggregation of BODIPY for enhanced
optical signals (Figure 9b). After an elaborative design, the BODIPY-based MOF ECL
sensors reached a good sensitivity under different telomerase concentrations (Figure 9c).
The mechanism of this sensor was that the DNA hairpin opened when telomerase appeared,
allowing the MOF to approach the electrode surface for ECL signal generation (Figure 9d).
Integrating with unique immunoreactions, framework-based ECL biosensors become
powerful for protein detection (Table 1).
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Table 1. A summary of framework-enhanced ECL for detection of proteins.

Targets Frameworks Linear Range LOD Ref.

AFP NiZn MOF 0.00005 to 100 ng/mL 0.98 fg/mL [73]
AFP Ru(bpy)3

2+@TMU-3 0.01 pg/mL to 5 ng/mL 10.7 fg/mL [74]
AFP Magnetic MOF@CdSnS 1 fg/mL to 100 ng/mL 0.2 fg/mL [84]

CYFRA21-1 Pd-ZIF-67 0.01 to 100 ng/mL 2.6 pg/mL [75]
CYFRA21-1 Ru@ γ-CD-MOF 0.1 pg/mL to 50 ng/mL 0.048 pg/mL [76]
Thrombin Ru-UiO-66-NH2 100 fM–100 nM 31.6 fM [78]
Thrombin PCN-222 50 fg/mL to 100 pg/mL 2.48 fg/mL [79]
Thrombin Conductive COF 100 aM to 1 nM 62.1 aM [80]

Telomerase BODIPY MOF 8.0 × 10−4 to 8.0 ng/mL 0.43 pg/mL [83]
PSA Ru-MOF 5 pg/mL to 5 µg/mL 1.78 pg/mL [85]
PSA MOF/Au/DNAzyme 0.5 to 500 ng/mL 0.058 ng/mL [86]
CEA N,B-doped Eu MOF 0.1 pg/mL to 1 µg/mL 0.06 pg/mL [87]
NSE J-aggregated MOF 10 pg/mL to 50 ng/mL 7.4 pg/mL [88]

Peptide Cu:Tb-MOF 1.0 pg/mL to 50 ng/mL 0.68 pg/mL [89]
ALP π-conjugated COF 0.01 to 100 U/L 7.6 × 10−3 U/L [90]

D-dimer RuZn MOFs 0.001~200 ng/mL 0.20 pg/mL [91]

3.2. Nucleic Acids

In the analysis of nucleic acids, signal amplification techniques such as a catalytic
hairpin assembly (CHA) [92], rolling circle amplification [93], and hybridization chain
reaction [94] have been widely used for a long time. The Crisper/Cas12a technique is
also utilized for an enhanced ECL signal in DNA biosensing [95]. Combined with these
powerful tools, a series of framework-based ECL genosensors are being developed rapidly
for ultrasensitive nucleic acid detection.

As noncoding RNAs, microRNAs (miRNAs) regulate the expression of messenger
RNA by binding to complementary sequences. Once alterations in miRNA expression
happen, messenger RNA expression is disrupted, which leads to potential oncogenic
changes [96]. Therefore, it is crucial to construct reliable and sensitive biosensors for
miRNA detection. With the structural development of frameworks, framework-based
ECL genosensors for a miRNA analysis were extensively investigated. For instance, Wang
et al. synthesized a Zn MOF as a self-enhanced ECL emitter with dual ligands of DPA and
N,N-diethylethylenediamine for miRNA-21 detection [97]. DPA is a typical luminophore in
ECL while DEAEA could be used as both a coreactant and a morphologic regulator, which
leads to a strong and stable ECL emission with the efficient intramolecular electron transfer
process. Based on CHA and ECL resonance energy transfer, this sensor realized ‘signal-off’-
mode signal amplification in the presence of miRNA-21. Similarly, Xue et al. developed a
microRNA-141 ECL bioassay by using a dual-ligand MOF, which simultaneously contained
a luminophore TPE derivative and a coreactant ligand (1,4-diazabicyclo[2.2.2]octane) in the
structural unit [98]. Using a DNA triangular prism as a signal switch to detect microRNA-
141, this ECL biosensor achieved a low detection limit at the level of 22.9 aM. Furthermore, a
dual-wavelength multifunctional ECL biosensor was established for the rapid simultaneous
detection of dual targets miRNA-141 and miRNA-155 [99]. As shown in Figure 10a, a Zr
MOFs@PEI@AuAg nanocomposite exhibited intense and stable dual-wavelength ECL
emissions. Since ECL emissions of the nanocomposite at two wavelengths of 535 nm and
644 nm were both quenched by resonance energy transfer, this sensor achieved a good
linear relation for the miRNA analysis at two different wavelengths (Figure 10b). The
experiment of ECL stability showed a low signal change, indicating a good accuracy and
convincing stability in the simultaneous detection of miRNAs (Figure 10c). In addition, the
classic-DNA-walker-based signal amplification strategy is also used for a MOF sheet-based
ECL sensor in the detection of oral cancer overexpressed 1 gene [100].
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To overcome an intrinsic low conductivity in MOFs, a conductive NiCo bimetal–
organic framework nanorod was successfully applied in miRNA-141 detection, broadening
the horizon of conductive MOFs in ECL sensing applications [101]. Furthermore, with the
long-range orderly arrangement and effective intramolecular charge transfer, a pyrene-
based sp2 COF was synthesized as an efficient ECL emitter via the polycondensation of
tetrakis(4-formylphenyl)pyrene and 2,2′-(1,4-phenylene)-diacetonitrile. Because of topo-
logically linking pyrene luminophores and aggregation-induced emissive luminogens,
the luminescent COF showed a strong and stable ECL emission [102], leading to a highly
sensitive microRNA-21 biosensor.

As a great threat to health, viruses also receive much attention in ultrasensitive detec-
tion. For instance, the Zika virus, a member of the Flaviviridae virus family, is suspected to
be associated with severe congenital malformations [103]. Mao’s group quantified the Zika
virus based on Zr-based metal–organic gel and Fe-MIL-88 MOFs as an electrode matrix and
nanotag, respectively [104]. The double quenching effect originated from Fe-MIL-88 MOFs
as both an ECL acceptor and metal active centers to consume the coreactant, resulting in
a distinct turn-off signal in the presence of the virus. On the other hand, Shan’s group
designed a 2D MOF with an excellent ECL performance by combining the photosensitizer
ZnTCPP and electroactive [Co2(-CO2)4] secondary building units for a Sars-CoV-2 gene
analysis [105]. The ECL sensor achieved a rapid nonamplified detection of the RdRp gene
of SARS-CoV-2 with an extremely low limit of detection (30 aM). Furthermore, Wu et al.
designed an ECL biosensor using PCN-224/ZnO/polyacrylamide as signal tag for an accu-
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rate analysis of the HPV-16 virus [106]. With the aid of multiple target-cycling amplification
technologies and HCR reactions, this method achieved a rapid and effective “signal-off”
detection of the target with the detection limit of 0.13 fM.

Overall, by integrating appropriate frameworks with well-designed DNA sequences,
these above methods show a great performance in a nucleic acid analysis, which expands
the application of frameworks in biosensing.

3.3. Small Molecules

Compared to traditional analytical methods like chromatography and enzyme cataly-
sis, framework-based ECL methods are more sensitive and convenient for small molecule
detection. For the determination of small molecules, utilizing specific recognition between
an aptamer and target is the most common strategy. For instance, the transduction of ap-
tamer configurations alters the distance between a signal promoter and ECL luminophores,
resulting in a signal change by introducing target molecules (Figure 11a). A plasmon-
enhanced ECL aptasensor displayed highly sensitive detection for lincomycin [107]. Based
on a suitable aptasensor, a wide range of molecules can be efficiently detected, such as
kanamycin [108], sulfadimethoxine [109], and isocarbophos [110]. Apart from the aptamer,
a competition-type ECL immunosensor using Pt NPs@MOFs for the quantitative detection
of trenbolone was successfully constructed, demonstrating the simplicity of framework-
based ECL systems [111].
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Figure 11. (a) Stepwise illustration of Eu MOF-based aptasensor for lincomycin detection. Repro-
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dopamine ECL detection. (c) Variation of ECL intensity at different concentrations of dopamine: 0,
0.01, 0.1, 1, 10, 100, and 1000 µM from (a) to (g). Reproduced from [55] with permission from Elsevier.

Based on the quenching effect between MOF radicals and oxidized dopamine (Figure 11b),
dopamine can be analyzed without the aid of an aptamer [55]. This hindrance to ECL
was highly relevant to the dopamine concentration, and then was applied to construct an
ECL method for the highly sensitive detection of dopamine in serum samples (Figure 11c).
Similarly, uric acid [112], rutin [113], and deoxynivalenol [114] can also be directly mea-
sured with framework-based ECL sensors. In addition, a MOF/COF-mixed emitter with
dual-color ECL was prepared [115]. Based on a π–π interaction between targets and a
MOF/COF, diclazepam can not only be absorbed but also selectively quench ECL, achiev-
ing sensitive detection.

Furthermore, metal ions with potential harm to human health are generally analyzed
with inductively coupled plasma mass spectrometry, ion chromatography, and atomic
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absorption spectroscopy, requiring expensive instruments and staff costs. The inhibition
effect of metal ions towards ECL makes them detectable through well-designed framework-
based ECL sensors [116].

3.4. Cellular Analysis

ECL-based cellular analyses [117], such as circulating tumor cells (CTCs) [118] and
the cell matrix [119], have been developed for several decades. With the combination of
ECL biotechnology, framework-based ECL sensors for a cell-related analysis gradually
emerge. In a typical manner, Liu’s group realized single-molecule movement visualization
at the cellular membrane through capturing photoluminescence signals of the designed
Ru(bpy)3

2+-embedded MOF complex (RuMOF) [120]. With the aid of the nanoconfinement
effect within frameworks, RuMOFs had a splendid ECL intensity at the single-molecule
level, which was conducive to visualize the distribution of RuMOF-labeled-membrane
PTK7 proteins at low-expressing cells, demonstrating a great potential of framework-based
ECL systems in cellular monitoring.

Bacteria may cause great harm to health while existing in the human circulatory
system, indicating the importance of sensitive detection. Utilizing steric hindrance on
electron transfer, Vibrio parahaemolyticus [121] and Escherichia coli [122] can be success-
fully analyzed with ECL sensors based on Ru-MOF and NH2-MIL-53(Al) signal reporters,
respectively. In addition, an exosome as a subcellular structure is also accurately detected
using well-designed ECL sensors with a different signal transduction. For example, Cui’s
group constructed a label-free HepG2-derived exosome ECL sensor based on the selectivity
of the CD63 peptide in recognizing CD63 proteins on the exosome surface and strong
coordination interactions between the Zr4+ of Zn-TCPP/UiO-66-NH2 and the phosphate
head of exosomes (Figure 12). The ECL biosensor exhibited a good sensitivity with a
detection range from 1.00 × 104 to 3.16 × 106 particles/µL, which is better than most of the
existing label-free methods for detecting exosomes [123], showing the great prospects of
framework-based ECL in sensitive bioassays.
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4. Conclusions and Perspectives

Frameworks are a kind of widely used material in an ECL analysis owing to the flexible
structure, long-range ordered units, and controllable modification with some recognition
elements. According to the functions in the ECL process, frameworks have been exploited
as a carrier of luminophores, a catalyst of ECL reactions, and crystalline emitters. Based on
the innovation of ECL mechanisms, reticular biosensors gain a more efficient ECL for signal
amplification, which improves the sensitivity of biosensing. Different from MOFs, metal-
free COFs and HOFs have been rapidly developed and constructed lots of biocompatible
analytical methods. To date, framework-based ECL biosensors have been successfully



Chemosensors 2023, 11, 422 15 of 20

utilized in the detection of proteins, nucleic acids, small molecules, and cells by integrating
specific functional materials, facilitating the further development of ECL techniques.

Actually, the research on framework-based ECL systems is much more mature than
several years ago but challenges still exist. To further expand their application and improve
their biosensing performance, some aspects should be deliberated in future works. (1) It is
crucial to explore near-infrared ECL-active frameworks for developing in vivo biosensing
and bioimaging because of a good penetrability and low scattering in NIR [124]. (2) The 3D-
sp2-carbon-conjugated COFs may accelerate charge transfer through the largely conjugated
electron structure, resulting in a high ECL efficiency. (3) In order to develop a single-
molecule ECL imaging technique [125], frameworks at the nanoscale with an intense ECL
emission are promising crystalline nanoemitters. (4) The framework characteristics of self-
luminescence such as the orthogonal luminescence lifetime [126] can be endowed through
the introduction of lanthanide elements, which may be used for designing ECL sensors.
(5) Multivariate MOFs containing multiple metals have a greater selectivity in catalysis
for the acceleration of charge transfer, which improves the efficiency of ECL reactions,
leading to a strong ECL emission [127]. (6) New types of methods for reticular nanoemitter
construction should be discovered, which may simplify synthesis. (7) The conductivity
of framework-based emitters should be improved by integrating the redox-active ligands
in the frameworks [128]. In a word, the key of ECL techniques relies heavily on the
improvement of emitters, suggesting that ECL-active frameworks with a good stability,
easy accessibility, and high ECL efficiency are urgently required in future research.
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