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Abstract: Epigenetic modifications are closely related to diseases and physiological health, mainly
including DNA methylation, RNA methylation, histone acetylation, and noncoding RNA. Recently, a
large amount of research has been conducted on the detection of epigenetic modifications. Electro-
chemical biosensors, with their low cost, high sensitivity, high compatibility, and simple operation,
have been widely used in the detection of epigenetic biomarkers. This review discusses the detection
of epigenetic biomarkers using different electrochemical sensing methods. Here we discuss various
aspects, including free labels, signal labeling, signal amplification, nano-based electrodes, and the
combined use of other methods. By summarizing the existing electrochemical detection methods for
epigenetic modifications, this review also proposes future development trends and challenges for
electrochemical biosensors in this field.

Keywords: epigenetic modifications; electrochemical biosensing; signal amplification; nanostructure
modified electrodes

1. Introduction

Epigenetics is a discipline that studies the inheritance of genetic information through
DNA methylation or chromatin conformation changes without altering the DNA se-
quence [1]. Epigenetic phenomena include DNA methylation, genomic imprinting, mater-
nal effects, gene silencing, RNA editing, noncoding RNA, and more [2,3]. Currently, there is
extensive research on the modifications of DNA, RNA, and histones [4–6]. The modification
of DNA and RNA mainly includes DNA methylation, DNA hydroxymethylation, and RNA
methylation [4,7–9]. Research on the modification of RNA and DNA mainly focuses on
the modification of nucleic acid bases and sugars [10]. Research on histone modifications
is also extensive, mainly focusing on histone phosphorylation and acetylation [5,11–13].
In addition to directly studying the changes in epigenetic genetic information, enzymes
related to the modification of RNA, DNA, and histones are also being studied.

Abnormal DNA and RNA methylation and histone acetylation can lead to various
diseases [10,14–16]. Abnormal methylation of RNA and DNA and histone acetylation
are closely related to the occurrence of various cancers and can also cause metabolic and
neurological diseases [17–19]. Due to the close relationship between epigenetic modifica-
tions and various diseases, epigenetic modifications has been widely studied. By detecting
epigenetic biomarkers, researchers can gain a deeper understanding of the mechanisms
and progression of diseases, providing more accurate and precise methods for early di-
agnosis and treatment. For example, detecting DNA methylation levels can improve the
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sensitivity and specificity of tumor detection, providing more reliable methods for early
diagnosis [20]. In addition, for some difficult-to-diagnose diseases such as autism and
schizophrenia, the detection of epigenetic biomarkers can provide new diagnostic and
treatment approaches [21,22]. Therefore, the detection of epigenetic biomarkers is of great
significance for the prevention, diagnosis, and treatment of diseases. The conventional
detection methods for epigenetic substances are already mature, and commonly used meth-
ods include radioanalysis [23], chromatography [24–26], immunological analysis [27], and
single-molecule sequencing [28–30]. Radioactive methods require labeling of the detection
substance, which may produce harmful radiation to humans and the environment. Chro-
matography and sequencing analysis have the disadvantage of being time-consuming and
tedious. These detection methods also require expensive instruments and are not suitable
for on-site testing in complex environments.

Electrochemical biosensors do not require complex equipment, and only an elec-
trochemical workstation, electrodes, and a computer are needed to complete the detec-
tion of target analytes [4,31]. Compared with complex detection methods such as fluo-
rescence [32,33], surface plasmon resonance [34,35], and surface-enhanced Raman spec-
troscopy [36,37], electrochemical biosensing detection methods have the advantages of
simple operation, low equipment cost, and high sensitivity [38]. They have been developed
to detect various forms of epigenetic modifications in recent years [39–41].

The principle of electrochemical biosensors for epigenetic modification detection is
to use electrodes as conversion elements and immobilization carriers, and to immobilize
bio-sensitive substances such as antibodies and capture probes, or biomolecules themselves
as sensitive elements on the electrodes, and to convert the signals of target molecules
and their reactions into electrical signals such as current, capacitance and conductivity
through specific recognition between biomolecules, so as to detect epigenetic modifications
qualitatively or quantitatively. PCR methods for detecting epigenetic modifications can
only be suitable for DNA or RNA, but not suitable for epigenetic-related enzymes and
histone modifications. Thus, electrochemical biosensors have a wider range of applications.
While PCR methods are sensitive but require complex instrumentation and equipment,
electrochemical biosensors are easier to implement than PCR for in situ detection because
they are sensitive, simple, affordable, easy to miniaturize, multiplex, multiplex and timely
medical compatible, and can achieve the advantage of field detection in complex environ-
ments. Obviously, electrochemical biosensors are a powerful tool for quantitative analysis
of various biomarkers. In particular, the integration of electrochemical sensors into portable
devices makes point-of-care testing (POCT) possible, which may provide new approaches
to medical diagnostics, especially in low-resource settings.

This review provides an overview of electrochemical detection methods for epigenetic
modifications. It introduces the label-free method of using electrochemical detection for
epigenetic modifications, the method of using signal probes based on label modification,
the electrochemical detection method based on signal amplification, and the method of
using nanostructure-modified electrodes. We will review the principles, characteristics,
and applications of these electrochemical biosensors and discuss challenges and future
development directions in this field.

2. Label-Free Methods

The direct detection method without labeling utilizes electrochemical impedance
spectroscopy (EIS) detection in electrochemistry to directly read electrical signals without
any modification or amplification. The direct label-free detection methods mainly include
EIS and the method using electrochemically active substances as indicators. EIS is mainly
based on the principle that the signal is generated by the increase of electrochemical
impedance after the analyte binds to the capture material on the electrode, which is then
used to quantify the analyte. The use of electrochemically active substances as indicators is
based on the fact that these substances can bind with the analyte due to electrostatic forces.



Chemosensors 2023, 11, 424 3 of 21

The more the analyte presents, the more electrochemically active substances will bind, and
the larger the electrical signal generated, which can then reflect the content of the analyte.

DNA methylation is the most common type of epigenetic modification. There have
been many reported methods for detecting DNA methylation. Most DNA methylation
detection methods rely on the principle of base complementary pairing. Sheppard’s Group
developed a biological platform that takes advantage of the stability of double-stranded
targets (Figure 1) [42]. A denaturation step is added prior to detection to take advantage
of the sensitivity and selectivity of the single-stranded DNA (ss-DNA) target and probe
hybridization for the detection of the ss-DNA target. The authors used conductive polymer
materials to modify the electrode and covalently attached probes for bio-recognition on
the modified electrode surface. Due to steric hindrances presented by methyl groups, that
methylation can affect the hybridization rate. EIS was used to detect the signal generated
by the potassium ferricyanide reduction reaction to study the hybridization kinetics of
double-stranded DNA to detect DNA methylation. This method detects target methylation
through the kinetic changes in methylation DNA hybridization, providing a design concept
for future methylation biosensors.
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ization, probe attachment, and hybridization with (a) methylated and (b) unmethylated denatured
ds-ON target [42]. Copyright 2015, Elsevier.

Currently, in contrast to the extensive research on DNA methylation, there are rel-
atively fewer reports on RNA modification detection methods because the content of
abnormal RNA in total RNA is particularly low and difficult to detect. Since the content of
RNA is relatively lower than that of DNA, more sensitive detection methods are needed to
detect RNA. N6-methyladenosine (m6A) is a common RNA methylation modification in
epigenetics. There have been a few reports of using electrochemical biosensors combined
with competitive degradation to quantify such kinds of RNA methylation.

Xie’s group developed a sensitive and label-free electrochemical immunosensor for
m6A-RNA detection, utilizing the advantages of the sensitivity and selectivity of elec-
trochemical biosensing technology (Figure 2) [43]. The key to achieving sensitivity and
specificity in the developed method is the use of the specific interaction between antibody
(Ab) and antigen (Ag). The authors used recombinant proteins tagged with histidine to
modify the gold electrode surface. Histidine binds to the gold electrode surface, allowing
the recombinant protein to be oriented. The specificity of the Ab crystal region and recom-
binant protein binding was then used to expose the Ab binding site, thereby improving the
binding efficiency of the Ag-Ab, enhancing the detection signal, and enabling the detection
of low-abundance m6A-RNA. The anti-m6A-Ab used in this method can bind to both m6A-
RNA and m6A-DNA. M6A-DNA serves as a signaling molecule and participates in the
reaction together with m6A-RNA. After binding to the Ab, RNase A is used to hydrolyze
the bound m6A-RNA. The amount of m6A-RNA is quantified by the decrease in the EIS
signal. The linear range of detection can be improved by using a method of competition
reaction with m6A-DNA and m6A-RNA, followed by degradation. Finally, the EIS signal of
the detection electrode is detected, and the decrease of signal intensity is proportional to the
abundance of m6A-RNA, while the intensity of the signal is inversely proportional to the
amount of m6A-RNA in the sample. This biosensor has the advantages of simplicity and
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sensitivity, with a wide detection range and a sensitivity of up to 0.016 nM. This method
for detecting RNA methylation is not affected by chain length or base sequence and has a
certain degree of universality.
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The above two methods use the principle of base complementary pairing to detect
DNA methylation or RNA methylation. The methods can only detect methylated nucleic
acids as epigenetic markers, and the methods can only detect single biomarkers. Electro-
chemical sensing methods can not only detect nucleic acids in epigenetics but also use
Ag-Ab interactions to detect proteins. They can not only detect single biomarkers but also
perform multiple detections of two different types of biomarkers. Due to their cell-type
specificity, robustness, and ability to be released into body fluids, DNA methylation and
histone acetylation can serve as biomarkers for cancer diagnosis in vitro.

Sheppard’s group used graphene screen-printed electrodes to detect DNA and chro-
matin, because graphene screen-printed electrodes have the advantages of low cost, high
signal-to-noise ratio, and no need for surface preparation [44]. The surface of the screen-
printed electrode was coated with polyaniline, a conductive polymer, to avoid the influence
of defects on the graphene surface while also allowing the Ab to be surface-functionalized.
The anti-5-methylcytosine Ab, which specifically binds to DNA methylation, and the
anti-acetylated histone H3 Ab, which specifically binds to histone acetylation, were then
directly coupled to the polyaniline-modified graphene screen-printed electrode surface.
This label-free method uses EIS to detect DNA and chromatin. The authors used the devel-
oped biosensor to detect endometrial cancer cell and breast cancer cell systems and found
that there is no difference in total DNA methylation, but there is a difference in histone
acetylation. Unlike other methods that are time-consuming or require expensive hardware,
electrochemical biosensors have the advantages of simplicity, sensitivity, and portability
and can be used as important tools for DNA and histone detection. The biosensor devel-
oped by the authors can simultaneously detect two epigenetic markers. It can also be used
to observe the therapeutic effect of epigenetic drugs by detecting cells in vitro. This method
demonstrates the potential of using the same sample for multiple epigenetic detections.

In addition to using EIS to directly detect the binding of analytes to the electrode
surface, there are also some detection methods that use electrochemically active substances
as indicators. Ai’s group used methylene blue as an indicator to detect DNA methylation
and methyltransferase activity [45]. Methylene blue can be inserted into the double-
stranded DNA, providing a reliable electrochemical signal. Methylated DNA can be
selectively cleaved, reducing the amount of methylene blue and producing a decrease in
the electrochemical signal. Li’s group chose the electroactive complex [Ru(NH3)6]3+ as a
signal converter [46]. The electroactive complex can bind to double-stranded DNA through
electrostatic forces. Similar to methylene blue as an indicator, it can also detect methylated
DNA and has a signal amplification effect, with the ability to sensitively detect DNA
methylation. The activity of DNA adenine methylation methyltransferase was detected by
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signal closure. Nie’s group prepared a coenzyme A silver ion-coordinated polymer with
high electrocatalytic activity as a signal probe for high-sensitivity detection of coenzyme A
and histone transferase activity [47].

Direct and label-free epigenetic detection methods have the advantages of being
simple and easy to operate. The methods rely on the specificity of Ag-Ab binding or
DNA base complementary pairing. As the sensitivity of all methods that use EIS to detect
biomarkers is often not enough, conductive material modification or interface orientation
methods have been used to improve the Ab coverage and binding efficiency on the electrode
interface to some degree. Direct detection of DNA methylation distinguishes between
methylation patterns based on the kinetics of hybridization, while RNA methylation is
quantified based on changes in electrochemical impedance caused by enzyme degradation
after competition. DNA methylation and histone acetylation are detected through Ag-Ab
binding. The detection methods are similar and the quantification principle is based on the
signal change of the potassium ferricyanide reduction reaction. However, although direct
detection methods are simple, their sensitivity is not enough. Even though the sensitivity
has been improved by interface modification, it is still not sufficient for the detection of
some low-abundance epigenetic modifications.

3. Methods with Labeled Signal Probes

Due to the low sensitivity of direct detection methods, they are not suitable for the
detection of all epigenetic markers, especially in the detection of low-abundance DNA and
RNA modifications. Even with the use of electroactive indicators, it is still challenging to
meet the high sensitivity requirements for detection. Therefore, there is a need to develop
more sensitive detection methods to improve the performance of electrochemical biosensors.
Common methods to enhance sensitivity involve the use of signal probe labeling. The
methods of signal probes for electrochemical biosensing detection of epigenetic markers
mainly include chemically modifying specific sites, using protein interactions to bind
signals, and employing signal probe methods.

Chen’s group took advantage of the high sensitivity of electrochemistry and used
a signal labeling strategy to detect low-abundance 5-formyluracil (5fU), which is closely
related to the function of DNA (Figure 3) [48]. The most critical step of this method is
to signal-modify the target site of 5fU-DNA. The authors first used the azide derivative
of (2-phenylimidazole) acetonitrile and the aldehyde group of 5fU to form a covalent
bonding through a chemical reaction. Then, DBCO-PEG4-biotin was connected to the
target DNA through a copper-free click chemistry reaction. Next, T4 polynucleotide kinase
was used to catalyze the target DNA to generate a sulfhydryl group at the 5′ end. The
target DNA containing 5fU can be assembled on the electrode surface by the interaction
of Au-S bond. Finally, specific recognition between biotin and streptavidin was used
to label horseradish peroxidase onto the surface of the above electrode. Horseradish
peroxidase catalyzed the oxidation and reduction of hydroquinone to generate an electric
current signal. Differential pulse voltammetry (DPV) was used to detect the current
and enable high-sensitivity detection of 5fU. The specificity of detection comes from the
specific recognition of azide to 5fU. Introducing a biotin label at the position of 5fU and
then combining it with streptavidin-horseradish peroxidase can significantly improve the
detection sensitivity. Using T4 polynucleotide kinase to directly connect the target DNA
onto the electrode through a covalent bond is more direct and does not require a capture
probe. This method can avoid interference from 5-formylcytosine and apyrimidinic sites in
the detection of 5fU. At the same time, this direct bonding method also avoids the sequence
matching problem caused by the use of capture probes in traditional connection methods.
This method has a good linear range and a low detection limit.
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The chemical modification of signal probes requires the use of toxic chemical reagents
and involves multiple steps of manipulating the target DNA during the labeling process.
The labeling process may cause some loss of targets, which can introduce bias in the
upstream analysis and affect the accuracy of the experimental results. Although the
method uses chemical substances to recognize specific sites and achieve specific labeling,
the drawbacks of the method are also evident. The complex processing steps limit the
practicality of this method. Compared with the method of modifying DNA using chemical
reagents, the specific binding of biological proteins is safer and more reliable. Biological
proteins can selectively bind to specific groups without the need for complex processing
steps, and they do not have toxic effects on the operator, making them a safer and more
reliable modification labeling method.

Ai’s group developed a biosensor to detect cytosine methylation of CpG dinucleotides
and the activity of methyltransferase (MTase) in DNA, using a methyl-binding domain
(MBD) protein that can specifically bind to CpG dinucleotides and Coomassie brilliant blue
G250 (CBB-G250) as the signal label (Figure 4) [49]. This sample method can also be applied
to screen for MTase inhibitors. The process of this method is to fix the capture DNA probe
on the electrode using the Au-S bond firstly and then hybridize the target DNA with the
capture DNA probe. Treatment of the hybridized DNA with M.SssI-MTase in the presence
of the methyl donor S-adenosylmethionine can methylate CpG dinucleotide specific sites.
The methylated CpG region can be specifically recognized and bound by the MBD protein.
CBB-G250 can bind to the MBD protein through intermolecular forces. CBB-G250 is a
common electroactive molecule that can provide redox signals to methylated DNA. When
the CCGG symmetrical sequence of the hybrid molecule is specifically recognized and cut
by the Hpall restriction endonuclease, it cannot be methylated by MTase. The amperometric
current method is used to detect the redox signal of CBB-G250, and the obtained current
signal can reflect the level of DNA methylation and the activity of MTase. The authors
developed a simple, portable, and sensitive biosensor that can be used to detect DNA
methylation and MTase activity, and it can also screen for methylation inhibitors.
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In addition to detecting DNA methylation, the above methods can also be used to
detect DNA MTase. The detection of enzymes related to epigenetic nucleic acid markers
is also essential for studying epigenetics. Detecting DNA MTase is different from directly
detecting nucleic acid markers, as it requires a reactive subject. Using the specific binding
ability of biological proteins and the non-specific binding method of specific groups and
Coomassie blue does not directly combine with the label. The binding between the label
and the electrode is not specific, which may result in insufficient accuracy in actual sample
detection. Developing a method that can directly and specifically bind to the electrode
can improve accuracy and sensitivity. The use of unique hairpin probes to generate
capture probes and then combine them with signal probes can increase the specificity of
the recognition process. It is also important to detect MTase for epigenetic research.

Yan’s group developed a sensitive and simple method for detecting MTase activity
using hairpin DNA probes (Figure 5) [50]. The key design of this method is the elaborate
design of the hairpin DNA probe. The 5′ end of this hairpin DNA probe is modified with
a sulfhydryl group, which can directly generate an Au-S covalent bond with the gold
electrode, fixing the probe on the electrode surface. The hairpin DNA probe also has a
methylation recognition site. After treatment with MTase or restriction endonucleases such
as Dam MTase and Dpn I that can recognize methylated sites, the hairpin DNA probe is
cleaved. The remaining DNA fragments after cleavage are still left on the electrode as a
capture probe that can hybridize with a signal probe. The signal DNA probe is modified
with methylene blue, which can undergo redox reactions on the electrode surface. Unlike
conventional detection methods where the signal is directly labeled on the target molecule,
this method cleverly designs the capture probe to release and bind with the signal probe.
When the hairpin DNA probe cannot be cleaved due to methylation, the capture probe
cannot be released and cannot bind with the signal probe, avoiding false-positive results.
This method is simple to prepare and easy to operate, and it has good selectivity and
high sensitivity. The detection limit for Dam MTase using this method is 0.07 U/mL. This
method can also be applied to the screening of inhibitors and the discovery of anticancer
drugs. Yuan’s group evaluated the activity of DNA transferase using a commercial blood
glucose meter [51]. This method used biotin-avidin-peroxidase as a label to achieve sucrose
catalytic hydrolysis and used a blood glucose meter to convert the signal for detection.
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Most of the label-based electrochemical detection methods for epigenetics use sub-
stances with electrochemical activity, such as CBB-G250, methylene blue, or enzymes that
catalyze reactions such as the biotin-avidin-peroxidase system. The changes in current
in the electrochemical or enzyme-catalyzed redox reactions are used for detection. This
method has higher sensitivity and specificity compared to direct detection methods. It
can detect not only epigenetic biomarkers but also enzymes that cause abnormal changes,
making the range of substances detected wider and the sensitivity higher. However, the
labeling method is cumbersome and may have multiple synthesis steps. The storage time
of the labeled target is also greatly limited.

4. Methods Based on Signal Amplification

Signal labeling methods can improve detection sensitivity, enabling quantitative de-
tection of low-abundance 5-methyluracil and expanding the range of electrochemical
detection. However, the signal labeling operation itself involves multiple steps, increasing
the complexity of actual detection operations. Additionally, the limited storage time of
the target may restrict the practical application of the method. Considering that the signal
labeling method has limitations in improving sensitivity, it still lacks detection capabilities
for ultra-low-abundance epigenetic biomarkers. Developing a method for ultra-sensitive
detection of ultra-low-abundance markers is crucial. Signal amplification methods can
effectively solve this problem. Signal amplification methods mainly include using a dual
signal amplification strategy combining PCR and CRISPR/Cas12 systems, redox signal
amplification combined with enzyme-catalyzed amplification, and a multi-step circuit
amplification design. Detection methods based on signal amplification can significantly
improve detection sensitivity.

Liao’s group used the difference in the thermodynamic stability of hybridization
between a xeno nucleic acid (XNA) probe with m6A-RNA and A-RNA to develop a specific
reverse transcription polymerase chain reaction for m6A-RNA (Figure 6) [52]. Combined
with the CRISPR/Cas12a signal amplification strategy, m6A modification can be detected
with high sensitivity. In the detection process, RNA is extracted from cells to obtain RNA
containing m6A-RNA and A-RNA without methylation modification. XNA probes are used
to hybridize with RNA. Non-methylated RNA and XNA are more stable after hybridization,
and the strand displacement reactions (SDR) with the reverse transcription primer occur
slowly. Due to the hybrid of m6A-RNA and XNA being unstable, the m6A-RNA can
preferentially undergo SDR with the reverse transcription primer. The reverse transcription
of non-methylated RNA is blocked by the XNA probe, directly magnifying the minute
differences between m6A-RNA and A-RNA. The single-stranded DNA obtained from the
reverse transcription of m6A-RNA is PCR amplified to generate double-stranded DNA,
which is positively correlated with the m6A fraction. The authors utilized the differences in
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thermodynamic stability between m6A-RNA and RNA hybridization with XNA and the
difficulty of SDR to amplify the small differences in the first step after PCR amplification.
Then, the CRISPR/Cas12a system is used to amplify the signal. The CRISPR-derived RNA
(crRNA) in the designed CRISPR can specifically target the m6A RT-PCR amplification
fragment. The CRISPR/Cas12a system is activated by the specific double-stranded DNA
generated in the reverse transcription polymerase chain reaction and the realized signal
amplification output. A methylene blue-modified DNA probe is immobilized on the gold
electrode surface, and the remaining bare area of the Au electrode is blocked by MCH
before adding the activated Cas12 reaction system. After the DNA probe is cut away
from the electrode surface, the methylene blue molecules on the electrode are released.
The abundance of m6A-RNA is quantified by detecting the decrease in the square wave
voltammetry signal. In this study, the authors used a dual signal amplification system.
After amplifying the signal with RT-PCR, the CRISPR/Cas12a system was used to further
amplify the signal. The m6A-RNA can be detected with ultra-high sensitivity and can
sensitively detect 1% m6A sites.
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The method of using RT-PCR and the CRISPR/Cas12a system amplification can
achieve ultra-sensitive detection of extremely low-abundance m6A-RNA. However, the
principle of realizing specific detection using this signal amplification method is based on
the difference in complementary pairing with exogenous nucleic acid fragments. Nucleic
acid-based complementary pairing detection has strong sequence specificity and can only
detect nucleic acids with specific sequences. The CRISPR/Cas12a system also requires
a specific sequence design to complete the dual signal amplification. Through the dual
specificity recognition of exogenous nucleic acid probes and crRNA, as well as the combined
signal amplification of PCR and CRISPR/Cas12a, the specificity and sensitivity can be
significantly improved. However, this method can only detect m6A-RNA with specific
sequences, which also has certain limitations.

Compared with the dual signal amplification method based on nucleic acid comple-
mentary pairing, the following signal amplification method based on magnetic separation
does not require a specific sequence design or signal labeling and can achieve signal
amplification for the detection target. Zhang’s group developed an unlabeled electro-
chemical magnetic biosensor for the quantitative detection of 5-hydroxymethylcytosine
(5-hmC) DNA, which is closely related to cancer and is an important epigenetic biomarker
for tumorigenesis (Figure 7) [53]. The core of this method is coupling with the terminal
deoxynucleotidyl transferase (TDT) enzyme-catalyzed amplification and Ru(III) redox
cycling, a dual signal amplification system, to significantly improve the sensitivity of the
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detection. In the detection process, 5-hmC is first modified and enriched. The 5-hmC
specific site in the non-paired double-stranded DNA is modified by a biotinyl-cysteine
derivative. After purification using a Micro-Bio-Spin P6 column, biotin-coupled 5-hmC
double-stranded DNA is obtained. Because biotin has good specificity with streptavidin,
the biotin-coupled double-stranded DNA is bound to magnetic beads coated with strepta-
vidin, which links the double-stranded DNA and magnetic beads to achieve the enrichment
effect. The magnetic beads linked with double-stranded DNA are elongated by terminal
deoxynucleotidyl transferase treatment. Ru(NH3)6

3+ is positively charged, which can be
electrostatically attracted to the negatively charged phosphate backbone of DNA. They can
be combined through electrostatic interaction, allowing Ru(NH3)6

3+ to reach the vicinity
of the DNA main chain. The magnetic beads linked with DNA double-strands can bind
to the screen-printed electrode surface through magnetic force without immobilization.
Fe(CN)6

3− is negatively charged and repels the DNA main chain, making it difficult to
contact. Ru(NH3)6

3+ directly participates in the electrochemical redox process. With Ru(III)
being reduced to Ru(II), Ru(II) can react with Fe(CN)6

3−, causing Ru(II) to be oxidized to
Ru(III) again. The regenerated Ru(III) can continue to bind with DNA to participate in
the redox cycle. The redox process of Ru can further amplify the electrical signal. This
electrochemical biosensing detection method has good specificity and can significantly
distinguish 5-hmC from 5-methylcytosine. This method does not require specific templates
or a special sequence design and is not limited to DNA with specific base sequences. Am-
plification is performed through molecular interactions without signal labeling. The dual
signal amplification system enables a detection limit as low as 9.06 fM.
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Although the electrochemical magnetic biosensor method does not require signal
labeling and is not limited to specific base sequences, the detection process involves column
separation technology and magnetic enrichment technology, making the steps relatively
complex. The above method uses terminal deoxynucleotidyl transferase treatment, which
is an enzyme-dependent and magnetic-dependent complex detection technology. Although
it greatly improves detection sensitivity, the implementation of magnetic separation tech-
nology also requires specific modifications and column separation treatment for specific
sites. The more complex and cumbersome the operation step, the more potential biases
may be introduced. Chemical modification of specific sites requires the use of chemical
reagents and long reaction times. In contrast to the above-mentioned magnetic separation
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technology, the use of multi-step circuit amplification technology achieves an enzyme-free
and treatment-free process. Using the multi-step circuit cycling to achieve signal ampli-
fication does not require special chemical treatment and long reaction times, making the
detection process as simple as possible while improving sensitivity. In addition to direct
detection and signal labeling methods, signal amplification methods have also been used
for sensitive detection of DNA methylation.

Based on a multi-step DNA amplification circuit design, Wang’s group developed a
sensitive proportional electrochemical biosensor for detecting methylated DNA (Figure 8) [54].
The multi-step circuit amplification design, which is a non-enzymatic amplification design,
can use the product upstream as the initiator of the downstream circuit, effectively achieving
signal amplification. The core of the non-enzymatic electrochemical biosensor designed
by the authors is the design of multi-step circuit amplification, mainly including three
cycles. Introduction of methylated target DNA in the first cycle triggers a Mg2+-dependent
DNA enzyme cycle, causing the hairpin structure to break and generate HP1*. The HP1*
generated in the first cycle can act as an initiator for the second cycle, starting the CHA-1
cycle. QHP2/HP3 produced by the CHA-1 cycle can initiate the third cycle CHA-3, ul-
timately generating the four-way junction QHP4/QHP5. The multi-step amplification
circuit is triggered by methylated target DNA and generates a DNA four-way junction after
three cycles. The gold electrode surface is fixed with a capture probe, which binds to the
signal probe of methylene blue. The DNA four-way junction can bind to the capture probe,
undergo strand displacement reaction, replace the original signal probe of methylene blue,
and connect the DNA four-way junction to the electrode interface. The DNA four-way
junction has sufficient sites to introduce doxorubicin molecules. By detecting the ratio of
doxorubicin and methylene blue signals using electrochemistry, the methylated target DNA
can be sensitively detected. The ratiometric method is a way to detect biomarkers based on
the ratio of two independent signals, rather than using a specific signal output value. Using
the ratio of two signals to detect can significantly improve the accuracy and precision of
detection. The oxidation-reduction of doxorubicin and the signal probe of methylene blue
can be used as a pair of signal reporters. Although the ratiometric method produces stable
and repeatable signals, amplification methods are used to increase the limited sensitivity.
The multi-step circuit amplification method exhibited high sensitivity for target analysis
with a detection limit of 4 aM.
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Ai’s group developed an electrochemical detection method for DNA hydroxymethy-
lation based on alkaline phosphatase-catalyzed signal amplification [55]. This method
involves specific modification of the group with glycosylation and bridging with 1,4-
phenylene diboronic acid to capture alkaline phosphatase. Signal amplification is achieved
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through enzyme-catalyzed generation of p-nitrophenol. This method can detect 5-hmC
with high selectivity and sensitivity. Xie’s group developed a method combining m6A-
sensitive DNA enzyme and three-way junction-mediated isothermal exponential CRISPR
amplification to identify methylated RNA by using deoxyribonuclease for specific cleavage
of non-methylated RNA and three-way junction. Isothermal CRISPR amplification can
amplify the signal to achieve high-sensitivity detection of low-abundance m6A-RNA [56].
Zhao’s group combined sodium bisulfite conversion and PCR amplification and devel-
oped an electrochemical biosensor with methylation specificity using PCR amplification
and enzyme-catalyzed signal amplification to quantitatively detect methylation of tumor
suppressor gene promoter [57]. Our group developed a method combining glycosylation
modification and enzyme-catalyzed signal amplification to detect 5-hmc DNA [58]. The
developed electrochemical biosensor has high specificity and is multiplexed, capable of
detecting multiple samples simultaneously. Li’s group used the peroxidase property of
G-quadruplex-Cu(II) metalloenzyme to catalyze hydrogen peroxide for signal amplification
to electrochemically detect histone acetyltransferase activity [59].

Direct detection and labeled detection can detect epigenetic markers with high abun-
dance, but there are still many biomarkers with extremely low abundance that are difficult
to detect by simple signal labeling. The signal generated by a single label is not suffi-
cient to meet the detection requirements. Signal amplification methods provide a good
solution for this problem. Signal amplification methods can further amplify the signal
when combined with other methods. For example, in m6A-RNA detection, PCR and the
CRISPR/Cas12a system can be combined, or an amplification circuit and ratio signal can be
combined, or magnetic bead enrichment and Ru oxidation-reduction signal amplification
can be combined. Signal amplification technology is no longer just using signal labeling but
also combining multiple technologies to achieve electrochemical detection methods with
improved sensitivity. Compared with conventional detection methods, signal amplification
technology is more complex, but it provides more accurate and precise measurements, and
has greater specificity, which can detect specific targets at specific sites. More importantly,
signal amplification technology greatly improves detection sensitivity.

By amplifying the signal, the sensitivity and detection limit of the sensor can be im-
proved, enabling the detection of low-concentration target substances. In addition to using
signal amplification methods, interface modification methods can also be used to enhance
the stability, selectivity, and biocompatibility of biosensors, to improve signal transmis-
sion efficiency, and to reduce background noise, thereby improving the sensor’s detection
performance. Electrochemical biosensor interface modification and signal amplification
play different roles. Signal amplification is mainly used to enhance the detection signal of
the target analyte. Interface modification mainly focuses on improving the sensor surface
to enhance sensor performance. They each have their advantages, but in some aspects,
interface modification may be more advantageous than signal amplification. Interface mod-
ification can improve the stability of the sensor, allowing it to maintain performance over
long periods of use or under different conditions, while signal amplification may introduce
additional instability factors, such as enzyme inactivation or aggregation of nanomaterials.
Interface modification can improve the selectivity of the sensor by modifying specific
recognition elements, enabling the sensor to better distinguish between target analytes and
interfering substances. In some cases, interface modification can achieve simpler operation
and fewer steps, thereby improving the ease of the practical use of biosensors.

5. Methods Based on Nanostructured Modified Electrodes

As designing various signaling methods is necessary to improve the sensitivity of
epigenetic analysis, developing high-performance electrodes is extremely important for
electrochemical biosensing methods, providing both high sensitivity and high signal-to-
noise ratio. The development of nanostructured modified electrodes becomes a more
acceptable choice because nano-biomaterials and interfaces show unique performance
for biosensing applications. The method of modifying nanostructures on the electrode
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surface is simpler and requires less sample processing. It can improve the sensitivity
without complicated processing, making the detection method more concise in operation
while meeting the sensitivity requirements. Nanostructure modification methods can
significantly improve the signal-to-noise ratio and enhance the interference resistance of
biosensors. Using nanostructure-modified electrodes can compensate for the interface
defects of electrochemical biosensors, making the interface more regular, facilitating the
binding of target molecules, and reducing background noise. The core of electrochemical
biosensing lies in the binding of capture probes and analytes, and modifying the interface
with nanomaterials is more conducive to capturing target substances. Currently, commonly
used nanostructure-modified electrode methods include modifying the electrode surface
with alloy nanostructures, directly generating nanostructures on the substrate surface and
combining them with metal nanoparticles, modifying the electrode surface with composite
materials, modifying the electrode surface with gold nanoparticles, and modifying the
electrode surface with DNA tetrahedra.

Recent studies have shown that noncoding RNAs play an increasingly important role
in the regulation of epigenetics. Noncoding RNAs are functional RNA molecules that
cannot be translated into proteins, and some common regulatory noncoding RNAs include
small interfering RNAs, miRNAs, piRNAs and long-stranded noncoding RNAs [60]. MiR-
NAs are short endogenous noncoding RNAs that control epigenetic remodeling. Shiddiky’s
group designed a gold-loaded nanoporous superparamagnetic iron oxide nanocubes as a
nanomaterial to improve the performance of the electrochemical biosensor to detect miRNA
(Figure 9) [61]. This nanomaterial is highly porous and has an exposed gold surface, which
binds to DNA or RNA more efficiently through affinity interactions, thereby increasing the
binding efficiency with ribonucleotides. This nanocube has catalytic activity towards Ru(III)
and is an electroactive material that can amplify detection signals through catalytic redox
processes. The iron oxide material is paramagnetic, which enables magnetic separation for
sample enrichment and separation. In the specific detection process, RNA is first extracted
from the sample, and the target RNA is extracted using the specific interaction between the
streptavidin-modified magnetic beads and the biotin-modified capture probe. The extracted
miRNA is then magnetically separated and released. The released miRNA is adsorbed onto
the gold-loaded iron oxide nanocube. Since RNA molecules contain a negatively charged
phosphate backbone, they can bind with positively charged Ru(III) through electrostatic
interaction, resulting in a large number of Ru(III) molecules on the RNA molecules. The
Ru(III) redox process is coupled with the [Fe(CN)6]3−/4− redox system to further amplify
the signal. The quantitative information of miRNA can be obtained by detecting the Ru(III)
bound to the electrode surface using chronoamperometry. This method solves the problem
of amplifying miRNA that cannot be achieved by other methods and can achieve highly
specific and sensitive detection even at low abundance and in the presence of similar
RNA interference. This method uses nanomaterials to modify the electrode interface and
combines multiple electrochemical signal amplification systems to achieve ultra-sensitive
detection of miRNA with a detection limit of 100 aM.

The method of modifying electrodes with iron oxide nanocubes loaded with gold
can detect miRNA without amplification. MiRNA binds to iron oxide nanocubes loaded
with gold through affinity interactions. The nanoparticles themselves do not have specific
binding capabilities and do not have interference resistance to other RNAs. In the detec-
tion process, the target miRNA needs to be processed first by using magnetic separation
and enrichment, and then the specific capture probe is used to extract and release the
target miRNA.
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Lim’s group develops an electrochemical biosensor for the detection of 5-hmc using a com-
bination of zinc oxide nanorods (ZnO NRs) and gold nanoparticles (Au NPs) (Figure 10) [62].
Compared to iron oxide nanocubes loaded with gold, the generated ZnO NRs loaded with
Au NPs have a certain ability to distinguish target molecules. The difference in adsorption
properties can effectively distinguish between target molecules and interfering molecules
without additional extraction and enrichment steps. The direct generation of ZnO NRs also
makes the process between nanoparticles and electrodes interference-free, resulting in a
more stable electron transfer process.
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for 5hmC detection [62]. Copyright 2021, Wiley.

The core of the biosensor is the construction of nanostructures to detect 5-hmC, which
is closely related to cancer epigenetics. AuNPs serve as excellent platforms to detect
a variety of biomolecules because of their excellent biocompatibility, conductivity, and
diverse surface functionalization options. The affinity of 5-hmC and 5-mC for Au is
different, and their different adsorption and affinity abilities can be used for label-free
electrochemical detection and quantification. ZnO NRs have good biocompatibility and
are widely used in biochemical-related detection. ZnO NRs can be directly grown and
synthesized on the electrode and can directly contact the electrode, avoiding interference
from other substances and providing a stable connection for electron transfer, thereby
improving sensing performance. They also have a large surface area that can be used
for modification and connection. First, they sputtered ultrathin ZnO quantum dots as a
seed layer sputtered onto indium tin oxide glass substrate. Then, they fabricate the hybrid
structure by the vertical hydrothermal growth of ZnO NRs on the zinc oxide film. Finally,
they modify gold nanoparticles onto the surface of the ZnO NRs resulting in the direct
generation of nanomaterials on the electrode surface. Because the adsorption of 5-hmC
on the gold surface is lower than that of 5-mC, a larger current signal is generated during
current detection. The biosensor developed by the authors can also distinguish different
levels of 5-hmC DNA very well. This method avoids selective modification of the sample
and instead constructs nanostructures on the electrode surface and modifies the surface of
the biosensor in a controllable manner by directly growing nanostructures on the substrate.
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At the same time, the surface of the ZnO NRs can also be modified with gold nanoparticles,
which can reflect the good performance and structure of the surface nanostructures. Instead
of loading another capture probe on the surface, the distinction between 5-hmC and
interference is based on the adsorption properties of the nanostructures.

The two methods mentioned above utilize the affinity interaction between miRNA
and iron oxide nanocubes loaded with gold, as well as the adsorption property of 5-hmc
on ZnO NRs modified with AuNPs, to successfully bind target molecules to the electrode
surface. Both of these binding methods do not have high specificity, so pre-extraction and
enrichment are required, or they can only distinguish between one interfering molecule and
the target molecule. Compared to using the inherent affinity or adsorption of nanoparticles
to directly bind to the analyte, nanoparticles can also provide a stable structural foundation
for the electrode surface. The use of composite materials, such as Graphene oxide-Fe3O4-β-
cyclodextrin(GO-Fe3O4-β-CD), can provide a stable cavity nanointerface for the electrode
surface, increasing the surface area of the electrode and providing stable binding sites for
specific capture antibodies. Subsequently, the specific binding of antigens and antibodies
is used to detect DNA methylation of unknown sequences in the target. The specific
interaction method that connects target molecules and electrodes significantly improves
the specificity of detection.

Chen’s group developed an electrochemical immunosensor that can use antibodies to
recognize DNA bases to detect DNA methylation of unknown sequences (Figure 11) [63].
They prepared a GO-Fe3O4-β-CD nanocomposite material, which combines the advantages
of GO-Fe3O4, which has good biocompatibility, a large specific surface area, and good
dispersion, with β-CD, which has a hydrophobic cavity that can form stable host-guest
complexes. The authors dropped the synthesized GO-Fe3O4-β-CD composite nanomaterial
on the glassy carbon electrode surface, forming a stable nanointerface with a large number
of cavities, which increased the surface area of electrode and provided many antibody
binding sites. Then, they immobilized the antibody for 5-mC on the formed nanointerface.
Through the specific interaction between the antigen and antibody, the target gene can be
captured. After methylation DNA binds to the antibody, the Ru(NH3)6

3+/Fe(CN)6
3− redox

amplification system is used for current amplification, significantly increasing the sensitivity
of detection. The current detected by the electrochemical biosensor is related to the amount
of methylated DNA. The method of modifying the interface using nanomaterials can
achieve a detection limit of 0.0825 pm. Using capture antibodies instead of specific sequence
DNA as capture probes can detect DNA methylation of unknown sequences, but there is an
issue of poor detection specificity. The combination of electrochemical detection methods
and nanotechnology can achieve high sensitivity.
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Our group used the ordered orientation, controllable spacing, good biocompatibil-
ity, and high stability of framework nucleic acids to develop electrochemical biosensors
for the detection of DNA methylation (Figure 12) [64,65]. By using the nanostructure of
DNA framework nucleic acids, the probe and surface can be separated from each other,
making it easier to bind with the analyte in the solution, achieving high sensitivity detec-
tion of DNA methylation. We developed the method that first extracts and amplifies the
circulating methylated DNA in trace plasma, with single-copy sensitivity and ultrahigh
specificity. Subsequently, biotin-labeled methylation-specific primers are used for asymmet-
ric methylation-specific PCR amplification of methylated DNA, generating a large number
of biotin-labeled single-stranded amplicons. Self-assembled DNA tetrahedra modified on
the gold electrode immobilize the DNA nanostructured probes on the electrode surface
to capture the amplicons. Finally, horseradish peroxidase-avidin and biotin-avidin bind
together, and horseradish peroxidase catalyzes the redox process to produce an electro-
chemical signal. The use of DNA tetrahedra-modified electrodes provides stable support
for the capture probe, achieving orientational order and distance control, increasing target
polarizability, and reducing non-specific adsorption of byproducts, resulting in efficient
and specific hybridization with a significantly reduced signal-to-noise ratio. We used the
developed method to determine the DNA methylation of the p16INK4a gene promoter
in trace plasma samples from lung cancer patients, and the results demonstrated good
consistency with clinical diagnosis.
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Huang’s group developed a highly sensitive electrochemical gene sensor for detect-
ing cancer long noncoding RNA using a composite interface of graphene-like tungsten
disulfide/dendritic gold nanostructures [66]. The composite nanointerface ensures the
biological recognition ability of the target and capture probes. Zhang’s group developed an
electrochemical immunobiosensor for m6A-RNA detection using a glassy carbon electrode
modified with gold nanoparticles [67]. Ai’s group used a gold electrode modified with
gold nanoparticles as the substrate to develop an electrochemical immunosensor for m6A-
RNA detection [68]. The developed electrochemical biosensors have high sensitivity and
specificity for target detection. Raouafi’s group conducted simple and sensitive detection
of miRNA-21 on the surface of electrode structures modified with gold nanoparticles [69].
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6. Other Electrochemical Biosensing Methods

Electrochemical biosensing technology can also be combined with other techniques
to detect epigenetic biomarkers. When there are many interferences in the sample, pre-
processing or amplification of the sample can be chosen before electrochemical detection.
Matson’s group has reported using high-performance liquid chromatography (HPLC) to
separate trace amounts of 7-methyl guanine and then using electrochemical detection to as-
sess DNA methylation levels in Huntington’s disease [70]. This method takes full advantage
of the powerful separation capability of HPLC and the high sensitivity of electrochemical
sensors to quantify trace base changes. Lu’s group used electrochemical and linker-PCR
technology coupling to detect the methylation of the 5′-CpG islands of the human p16Ink4a
gene [71]. The PCR was used to synthesize and purify target DNA fragments, which were
then detected using DNA biosensors for hybridization. This electrochemical biosensor has
the advantages of fast speed, high sensitivity, and low cost. Toumazou’s group applied
semiconductor technology to the electrochemical detection of cancer DNA methylation,
using Ion-Sensitive Field-Effect Transistors in real-time DNA methylation detection for
the first time through experimental verification [72]. The introduction of semiconductor
technology in disease detection can provide new solutions for disease detection.

Table 1 summarizes the methods for detecting epigenetic modifications by electro-
chemical biosensors mentioned above.

Table 1. Recent studies on electrochemical methods for detecting epigenetic modifications.

Epigenetic Mark Technique Linear Range LOD Ref

dsM25T DNA EIS - - [42]
m6A-RNA EIS 0.05–200 nM 0.016 nM [43]

5-mC DNA and acH3 EIS
DNA (4.8 pg/µL–75 ng/µL)
Chromtin (8.6 pg/mL–134

ng/µL)
- [44]

5fU-DNA DPV 0.1–10 nM 0.075 nM [48]
MDNA and MTase EIS 0.1–40 U/mL 0.04 U/mL [49]

MTase ACV 0.1–1.0 U/mL 0.07 U/mL [50]
m6A-RNA SWV 0.01–0.2 0.01 [52]

5-hmC DNA DPV 0.01–1000 pM 9.06 fM [53]
MDNA SWV 10 aM–to 20 pM 4 aM [54]
miR-107 CC 100 aM–1.0 nM 100 aM [61]

5-hmC DNA CV - - [62]
5-mC DNA DPV - 0.0825 pM [63]

MDNA CA 3–150 pg - [64]
ACV: Alternating current voltammetry. SWV: square wave voltammetry. CC: chroncoulmetric. CV: Cyclic
Voltammetry. CA: Chronoamperometry.

7. Conclusions and Prospect

Since the association between epigenetic modifications and cancers came into the
spotlight in 1964, epigenetic modifications have been the subject of investigation. In this
field, the great advantages of electrochemical biosensors in terms of high sensitivity, easily
operated instrumentation, and loss cost have converted them in promising tools. In this re-
view, we have classified and summarized the methods of using electrochemical biosensors
for detecting epigenetic modifications and explained the applicable scope and character-
istics of different detection methods, pointing out the advantages and disadvantages of
these methods.

Simple, direct, and label-free electrochemical methods can solve some epigenetic
problems, but due to their insufficient detection sensitivity and accuracy, they are not
suitable for detecting low amounts of RNA. The use of signal labeling, which can modify
the biomarkers, improves the electrochemical biosensing sensitivity of detection. However,
the labeling process is complex and can introduce bias, which can affect the detection results.
Moreover, the labeling signal also has certain limitations and cannot detect markers with
extremely low sensitivity. Electrochemical detection methods based on signal amplification
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strategies can detect low-abundance RNA, and some methods can achieve sensitivity
of aM. However, signal amplification strategies require high specificity and need to be
designed ingeniously, and they can only detect specific epigenetic biomarkers. The method
of modifying the electrode surface with nanostructures can solve the problem of insufficient
sensitivity. Nanoparticles have superior conductivity and high surface area, which can
provide more binding sites to improve detection sensitivity.

It is now clear that electrochemical biosensing methods can improve the sensitivity
of epigenetic analysis through signal label modification, signal amplification, or electrode
surface modification with nanomaterials. However, most of the methods described in the
literature were only used for proof-of-concept validation and had not yet been applied to
real-life samples. Real biological samples are more complex, with excessive interference,
making accurate analysis challenging. Current electrochemical biosensing methods for
epigenetics mainly focus on research related to DNA methylation, with fewer reports on
other epigenetic modifications and a limited research scope. In the future, it is necessary
to expand the detection of other epigenetic modifications. The abundance of epigenetic
biomarkers in the body is very low, and there are few detection methods that can achieve
high sensitivity at low abundance. To meet the detection requirements, signal amplification
and nanomaterial modification remain the main research directions for the electrochemical
detection of epigenetic biomarkers. For the interference problem in the detection of real-life
samples, it is necessary to consider using simple and reliable specific recognition methods
while also achieving signal amplification. This will be a major focus of future research.
Current detection methods are mainly focused on single epigenetic molecules, with fewer
reports on the combined detection of multiple related epigenetic biomarkers. It is hoped
that in the future, the high-throughput advantage of electrochemical biosensors can be
developed to enable rapid and multiplex detection of epigenetic biomarkers.

With the development of technology, people have higher requirements for high sen-
sitivity and high specificity while hoping that the detection methods can meet the needs
of portability, simplicity, and ease of operation. The development of nanotechnology and
electrochemical technology will promote the development of electrochemical detection of
epigenetics. Ultimately, the development of these detection methods needs to solve practi-
cal problems, and the future clinical application of electrochemical detection of epigenetics
can be rapidly developed.
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