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Abstract: Metal–organic frameworks (MOFs), constructed by coordination between metal-containing
nodes and organic linkers, are widely used in various fields due to the advantages of tunable pores,
diverse functional sites, stable structure, and multi-functionality. It should be noted that MOF-based
materials play a major role in glucose detection, serving as a signal transducer or functional substrate
for embedding nanoparticles/enzymes. Diabetes is one of the most common and fast-growing
diseases worldwide, whose main clinical manifestation is high blood sugar levels. Therefore, accurate,
sensitive, and point-of-care glucose detection is necessary. This review orderly introduces general
synthetic strategies of MOF-based materials (pristine MOF, nanoparticles, or enzymes-modified
MOF and MOF-derived materials) and detection methods (electrochemical and optical methods) for
glucose detection. Then, the review refers to the novel MOF-based glucose detection devices (flexible
wearable devices and microfluidic chips), which enable non-invasive continuous glucose monitoring
or low-cost microscale detection. On the basis of describing the development of glucose sensors
based on MOF materials in the past five years, the review presents merits, demerits, and possible
improvements of various detection methods.

Keywords: metal–organic frameworks (MOFs); glucose detection; synthesis; electrochemical sensor;
optical sensor; wearable sensor

1. Introduction

Glucose is an indispensable small molecule for human life, which not only provides
energy for the human body but also controls cell activities by regulating the intracellular
glucose level. For example, one of the important methods to treat cancer is blocking in-
tracellular glucose uptake, which can effectively inhibit the activity of cancer cells [1,2].
Meanwhile, glucose is also an important intermediate of metabolism. When the blood
glucose level deviates from the normal range, serious damage to the human body may be
caused, including tissue damage, stroke, renal, heart attack, etc. [3]. Moreover, diabetes, a
common metabolic disease, is mainly characterized by high blood glucose levels. The blood
glucose disorder also occurs in pancreatic exocrine (pancreatitis, cystic fibrosis, etc.) and en-
docrine diseases (Cushing syndrome, acromegaly, etc.) [4]. Nowadays, the self-monitoring
of blood glucose levels is the most efficient way for the management of diabetes and other
related disease [5]. Except for the above-mentioned applications, glucose detection is also
applied in artificial taste sensors and quality control of food and drinks [6].

The glucose sensors on the market quantify the glucose by measuring the biochem-
ical reaction products generated from glucose with the catalysis of enzymes, including
glucose oxidase-peroxidase (GOD-POD), glucose dehydrogenase (GDH), and hexokinase
(HK) [7]. The GOD-POD method is usually utilized in portable glucose meters (finger-prick
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blood testing) and self-monitoring blood glucose meters (interstitial fluid detection), which
are based on the product (H2O2) and the electron transfer during the glucose oxidation
reaction [8]. The HK method is highly accurate and precise but needs large and expen-
sive equipment, which is commonly used in hospital and laboratory research. In the HK
method, the phosphorylation product of glucose catalyzed by hexokinase can react with
nicotinamide adenine dinucleotide phosphate (NADP+) under the cascade catalysis of
glucose phosphate dehydrogenase (G6PDH) and generate a chemiluminescence signal [9].
Although these methods are widely reported and even commercialized, their sensitivity,
stability, and non-invasion detection are still challenged. Consequently, an accurate, se-
lective, stable, and non-invasive glucose detection method is highly demanded. With the
advancements in material science, emerging functional materials with superior glucose
detection performance have been increasingly reported.

Due to the tunable pores, diverse functional site, high specific surface area, and
stable structure, metal–organic frameworks (MOFs), constructed by connecting metal-
containing nodes with organic linkers through coordination bonds, have received extensive
attention in various detections, especially in glucose detection (Figure 1) [10–14]. MOF-
based materials in glucose sensors can be divided into three types, including pristine
MOF, modified MOF, and MOF-derived material. Pristine MOF with inherent redox
properties that catalyze the reaction of glucose is mostly utilized in non-enzymatic glucose
detection. The desired detection properties can be obtained from appropriate ligands and
metal ions, and it is also related to the degree of conjugation and coordination of MOF.
The modification of MOF with nanoparticles and enzymes can also endow MOF-based
materials with catalytic properties and improved detection ability. In addition, after the
thermal or solvent treatment, the MOF-derived materials can achieve novel pore structure
and detection properties. The detection mechanism of MOF-based glucose sensors can
be divided into electrochemical and optical methods based on the types of output signals.
The electrochemical detection is based on the redox reaction between glucose with MOF
or the modified materials. The optical methods utilize the optical signal produced by the
interaction with the glucose and the modified fluorescent probe, enzymes, or MOFs. The
preparation strategy (pristine MOF, nanoparticles in/on MOF, enzymes in/on MOF, and
MOF-derived materials) and detection mechanism (electrochemical and optical detection)
of MOF-based sensors are also inseparable; therefore, this review will introduce MOF-based
materials for glucose detection mainly from these two aspects: the preparation strategies
and the detection methods.
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Figure 1. Different types of MOF-based materials for glucose detection. Pristine MOFs: Cu-BTC 
(benzene-1,3,5-tricarboxylate) (reproduced with permission from [15], copyright © 2013, Royal 
Society of Chemistry), ZIF-67/8 (reproduced with permission from [16], copyright © 2022, Elsevier); 
NPs modified MOFs: AgNPs@ZIF-67 (reproduced with permission from [17], copyright © 2018, 
Elsevier), Pt/Fe-MOF (reproduced with permission from [18], copyright © 2021, Springer Nature); 
Enzymes modified MOFs: GOx&Luminol@ZIF-67 (reproduced with permission from [19], 
copyright © 2023, Elsevier); MOF-derived materials: Ni/NiO (reproduced with permission from 
[20], copyright © 2020, Springer Nature), ST-Co3O4 (reproduced with permission from [21], 
copyright © 2021, John Wiley and Sons). The typical works of electrochemical methods (reproduced 
with permission from [22], copyright © 2018, Elsevier) and optical methods (reproduced with 
permission from [23], copyright © 2019, John Wiley and Sons) for glucose detection with MOF-based 
materials. Furthermore, the flexible wearable sensors (reproduced with permission from [24], 
copyright © 2022, Elsevier) and microfluidic chips (reproduced with permission from [25], 
copyright © 2022, Elsevier) for MOF-based glucose detection. 

2. Synthesis Strategy of MOF-Based Materials 
2.1. Pristine MOF 

The pristine MOF with a large specific surface area and structural diversity is 
commonly utilized in nonenzymatic electrochemical detection, which avoids restricting 
detection and storage requirements [26]. In electrochemical detection, the valence of metal 
ions in pristine MOF is changed, resulting in a redox reaction. The MOF-based electrodes 
not only have excellent electrocatalytic performance for glucose but also have remarkable 
selectivity and stability. The pristine MOF used in glucose detection can be divided into 
single metallic MOF, like Fe [26,27], Co [28], Cu [29,30], and Ni-MOF [31,32], and 
bimetallic or multivalent metallic MOF. Due to the different ligand coordination abilities, 
valence states, and ionic radii of the two metals, the substitution of the second metal to 
the host metal happens, and the crystal structure, morphology, and catalytic properties 
are changed. On the one hand, the addition of the second metal could improve the 
catalytic ability and bring other unique properties. On the other hand, the extensive 
substitution of the second metal may lead to crystal distortion and structural collapse. The 

Figure 1. Different types of MOF-based materials for glucose detection. Pristine MOFs: Cu-BTC
(benzene-1,3,5-tricarboxylate) (reproduced with permission from [15], copyright © 2013, Royal Society
of Chemistry), ZIF-67/8 (reproduced with permission from [16], copyright © 2022, Elsevier); NPs
modified MOFs: AgNPs@ZIF-67 (reproduced with permission from [17], copyright © 2018, Elsevier),
Pt/Fe-MOF (reproduced with permission from [18], copyright © 2021, Springer Nature); Enzymes
modified MOFs: GOx&Luminol@ZIF-67 (reproduced with permission from [19], copyright © 2023,
Elsevier); MOF-derived materials: Ni/NiO (reproduced with permission from [20], copyright © 2020,
Springer Nature), ST-Co3O4 (reproduced with permission from [21], copyright © 2021, John Wiley
and Sons). The typical works of electrochemical methods (reproduced with permission from [22],
copyright © 2018, Elsevier) and optical methods (reproduced with permission from [23], copyright
© 2019, John Wiley and Sons) for glucose detection with MOF-based materials. Furthermore, the
flexible wearable sensors (reproduced with permission from [24], copyright © 2022, Elsevier) and
microfluidic chips (reproduced with permission from [25], copyright © 2022, Elsevier) for MOF-based
glucose detection.

2. Synthesis Strategy of MOF-Based Materials
2.1. Pristine MOF

The pristine MOF with a large specific surface area and structural diversity is com-
monly utilized in nonenzymatic electrochemical detection, which avoids restricting de-
tection and storage requirements [26]. In electrochemical detection, the valence of metal
ions in pristine MOF is changed, resulting in a redox reaction. The MOF-based electrodes
not only have excellent electrocatalytic performance for glucose but also have remarkable
selectivity and stability. The pristine MOF used in glucose detection can be divided into
single metallic MOF, like Fe [26,27], Co [28], Cu [29,30], and Ni-MOF [31,32], and bimetallic
or multivalent metallic MOF. Due to the different ligand coordination abilities, valence
states, and ionic radii of the two metals, the substitution of the second metal to the host
metal happens, and the crystal structure, morphology, and catalytic properties are changed.
On the one hand, the addition of the second metal could improve the catalytic ability
and bring other unique properties. On the other hand, the extensive substitution of the
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second metal may lead to crystal distortion and structural collapse. The synergism and
competition between the two metals improve the bimetallic MOF electrodes and increase
the number of structure defects, which endow the electrodes with more binding sites
and stronger electrocatalytic performance [33]. Ma et al. synthesized a novel stylophora
coral-like furan-based Ni/Co-MOF (Ni/Co-FAMOF) through the simple solvothermal
method [34]. Ni/Co-FAMOF, combined with bimetal Ni/Co and furan dicarboxylic acid
ligand, has a high specific capacitance, capacity retention rate, and good electrochemical
glucose detection performance. The excellent performance of the Ni/Co-FAMOF electrode
derived from (1) ligand with rigid furan ring skeleton, which has high molecular stacking
properties; (2) bimetal-containing nodes, which combine the high electrocatalytic activity of
Ni and oxygen adsorption ability of Co; and (3) unique stylophora coral-like morphology,
which greatly increases the active sites on the surface.

2.1.1. Hydrothermal/Solvothermal Synthesis

Hydrothermal/solvothermal synthesis is one of the most commonly employed meth-
ods to synthesize pristine MOF for glucose detection. Hydrothermal/solvothermal syn-
thesis typically reacts the metal salts and organic ligands in a closed system, such as a
Teflon-lined steel autoclave, with water or organic solvent at a relatively high temperature
(100–1000 ◦C) and pressure (1 MPa–1 GPa). The medium provides a favorable reaction
environment to promote the generation of desired products, which inhibits the formation of
undesirable products. Therefore, hydrothermal/solvothermal synthesis has the advantages
of high purity of products, efficiency, simplicity, versatility, and large-scale preparation [35].

The mechanisms of crystal growth by hydrothermal/solvothermal growth are dissolve
crystallization and in situ crystallization (Table 1). Dissolve crystallization: the dissolved
precursor mixture reaches a subcritical or supercritical state under high temperature and
pressure and converts to the final product for the different solubility between product and
precursor [36]. Ramaprabhu et al. synthesized copper-terephthalate (CuBDC) MOF by
solvothermal method with different time durations [37]. When the reaction time exceeded
6 h, Cu-BDC started agglomerating, and the morphology changed from flat, rod-shaped
into a cuboidal solid block-shape with stacked layers, which completely changed after 48 h.
The changes in the morphology greatly increased the specific surface area and active sites,
which further improved the detection performance in glucose detection.

In situ crystallization: in the presence of precursors (such as graphene, carbon cloth,
metal nanoparticles, etc.), MOF crystals are promoted to in situ grown at active sites formed
by the dehydration of precursors [38]. As shown in Figure 2A, Yang et al. used the in situ
growth method to prepare NiCo-BTC nanosheets on the surface of the precursor carbon
cloth (CC) with oxygen-containing functional groups [39]. The application of CC not
only improved the distribution of NiCo-BTC and avoided aggregation but also increased
the active site to oxidize glucose. The electrochemical performance for glucose detection
was further improved, attributing to the positive synergistic effect of bimetal. Wang et al.
successfully in situ grew bimetallic CuCo-MOF on nickel foam (NF) through a facile one-pot
hydrothermal treatment [40]. With the positive synergistic effect of Co and Cu, CuCo-MOF
obtained enhanced sensitivity of electrodes from Co and broadened linear range from Cu.
The microflower-like morphological structure further improved electrochemical glucose
detection properties.
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Figure 2. Synthesis methods of the pristine MOF. (A) Solvothermal synthesis of NiCo-BTC/CC
(reproduced with permission from [39], copyright © 2022, American Chemical Society). (B) Room-
temperature synthesis of 2D Fe-BTC (reproduced with permission from [41], copyright © 2013, Royal
Society of Chemistry). (C) Microwave-assisted synthesis of ZIF-67/8 (reproduced with permission
from [16], copyright © 2022, Elsevier). (D) Electrochemical deposition synthesis of Cu-BTC on
SWCNTs/GCE (reproduced with permission from [42], copyright © 2020, Elsevier).

Table 1. MOF synthesized by hydrothermal/solvothermal synthesis for glucose detection.

Sample Solvent Method Morphology Ref

Ni/Co-FAMOF H2O Dissolve crystallization Stylophora coral-like [34]
Co-MOF ChCl Dissolve crystallization Nanoparticles [43]
Co-BTC DMF, Ethanol Dissolve crystallization Cuboid [44]

NiCu-MOF DMF Dissolve crystallization Nanosheets [45]
NiCo-BTC/CC Ethanol In situ crystallization Nanosheets [39]

Co/Cu-MOF/NF H2O In situ crystallization Microflowers [40]
Ni/Co(HHTP)MOF/CC H2O In situ crystallization Thick rods [46]

CuCo-MOF/CFP DMF In situ crystallization Book-like [47]
BTC: benzene-1,3,5-tricarboxylate. DMF: N, N-Dimethylformamide. HHTP: triphenylene-2,3,6,7,10,11-hexaol.
CFP: carbon fiber paper.

In addition to solvothermal/hydrothermal synthesis, ionothermal synthesis was also ap-
plied to synthesize MOFs for glucose detection. Compared with solvothermal/hydrothermal
synthesis, which uses water or an organic solution as a solvent, ionothermal synthesis uses
ionic liquids as reactants, which could also act as structure-guiding agents and charge-
balancing agents. The ionic liquids, which have unique ionic composition, low freezing
point, strong solubility, and good electrical conductivity, incubate the ionothermal synthesis
with high safety and green environmental protection. Jiao et al. utilized the deep eutectic sol-
vent choline chloride (ChCl) as a solvent to synthesize Co-MOF, [Ch]2[Co3(BDC)3Cl2] [43].
The detection performance of the synthesized [Ch]2[Co3(BDC)3Cl2] electrode towards
glucose is excellent, with a rapid response.

2.1.2. Room-Temperature Synthesis

The room-temperature synthesis strategy, which reacts under room temperature and
mild conditions, is simple and facile. Moreover, room-temperature synthesis is suitable
for industrial large-scale production to eliminate unstable factors, including the heating
and pressurization process [48]. Wang et al. prepared an electrode with Co-MOF on CC,
which was fabricated by the room-temperature liquid-phase deposition strategy [49]. The
room-temperature liquid-phase deposition strategy avoided post-coating procedures with
polymeric binders that inevitably reduced the active surface area and the rate of charge
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transfer. Furthermore, the ultrathin two-dimensional (2D) Co-MOF nanosheets with well-
aligned open-shelled MOF nanoarrays on CC promoted the penetration of electrolytes
and the diffusion of small molecules and improved the oxidation efficiency of glucose,
which endowed the electrode with excellent catalytic performance. As shown in Figure 2B,
Huang et al. synthesized Cu(HBTC) using the room-temperature synthesis strategy, and
Fe3+ ions were added to replace the Cu2+, obtaining Fe-BTC with peroxidase activity. The
2D nanosheets of Fe-BTC offered higher diffusion efficiency and more active sites than three-
dimensional (3D) bulk crystals, which improved the glucose detection performance [41].
Additionally, NiCo-MOF [50,51], Cu-MOF [52–54], ZIF-67 [55], and other MOFs were also
synthesized using the room-temperature synthesis strategy to detect glucose.

2.1.3. Microwave/Ultrasound-Assisted Synthesis and Mechanochemical Synthesis

With the assistance of high-energy ultrasonic and electromagnetic waves to increase
the reaction energy, respectively, microwave/ultrasound-assisted synthesis has the advan-
tages of high efficiency, rapid reaction, uniform particle morphology, and high phase purity.
In microwave-assisted synthesis, the interaction between the electromagnetic field of the
microwave and electrons, the precursors which receive the energy from the microwave,
are heated uniformly and rapidly to accelerate nucleation and crystal growth [56]. The
ultrasound-assisted synthesis is based on the effect of the acoustic cavitation; the bubbles
are continuously generated, grown, and collapsed in a hot spot, where the temperature
reaches 5000 °C, the pressure is 1000 atm, and the heating/cooling rate is above 1010 K/s,
inducing local heating and pressurization. The high temperature and pressure promote
the growth of the surrounding crystal nucleus [57]. Compared with traditional hydrother-
mal/solvothermal synthesis, microwave/ultrasound-assisted synthesis greatly reduces
the reaction time, even just in a few minutes. As shown in Figure 2C, Ni et al. used a one-
pot, rapid microwave-assisted method to synthesize bimetallic ZIF-67/8 that only needs
20 min [16]. The same method was also used to synthesize Ni-MOF by Sargazi et al. [58].
The synthesized Ni-MOF electrode with a high surface area of 1381 m2/g had high sensi-
tivity and accuracy in glucose detection.

Except for microwave/ultrasound-assisted synthesis, mechanochemical synthesis is
also used to synthesize MOF-based materials in glucose detection. After applying appropri-
ate mechanical force, the fluidity at the molecular level of the reactants is increased, which
results in the breaking of intramolecular bonds and accelerating the chemical reaction [59].
Moreover, mechanochemical synthesis requires no external heat, which is simple, green,
and rapid. Lee et al. introduced an innovative rapid agitation-induced synthesis route
to synthesize Ni-MOF at 10,000 rpm, which only needs 5 min [60]. The synthesized 2D
ultrathin Ni-MOF nanosheet has a good electrocatalytic activity for glucose detection.

2.1.4. Electrochemical Deposition Synthesis

The electrochemical deposition method, which deposits MOF directly on the conduc-
tive substrates, effectively eliminates the decrease of charge transfer efficiency caused by
the use of adhesives, such as Nafion. This strategy has the advantages of mild reaction and
easy treatment, which also can effectively eliminate the influence of countering ions [61,62].
Meanwhile, changing the electrolyte and current density can effectively control the shape,
size, and distribution of MOF. As shown in Figure 2D, Tominaga et al. electrodeposited
three-dimensional (3D) nucleated microparticles like Cu-BTC directly on glassy carbon elec-
trode (GCE) with single-walled carbon nanotubes (SWNTs) [42]. Hosseini et al. formed a
crystalline rectangular bar-shape Co-BTC on rGO/GCE by depositing nano-flake Co(OH)2
intermediates on rGO/GCE and rapidly conversing Co(OH)2 to Co-BTC [63]. Compared
with the one-step electrochemical deposition method, the multi-step electrochemical depo-
sition method, intermediate deposition, and conversion can more effectively control the
growth and distribution of MOF and improve the adhesion of MOF to the electrode.
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2.2. Nanoparticles-Modified MOF

Compared with pristine MOF, MOF modified with other materials, including nanopar-
ticles (NPs) and enzymes, can achieve diverse functions and properties for glucose detection
(Table 2). Most pristine MOF was applied in electrochemical detection, and the choice
of metal in MOF is limited to redox metals, such as Fe, Co, Cu, and Ni. Excitingly, the
modified MOF broadened the choice of metals, ligands, and detection methods [64]. Be-
cause of the pore osmotic adsorption of porous MOF materials and the interaction between
functional groups on MOF and NPs (van der Waals force, hydrogen bonding, electro-
static adsorption, etc.), nanoparticles can be stably and uniformly dispersed in the pores of
MOF and prevent the aggregation [65]. Hereafter, the synthesis of two types of NP/MOF
composites for glucose detection was reviewed (Figure 3).
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Figure 3. The synthesis of NPs-modified MOFs. NPs coated on MOFs: (A) AuNPs/N-GQDs coated on
P-MOF as a substrate (reproduced with permission from [66], copyright © 2022, Elsevier); (B) PtNPs
coated on Fe-MOF as a catalyst (reproduced with permission from [18], copyright © 2021, Springer
Nature). NPs encapsulated in MOFs: (C) BODIPY encapsulated in Eu-MOF by one-pot synthesis
(reproduced with permission from [67], copyright © 2022, Elsevier); (D) AgNPs encapsulated in
Co-MOF by in situ growth (reproduced with permission from [68], copyright © 2019, American
Chemical Society).

2.2.1. NPs Coated on MOFs

NPs, including noble metal nanoparticles, metal oxides, quantum dots, etc., were
usually used to modify MOFs to improve detection performance [69]. According to the role
played by MOFs, NPs-coated MOFs can be divided into two categories: (1) MOFs were
applied as substrates to immobilize NPs with catalytic properties. (2) MOFs were used
as catalytic materials, and the coated nanoparticles interacted with MOFs to improve the
catalytic performance.

MOFs as Substrates

The NPs can be absorbed in the pores or on the surface of MOFs, which prevents the
aggregation and reduction of the catalyst activity. Meanwhile, MOFs also can promote
contact between the active site and the substrate, which is very suitable to be used as the
substrate of NPs. As shown in Figure 3A, Wu et al. used the PEI functionalized MOF as
the substrate to physically absorb AuNPs/N-GQDs on the surface [66]. PEI-functionalized
Fe-MOF provides a large specific surface area for AuNPs/N-GQDs and facilitates the
contact between uniformly dispersed active sites and the electrode surface. The enzyme-



Chemosensors 2023, 11, 429 8 of 32

linked reaction of AuNPs/N-GQDs with peroxidase mimics (AuNPs) and nitrogen-doped
graphene quantum dots (N-GQDs) realized the glucose detection.

MOFs as Catalyst

Besides simply being a substrate, MOFs also possess diverse properties, especially
catalytic activities, including peroxidase activity, electrocatalytic activity, etc. Thus, MOFs
can also be used in glucose detection and the detection performance as catalysts to further
improve the detection performance. Lu et al. utilized the coordination between PtNPs and
Fe-MOF to stabilize PtNPs on the surface of Fe-MOF (Figure 3B) [18]. The electrons on
PtNPs can induct to transfer to Fe, which accelerates the redox cycle of Fe3+/Fe2+, which
significantly improves the efficiency of the peroxidase reaction of Fe-MOF. There are many
NPs on MOFs synthesized by similar methods, such as N-Co-MOF@PDA-AgNPs [70],
α-CD-rGO/Ni-MOF [71], RhB-CDs@MOF-808 [72], etc.

2.2.2. Nanoparticles Encapsulated in MOFs

Except for coating NPs on the surface of MOFs, encapsulating NPs in MOFs also can
be used for glucose detection, including in situ encapsulation and in situ growth [65].

As for the in situ encapsulation method, the NPs are encapsulated in MOFs by adding
the pre-synthesized NPs into the mother solutions of MOF, and the MOF crystalizes
around the NPs, which act as crystal nuclei [64]. For instance, Bagheri et al. synthesized
CeO2@NH2-MIL-88B by a room-temperature one-pot strategy to form a colorimetric de-
tection system for glucose detection [25]. The CeO2 enhanced the peroxidase activity of
NH2-MIL-88B, exhibiting faster response speed and stronger colorimetric signal compared
to horseradish peroxidase (HRP).

The in situ growth method requires two or more steps for preparation. First, the precur-
sors of NPs, such as metal salts and polymer monomers, are encapsulated or immersed into
the pores of MOF. Next, NPs are formed in situ by polymerization or redox reaction [69],
generating relatively small NPs with homogeneous distribution and improved stability. Lu
et al. in situ polymerized polypyrrole (PPy) in Co-Ni(Fe)-MOF nanosheets to fabricate the
Co-Ni(Fe)-MOF/PPy electrode [73]. The Fe3+ catalyzed the in situ polymerization of PPy,
avoiding the addition of additional oxidants and improving the conductivity and electro-
catalytic performance of composite electrodes. Wang et al. used the in situ growth method
to embed highly conductive and biocompatible AgNPs into Co-MOF (Figure 3D) [68]. The
encapsulation of AgNPs enhanced the conductivity and electrocatalytic activity of the
Ag@Co-MOF electrode.

Table 2. MOFs modified with NPs for glucose detection.

Sample NPs Function Method Ref

P-MOF AuNPs/N-GODs Substrate Physical adsorption [66]
UiO-66-NH2 PPG@Ru Substrate EDC/NHS [72]

Fe-MOF PtNPs Improve performance Coordinate bonds [18]
N-Co-MOF@PDA AgNPs Improve performance Surface growth [70]

Ni-MOF αCD-rGO Improve performance Surface
electrodeposition [71]

Eu-MOF BODIPY Improve performance In situ encapsulation [67]
NH2-MIL-88B CeO2 Improve performance In situ encapsulation [25]

ZIF-67 Ag@TiO2 Improve performance In situ encapsulation [74]

CoNi(Fe)-MOF PPy Improve performance In situ
polymerization [73]

ZIF-67 AgNPs Improve performance In situ generation [17]
Cu-TCPP(Fe). AuNPs Improve performance In situ generation [75]

Co-MOF CuNPs Improve performance In situ generation [76]
PPG: poly (N-phenylglycine). EDC/NHS: cross-linker. PDA: polydopamine. αCD-rGO: α-cyclodextrin function-
alized reduced graphene oxide. BODIPY: boron-dipyrromethene. TCPP: Fe(III) tetra(4-carboxyphenyl)porphyrin.
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2.3. Enzymes-Modified MOFs

Compared with nanozymes, nature enzymes have the advantages of high catalytic
efficiency and selectivity. However, natural enzymes are easily denaturalized by high
temperatures, acid or alkali environments, and organic solvents, which limits their practical
application. As shown in Figure 4, MOFs with a high specific surface area and stability
are ideal substrates for the immobilization of enzymes, and they can not only protect the
structure of enzymes from adverse conditions but also improve the selectivity of enzymes
to the substrate through pore confinement [77,78]. The Immobilization methods of enzymes
on MOFs are summarized in Table 3. Moreover, the fluorescence, magnetism, catalysis,
and selective adsorption properties of MOFs can be combined with enzymes to achieve
abundant expansive functions.
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MOF by physical adsorption (reproduced with permission from [79], copyright © 2022, American
Chemical Society); (B) GOx&Hemin-ZIF-67 by the coordination between the Co2+ and the carbonyl
group of the proteins (reproduced with permission from [24], copyright © 2022, Elsevier). Enzymes
encapsulated in MOFs: (C) HRP-PAA@ZIF-L (reproduced with permission from [80], copyright ©
2022, Elsevier); (D) GOx@FCM (reproduced with permission from [81], copyright © 2012, Royal
Society of Chemistry).

2.3.1. Enzymes Coated on MOFs

Similar to the modification of NPs on the surface of MOFs, enzymes can also be
modified on MOFs by physical adsorption and covalent bonding [82]. Wang et al. prepared
bimetallic Fe3Ni-MOFs by solvothermal synthesis, and glucose oxidase (GOx) was coated
on the surface of MOF by simple physical adsorption (Figure 4A) [79]. Fe3Ni-MOF can
not only protect GOx and improve its stability but also has excellent peroxidase activity,
benefiting from the bimetal sites. Zhang et al. also coated hierarchically porous HPPCN-
222(Fe) with GOx by physical adsorption [83].

In addition, MOF with abundant functional groups on the surface and pores can
also bond with biomolecules through covalent bonding and hydrogen bonding. Kim et al.
made use of the pore adsorption of Co-MOF and hydrogen bonding, which formed be-
tween the carboxyl functional groups of the enzyme and the imine group of the ligand,
2-methylimidazole (2-MIM), to load GOx on Co-MOF successfully [84].
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2.3.2. Enzymes Encapsulated in MOFs

In situ encapsulation, by which the enzyme encapsulation and MOF crystallization
occur at the same time, requires mild synthesis conditions to maintain the activity of
the enzymes [85]. Meanwhile, the selection of MOFs with hydrophilic skeletons and the
creation of a suitable enzymatic microenvironment are more beneficial to improve the
activity and loading efficiency of the enzyme during in situ encapsulation. Yang et al.
enhanced the hydrophilicity of the enzyme microenvironment in ZIF-L by grafting short-
chain polyacrylic acid (PAA) onto GOx (Figure 4C) [80]. PAA not only promoted the
diffusion of substances by forming mesopores in ZIF-L through competitive coordination
but also reduced the influence of interfacial interaction on enzyme conformation.

MOFs with peroxidase activity can also be utilized to construct enzyme-linked reaction
systems with GOx, which can reduce the types of encapsulated enzymes and simplify the
synthesis. Yu et al. in situ encapsulated GOx in FeCo-MOF with peroxidase activity. The
layered structure of MOF, treated with tannic acid, not only protected GOx but also reduced
its hindrance to material diffusion (Figure 4D) [81].

Table 3. MOFs modified with enzymes for glucose detection.

Sample Enzymes Function Method Ref

Fe3Ni-MOF GOx Protection, Nanozyme Physical adsorption [79]
HPPCN-222 GOx Protection, Nanozyme Physical adsorption [83]

ZIF-8 GOx, BHb Protection MIP [86]
UiO-66-NH2 GOx Protection Glutaraldehyde fixation [72]
NiCu-MOF GOx Protection, Nanozyme Glutaraldehyde fixation [87]

Co-MOF GOx Protection, Nanozyme Hydrogen bond [84]
HP-MIL-88B-BA GOx Protection, Nanozyme Specific identification [88]

Fe-MOF GOx Protection, Nanozyme EDC/NHS [89]
Co-TCPP(Fe) GOx Protection, Nanozyme EDC/NHS [90]

dZIF-8 GOx, HRP Protection In situ encapsulation [91]
ZIF-L PAA-GOx Protection In situ encapsulation [80]

Fe/Co-MOF GOx Protection, Nanozyme In situ encapsulation [81]
ZIF-67 GOx, HRP Protection, Nanozyme In situ encapsulation [19]

BHb: bovine hemoglobin. MIP: molecular imprinting polymers. HP: hierarchically porous. BA: boronic acid.

2.4. MOF-Derived Materials

In order to increase the catalytic rate of the catalyst, MOF-derived materials with
large pore structures are synthesized. MOF-derived materials with different functions
can be obtained through different treatments (thermal treatment, solvent treatment, etc.),
such as metal and metal ox-ide/hydroxide (pyrolysis), metal sulfide (sulfurization) and
metal oxide/carbon composites (carbonization), and so on. The recent related studies were
listed out in the Table 4. Due to their outstanding catalytic properties, metal and metallic
oxide are widely utilized in glucose detection [92,93]. Nowadays, the traditional synthesis
method, including hydrothermal synthesis and electrodeposition, are very sophisticated,
but the properties of the synthesized materials still remain to be improved [94]. The
metallic materials derived from MOFs can not only retain the morphological and structural
characteristics of MOFs precursors but also have the advantages of large specific surface
area, abundant active sites, and high porosity [95]. Moreover, MOF-derived materials can
obtain additional properties from doped non-metallic elements and effectively avoid the
aggregation of particles [96]. In addition, MOF-derived materials have higher stability and
response ability than the original neat MOFs by creating atomically active sites, exposing
more oxygen vacancy, and increasing the mobility of molecules at the solid/liquid interface,
resulting in enhanced glucose detection performance.

2.4.1. Thermal Treatment

MOFs contain both inorganic metal-containing nodes and organic ligands; therefore,
they possess not only metallic elements but also various non-metallic elements, such as
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C, H, N, O, P, S, etc. In order to obtain the desired MOF-derived materials, the undesired
element components should be removed by post-processing. One of the most commonly
used methods is thermal treatment at a specific temperature and atmosphere [97]. As
shown in Figure 5A, Qin et al. synthesized CuO/C core-shell nanoparticles by calcinating
Cu-MOF as sacrificial templates at 400 ◦C in air [98]. The interaction between the carbon
shell and CuO core increased the charge transfer efficiency and the oxygen vacancy content,
which endowed the catalytic oxidation capacity of CuO/C for glucose. Fransaer et al.
formed Co3O4-NiO/C composites with a “yolk-albumen-shell” structure (YASNiCo@C)
by carbonization of bimetallic CoNi-MOF (Figure 5B) [99]. Furthermore, MOF-derived
materials synthesized by pyrolysis also include CuO/NiO-C (Cu/Ni-MOF) [100], CuO
(CuBTC) [101], and NiFe2O4 (NiFe-MOF) [102], etc.
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2.4.2. Solvent Treatment

In addition to pyrolysis, MOF-derived materials can also be obtained by solvent
treatments, i.e., reacting MOFs with specific etching solutions and obtaining doped metal
compounds with special morphology and structure. Jiang et al. prepared nanorod-like
porous nickel phosphate NiPO derived from spherical Ni-MOF [103]. The addition of
nickel ion controlled the etching degree of Ni-MOF, and the construction of nickel phos-
phate conversed to flower-like, rod-like, and ribbon-like. Liu et al. formed hydrophilic
hierarchically-porous nanoflowers (HHNs) by etching hydrophobic ZIF-8 with an organic
weak acid, gallic acid (GA) [104]. The synergistic effect of GA with a conjugate rigid plane
and free protons combined with nitrogen atoms of ZIF-8 resulted in partial damage of
ZIF-8. Therefore, the HNNs kept a 3D hierarchically porous structure consisting of a 2D
sheet-like structure and exposed more active sites. With the incorporation of CuNPs into
the pores of HHNs, the Cu@HHNs-based electrode obtained superior catalytic activities
for glucose electrocatalytic oxidation in glucose detection.
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Table 4. MOF-derived materials for glucose detection.

Derivative MOFs Method Ref

CuO/NiO-C Cu/Ni-MOF Carbonization (430 ◦C, N2) [100]
Co/MnO@HC MnCo-MOF-74 Carbonization (900 ◦C, N2) [105]
NiO/Co3O4/C NiCo-MOF Carbonization (500 ◦C, Ar2) [106]

Ni/NCNs Ni-MOF Pyrolysis (500 ◦C, N2) [107]
Fe3O4 Fe-BDC Pyrolysis (500 ◦C, N2) [108]
NiO MOF-74 (Ni) Pyrolysis (400 ◦C, N2) [109]

ZnCo2O4 ZnCo-MOF Pyrolysis (400 ◦C, air) [110]

Ni3S2@NCNT Ni-MOF Carbonization (700 ◦C, H2/Ar2),
Sulfurization (Solvothermal) [111]

E-CuO Cu-MOF Etch, Pyrolysis (550 ◦C, air) [112]
HHN ZIF-8 Etch (gallic acid) [104]

Co-CuS Cu-Co MOF Sulfurization (Solvothermal) [113]
Ni-HHTP Ni-MOF Etch (Solvothermal) [114]

HC: hierarchical carbon. NCNs: nanoporous carbon nanorods. BDC: benzene-1,4-dicarboxylic acid. NCNT:
N-doped carbon nanotube. HHTP: 2,3,6,7,10,11-hexahydroxytriphenylene.

3. Detection Mechanisms for MOF-Based Glucose Sensors

The previous section introduced four kinds of MOF-based materials for glucose de-
tection. Different types of materials have different functions, and the response signals to
glucose are also diverse. Depending on the type of response signal, detection methods
can be divided into electrochemical and optical methods. The electrochemical methods
include chronoamperometry (CA), linear sweep voltammetry (LSV), cyclic voltammetry
(CV), differential pulse voltammetry (DPV), amperometry (AMP), etc. Optical methods
include colorimetry, fluorescence (FL), chemiluminescence (CL), surface-enhanced Raman
scattering (SERS), etc. In this section, the recent progress on MOF-based electrochemical
and optical glucose sensors was reviewed and discussed.

3.1. Electrochemical Methods

Electrochemical detection is a redox-based method where an electric potential is
applied between the working and reference electrodes, driving an electrochemical reaction
on the surface of the working electrode [115]. This method has gained significant popularity
in analytical science due to its high sensitivity, low cost, and ease of operation, making it a
powerful tool for various applications [116]. In the following sections, we will discuss recent
research advances in electrochemical glucose sensors based on different electrochemical
detection methods.

3.1.1. Chronoamperometry

The CA method is a commonly used electrochemical method in which the electric
potential of the working electrode is stepped [117]. One of the applications of CA is
controlled-potential chronoamperometry. During this process, a constant potential tested
from CV measurement is applied to the working electrode, and the current is monitored
over time, accompanied by the oxidation or reduction of electrochemically active sub-
stances in a solution [118]. Huang et al. successfully electrodeposited MOF (Cu) onto
a single-walled carbon nanotube (swnt)-modified gold wire electrode (gwe) to form a
composite electrode named swnt-MOF(Cu)@gwe, which has good electrical conductivity
(Figure 6A) [119]. Using the chronoamperometric technique to determine glucose, the
linear range of modified electrodes was from 1 µM to 3 mM and the limit of detection
(LOD) was down to 0.16 µM (S/N = 3).
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Although noble metals and their alloys offer a high catalytic activity for glucose
oxidation, their high cost and limited availability hinder their widespread use. In con-
trast, transition metal materials (e.g., Mn, Fe, Co, Ni, and Cu) are more affordable and
abundantly available on Earth [122]. In recent years, bimetallic transition materials have
received increasing attention due to their unique properties, including versatility, efficient
catalytic activity, selectivity, and stability, which often exceed monometallic materials in
various applications [123]. Muthurasu et al. used bimetallic MOF to detect glucose. Due
to the synergistic effects between metals, bimetallic materials often exhibit enhanced cat-
alytic activity compared to their monometallic counterparts [124]. Finally, they obtained a
bimetallic nitrogen-doped carbon nanotube (NCNT) MOF CoCu nanostructure through
high-temperature calcination. The CA study demonstrates that the bimetallic NCNT MOF
CoCu nanostructure substantially increases the catalytic activity towards glucose. This
sensor provides a linear range from 0.05 to 2.5 mM, a sensitivity of 1027 µA·mM−1·cm−2,
and a LOD of 0.15 µM (S/N = 3). The same group also constructed a bimetallic Cu@Ni
organic framework electrode, which also used the CA method for sensitive and selective
detection of glucose [123]. CA provides a better signal-to-noise ratio in comparison to other
amperometric techniques [125], but it shows a relatively slow measurement speed that
requires 10 s or longer [126].

3.1.2. Linear Sweep Voltammetry and Cyclic Voltammetry

When the potential changes with time, the analyte in a solution will generate a current
due to an oxidation or reduction reaction on the electrode surface at the characteristic
potential. If a scanning potential changes linearly, it is called LSV; if a scanning potential
changes linearly and reverses at a certain time, it is called CV.

Ozacar et al. synthesized a MOF-based composite named GOx-reduced graphene
oxide (rGO)/Pt NPs@Zn-MOF-74, where rGO/Pt NPs were deposited on Zn-MOF-74
through π−π interactions, and GOx was immobilized on rGO/Pt NPs@Zn-MOF-74 via
hydrogen bonds [127]. The porous structure of GOx-rGO/Pt NPs@Zn-MOF-74 allowed
the substrate to be easily accessible to GOx, improving the electrochemical response. LSV
curves of the electrodes indicated that the modified electrode lowered the detection po-
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tential for H2O2 compared to the bare glassy carbon electrode, which oxidized H2O2 only
above 0.8 V. Kuang et al. grew the GOx@Cu-MOF packaging structure on the surface
of a 3D porous conducting copper foam (CF) electrode by a one-step electrochemically
assisted biomimetic mineralization method [128]. In the GOx@Cu-MOF/CF electrode, the
embedded GOx catalyzes the conversion of glucose into gluconate and H2O2, and the
H2O2 is immediately electrocatalytically reduced by Cu-MOF, resulting in an increase in
the reduction current that is measured by CV. A clear linear relationship can be established
between the reduction current and the glucose concentration in the concentration range of
0–6 mM. Zhao et al. successfully prepared a nickel-modified Cu-based MOF nanocompos-
ite electrode (Ni@Cu-MOF) as an electrochemical detector for glucose (Figure 6B), with a
sensitivity of 1703.33 µA mM−1 cm−2, a linear range between 5 and 2500 µM, and a LOD
of 1.67 µM (S/N = 3) [120]. However, CV is not an ideal technique for quantitative analysis
because the limits of detection and quantification are higher than those of other types of
voltammetry [129].

3.1.3. Differential Pulse Voltammetry

DPV is a technique involving the application of an amplitude potential pulse to
a linear ramp potential [130]. The current is measured before the potential pulse and
at the end of the pulse, and the difference between the two currents is recorded as the
response [117]. Generally, pulsed techniques (e.g., DPV) are more responsive than linear
scanning methods because the capacitive current is minimized, and CV is more commonly
used for exploratory analysis [130].

Han et al. developed the nanoporous carbon and cobalt oxide (NPC-Co3O4) composite
through the heat treatment of a MOF precursor, ZIF-67 (Figure 6C) [22]. DPV analysis of
NPC-Co3O4/GCE with different glucose concentrations was performed at a scan rate of
0.1 V s−1 and a given potential range of 0.2–1.0 V in 0.1 M KOH. The differential pulse
voltammetry response of NPC-Co3O4/GCE has a linear relationship with the glucose
concentration. The sensor enables glucose detection in the concentration range from
5 × 10−12 to 2.05 × 10−10 M and a LOD of 2 pM (S/N = 3). It is worth noting that the
sensitivity reaches up to 0.14 µA pM−1 cm−2.

Wang et al. grew Cu-trimesic acid (Cu-BTC) MOFs on 3D-macroporous carbon (KSCs)
electrodeposited Au NPs on the integrated electrode and then fixed GOx by a Au-S bond.
GOD/AuNPs/Cu-BTC MOFs/3D-KSCs were obtained to construct a proportional elec-
trochemical glucose biosensor [131]. Cu-BTC MOF can catalyze glucose oxidation and
convert Cu(II) to Cu(I), which enhances the reduction peak of Cu(I) when glucose is added.
The DPV response of the O2 reduction peak current also decreases with the addition of
glucose. In order to obtain good selectivity and reproducibility, jO2/jCu-BTC was used as
the response signal. The sensor enables glucose detection in the concentration range from
44.9 µM to 19 mM and a LOD of 14.77 µM (S/N = 3). Ramaprabhu et al. fabricated a copper
terephthalate (CuBDC) MOF-modified GCE to construct a non-enzymatic glucose biosensor
with a sensitivity of 37.09 µA µM−1 cm−2 and a LOD of 0.077 µM (S/N = 3) [37]. Compared
with the CV technique, the DPV technique displays lower signal background and better
sensitivity, resulting in higher resolution at lower concentrations of an analyte [84].

3.1.4. Amperometry

AMP has become a commonly used detection method. In 1956, Clark developed the
first bio-amperometric sensor for measuring dissolved O2 in the blood consumed in an
enzymatic reaction catalyzed by GOx [132]. AMP involves applying a constant reduction or
oxidation potential on the working electrode and then measuring the resulting steady-state
current [133].

ZIF-67-derived materials are currently used as efficient catalysts for sensors such as
glucose, 4-nitrophenol (4-NP) [134], acetaminophen [2], SO2 [135], and so on. Ruan et al.
synthesized a novel N-doped carbon dodecahedron embedded with Co nanoparticles
(Co@NCD) by pyrolyzing ZIF-67 in a reductive atmosphere [136]. ZIF-67-derived electro-
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catalysts obtained from high-temperature carbonization have improved conductivity, large
surface area, and active non-precious Co and N-doped carbon heterojunctions. By using
Co@NCD/GCE to detect glucose, two linear ranges were obtained from current–time
curves; one was 0.0002–1.0 mM with a sensitivity of 125 µA mM−1 cm−2 and the other
was 1.0–12.0 mM with a sensitivity of 23 µA mM−1 cm−2. The LOD was calculated to be
0.11 µM (S/N = 3). Aside from that, Yin et al. prepared Au@NiCo LDH via etching ZIF-67
and reducing HAuCl4 at a high temperature to construct glucose-sensing electrodes with a
sensitivity of 864.7 µA mM−1 cm−2 and a LOD of 0.028 µM (S/N = 3) [137].

The use of core-shell MOF@MOF materials offers several advantages by combining
the chemical, physical, and structural properties of both MOFs, leading to unexpected
synergistic effects [138]. Wang et al. first synthesized the core-shell UiO-67@Ni-MOF
material [121]. The composite material was synthesized by an internal extended growth
method under polyvinylpyrrolidone (PVP) regulation. The pre-prepared UiO-67 was
used as the growth core of shell Ni-MOF (Figure 6D). In this study, UiO-67 was selected
for its expansive specific surface area and good conductivity, which facilitated efficient
electron transfer within the UiO-67@Ni-MOF composite. On the other hand, Ni-MOF
exhibited excellent electrochemical activity for glucose oxidation, rendering it an ideal
electrocatalytic material. The findings demonstrated that the UiO-67@Ni-MOF composites
displayed significantly enhanced electrocatalytic activity for glucose oxidation compared
to the individual UiO-67 and Ni-MOF structures. Ni2+ from Ni-MOF is oxidized to Ni3+

in the −0.43 V alkaline electrolyte. Ni3+ then oxidizes glucose molecules at a voltage of
0.5 V and produces glucolactone. AMP curves show that the sensor has a fast response
(<5 s), wide linear range (5 µM–3.9 mM), and low LOD (0.98 µM, S/N = 3). It has good
reproducibility (RSD = 1.1%), repeatability (RSD = 1.9%), and long-term stability. It should
be noted that the sensitivity and selectivity of the amperometry method are influenced by
many factors, such as electrode material, electrolyte solution, temperature, oxygen, etc.,
and therefore need to be optimized and controlled according to the actual situation.

In addition to being classified by the electrochemical detection method, common
electrochemical glucose sensors can also be divided into two types: enzymatic and non-
enzymatic sensors (Tables 5 and 6). The glucose biosensor based on enzyme promotion
is based on the specific reaction between glucose and active enzymes, which causes the
change of an electrical signal so as to realize the detection of glucose. The electrical
signals in enzymatic sensors can be generated through various processes, including O2
consumption, electrooxidation of H2O2, electroreduction of H2O2, and oxidation of H2O2
by peroxidase [139]. However, enzymatic sensors may be affected by several factors, such
as pH, temperature, and the presence of detergents [140]. Enzyme-free electrochemical
sensors, in contrast to active enzyme-based sensors, utilize substances with glucose cat-
alytic activity directly at the electrode to oxidize glucose. MOF-based materials have been
shown to exhibit high electrocatalytic activity [141]. The presence of OH− ions on the
electrode surface increases the local pH, creating an alkaline microenvironment that en-
hances glucose oxidation [37]. This process involves the catalytic oxidation of glucose to
gluconolactone, followed by further hydrolysis to gluconic acid. The porous structures
and large active surface area of MOF-based materials significantly enhance their analytical
performance [137]. Moreover, unique morphologies of MOF-based materials expose more
active sites, thereby increasing the contact area with glucose and facilitating faster charge
transfer. Additionally, incorporating mixed-valence metal ions or organic ligands into the
MOF structure can further enhance the conductivity, catalytic activity, and, therefore, the
detection performance of MOF-based materials [142].
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Table 5. MOF-based non-enzymatic electrochemical glucose sensors.

Electrode
Material

Electrochemical
Method Electrolyte

Linear
Range
(µM)

LOD
(µM)

Sensitivity
(µA mM−1

cm−2)
Ref

Ni-MOF CA 0.1 M NaOH 10–2000 1.16 3.03 [143]
Ni3(HITP)2

MOF CV 0.1 M KOH 0–10,000 − − [144]
Ni-MOFN AMP 0.1 M KOH 25–3150 0.6 402.3 [60]

r-NiPO AMP 0.1 M NaOH 1–3 1 3169 [103]
NiO/Co3O4/C AMP 0.1 M NaOH 0.2–10,000 0.045 2820 [106]
Ni/Co-FAMOF AMP 1 M KOH 6–1004 2 366 [34]
Ni/Co(HHTP)

MOF/CC AMP 0.1 M NaOH 0.3–2312 0.1 3250 [46]
CC@MOF-

74(NiO)@NiCo
LDH

AMP 1 M KOH 10–1100,
1500–9000 0.278 1699 [109]

NiCu-MOF-6 AMP 0.1 M NaOH 20–4930 15 1832 [45]
Ni@Cu-MOF CV 0.1 M NaOH 5–2500 1.67 1703.33 [120]
NiCoBP-Br AMP 0.1 M NaOH 0.5–6065.5 0.0665 1755.51 [47]

Ni-Co
MOF/Ag/rGO/PU AMP 0.1 M NaOH 10–660 3.28 425.9 [140]

YASNiCo@C AMP 0.1 M NaOH 5–5000 0.75 1964 [99]
bimetallic

Cu@Ni organic
framework

CA 0.1 M NaOH 0–5000 0.4 496 [123]

UiO-67@Ni-
MOF AMP 0.1 M NaOH 5–3900 0.98 − [121]

Cu-MOF DPV 0.01 M NaOH 0.06–5000 0.01 89 [145]

CuBDC12E DPV 0.02 M PBS (pH
7.4) 0–2000 0.077 37,090 [37]

Cu-MOF/CF AMP 0.1 M NaOH 1–950 0.076 30,030 [146]
CuO nanorod CA 0.1 M NaOH up to 1250 1 1523.5 [147]

swnt-
MOF(Cu)@gwe CA 0.1 M NaOH 1–3000 0.16 − [119]

CuO/C AMP 0.1 M NaOH 5–25,325 1 244.71 [98]

Cu2(NDC)2/PDHP AMP
electrolyte-
simulated

sweat
5–1775 2 1690 [148]

CuO polyhe-
drons/CC AMP 0.1 M NaOH 0.5–800 0.46 13,575 [15]

Cu@Co-MOF AMP 0.01 M NaOH 5–400 1.6 282.89 [76]
bimetallic

NCNT MOF
CoCu

nanostructure
CA 0.1 M NaOH 50–2500 0.15 1027 [124]

E-NiCo-BTC
MOF AMP 0.1 M NaOH 1–1780 0.187 1789 [149]

NPC-Co3O4 DPV 0.1 M KOH
5 ×

10−6–2.05 ×
10−4

2 × 10−6 0.14 µA
pM−1 cm−2 [22]

Co-MOF CA 0.01 M NaOH 5–900 1.6 169 [150]
Co@NCD AMP 0.1 M NaOH 0.2–12,000 0.11 125,23 [136]

Au@NiCo LDH AMP 1.0 M NaOH 5–12,000 0.028 864.7 [137]
Co/MnO@HC AMP 0.1 M NaOH 50–900,

1900–6900 1.31 233.8 [105]

HITP: (2,3,6,7,10,11-hexaiminotriphenylene)2. MOFNs: MOF nanosheets. r-NiPO: nanorod-like nickel phosphate.
LDH: layered double hydroxides. BP: 4-bromopyridine. NDC: naphthalenedicarboxylic. PDHP: pencil drawing
hydrophobic paper. E-NiCo-BTC: nickel–cobalt–benzene tricarboxylic acid.

Table 6. MOF-based enzymatic electrochemical glucose sensors.

Electrode
Material

Electrochemical
Method Mechanism pH

Linear
Range
(µM)

LOD
(µM)

Sensitivity
(µA mM−1

cm−2)
Ref

PDA-GOx-
HKUST-1-

MWCNTs/Pt/Au
AMP electrooxidation

of H2O2
7.0 5–7050 0.12 178 [151]

GOD-GA-
Ni/Cu-MOFs-

FET
AMP electrooxidation

of H2O2
7.4 1–100 0.51 26.05 [87]

rGO/Pt
NPs@Zn-MOF-

74
LSV electrooxidation

of H2O2
7.4 6–6000 1.8 64.51 [127]

GOX-AuNPs/N-
GQDs-P-

MOF@GCE
AMP electroreduction

of H2O2
4.0 2–10,

20–3000 0.7 1512.4 [66]
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Table 6. Cont.

Electrode
Material

Electrochemical
Method Mechanism pH

Linear
Range
(µM)

LOD
(µM)

Sensitivity
(µA mM−1

cm−2)
Ref

GOx/Hemin@NC-
ZIF AMP

oxidation of
H2O2 by

peroxidase
7.2 0–20,000 10 − [24]

GOx@Cu-
MOF/CF CV electroreduction

of H2O2
7.4 0–6000 − − [128]

GOD/AuNPs/Cu-
BTC/3D-KSCs DPV O2 depletion

monitoring 7.0 44.9–4000,
4000–19,000 14.77 − [131]

MWCNTs: multi-walled carbon nanotubes. GA: glutaraldehyde. FET: field-effect transistor.

3.2. Optical Methods

Optical methods for sensing glucose have been extensively studied and developed,
such as colorimetry, FL, CL, SERS, etc. The optical glucose sensors based on MOF-based
materials provide a visualized and cost-effective way to measure glucose concentrations
compared to electrochemical glucose sensors that need relatively expensive and compli-
cated instruments, as well as being prone to interferences [152]. However, the long-term
stability and reusability of MOF-based optical glucose sensors are the major challenges
for future applications. Hereafter, some typical and important optical glucose sensors are
introduced and classified into colorimetry, FL, CL, and SERS-based methods (Table 7).

Table 7. MOF-based optical glucose sensors.

Materials Detection
Method

Linear Range
(µM) LOD (µM) Ref

dZIF-8 BH colorimetry 50–4000 − [91]
G&L@ZIF@Paper colorimetry 200–2000 120 [19]

GOx/Hemin@NC-ZIF colorimetry 1000–20,000 10 [24]
Aga/GOD@Cu-hemin

MOF/TMB colorimetry 30–800 10 [49]

GOx@FCM-TA colorimetry 5–750 0.94 [81]
Fe3Ni-MOF colorimetry 2–1000 1 [79]

5R@Eu-MOF FL 0–6 0.00692 [67]
Ni-MOF FL 8–30 4 [153]

Pt/Fe-MOF colorimetry 3900–6400 2.3 [18]
MOF@GOx@BHb-MIPs colorimetry 0.5–20 0.4 [86]

GOx@MOF-545(Fe) colorimetry 0.5–20 0.28 [154]

GOx@MAF-2 CL 20–200,
500–30,000 1.4 [23]

Cu(bpy)2(OTf)2
nanosheets FL 10–1000 0.41 [155]

In-aip nanosheets FL 0–160 0.87 [156]
boric-acid Eu-MOF FL 0.1–4 0.0643 [157]

Co-
TCPP(Fe)@Luminol@GOD CL 0.177–30.53 0.0592 [90]

Co-MOF CL 0.04–8 0.012 [158]
AuNPs/Cu-TCPP(Fe) SERS 160–8000 3.9 [75]

MBs@MIL-100(Fe)@Ag SERS 20–1000 15.95 [159]
Ag NPs/UiO-66-NH2 FL 1–200 0.5 [160]

MOF-235/β-CD CL 0.01–3 0.01 [23]
ficin@MOF colorimetry 1–140 0.12 [161]

GOx@Zr-PCN-222 (Fe) colorimetry 0–5000 250 [162]
CeO2@NH2-MIL-

88B(Fe) colorimetry 200–15,000 80 [25]

Aga: agarose hydrogels. FCM: Fe/Co-MOF. R: BODIPY. bpy: 4,4-bipyridine. OTf: trifluoromethanesulfonate.
aip: aminoisophthalic.
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3.2.1. Colorimetry

Colorimetry is a fast and effective method for analyzing colored solutions or any
colored substances. It is usually measured using a spectrophotometer. The need for point-of-
care tests (POCT) has led to the invention of paper-based colorimetric methods, smartphone-
based analyses, etc., in the last two decades [163]. The advantages of colorimetry are the
convenience of use, high sensitivity, and satisfactory repeatability.

Wang et al. focused on the development of bimetal–organic frameworks (FexNiy-
MOF) as catalysts with peroxidase-like activity (Figure 7A) [79]. By introducing nickel
(Ni) into the framework, they achieved enhanced redox capacity and accelerated electron
transfer between TMB and H2O2. The improved conversion efficiency between Fe3+ and
Fe2+ ions, coupled with the promotion of ·OH generation, led to a significant increase in
peroxidase-like activity. Based on the excellent activity of Fe3Ni-MOF, one-step colorimetric
detection of glucose is achieved by immobilizing GOx on Fe3Ni-MOF through physical
adsorption. The linear range of the glucose biosensor is 2–1000 µM, and the detection limit
is 1 µM (S/N = 3).

Moving on to Chen et al.’s work, they presented a biohybrid hydrogel system encapsu-
lating GOx and HRP in a morphology-adjusted defective ZIF biohybrid hydrogel (dZIF-8
BH) [91]. This unique system utilized the biocatalytic cascade involving the conversion
of glucose into gluconic acid and H2O2 by GOx. The generated H2O2 further oxidized
ABTS (single molecule 2,2’-azino-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) into
ABTS·+ through the peroxidase-like activity of HRP (Figure 7B). The encapsulation within
the hydrogel not only provided a stable and confined microenvironment for enzymatic
reactions but also facilitated the accumulation of catalytic products, resulting in a stronger
color signal for glucose detection. Moreover, the integration of a smartphone with the
biosensor opens up the possibility of point-of-care diagnostics and remote monitoring
of glucose levels. The dZIF-8 BH portable biosensor provides a glucose detection range
from 0.05 to 4 mM. Further, Song et al. developed an integrated agarose-based hydrogel
film (Aga/GOD@Cu-hemin MOF/TMB) with a linear range from 30 µM to 0.8 mM and
a LOD of 0.01 mM (S/N = 3) [49]. Liu et al. encapsulated GOx and luminol in ZIF-67
to form the GOx&luminol@ZIF-67@Paper (G&L@ZIF@Paper) chip (Figure 7C) [19]. The
G&L@ZIF@Paper could achieve highly sensitive and specific measurements for glucose
with a linear range from 0.2 to 2 mM and a limit of detection of 0.12 mM (S/N = 3). The
combination of one-pot synthesis and one-pot detection greatly improved the convenience
of detection and the possibility of subsequent industrialization. Besides these advantages,
the unevenness of color, susceptibility to interference, and relatively low sensitivity of the
colorimetric method still need to be improved in order to achieve sensitive and accurate
quantification detection of glucose.

3.2.2. Fluorescence and Chemiluminescence

Fluorescence (FL), a form of photoluminescence (PL), widely exists in gas, liquid, and
solid chemical systems. This method involves the absorption and re-emission of photons by
materials, where electrons absorb photons, transition to higher energy levels, and return to
the ground state while emitting photons [164]. The FL method has emerged as a powerful
tool in qualitative and quantitative analysis due to its rapid detection, reproducibility, high
sensitivity, and selectivity.

Among FL sensors, single-emission fluorescence probes encounter challenges related
to probe concentration changes, sample light scattering, excitation light fluctuations, and
emission collection efficiency [165]. To address these limitations, researchers have turned
to dual-emission ratio fluorescence probes, offering higher resolution and improved vi-
sualization. For example, Yin et al. developed a ratiometric fluorescence probe using
Eu-MOF hollow spheres, exhibiting dual emissions at 370 nm and 623 nm, respectively
(Figure 8A) [157]. This probe showed sensitive responses to glucose concentration changes
through interactions with the boric acid group and H2O2, enabling glucose detection within
the range from 0.1 µM to 4 µM with a LOD of 0.0643 µM (S/N = 3). In addition, an increase
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(on) of one signal (354 nm) and a decrease (off) of the other (624 nm) caused the solution
color to change from bright red to blue. Similarly, Ke et al. crafted a ratiometric fluorescence
sensor by grafting an R photosensitizer on Eu-MOFs, enabling the detection of F-, H2O2,
and glucose in water solutions and living cells [67].
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Despite the potential of MOF-based FL sensors, their limited water stability has hin-
dered widespread use. To overcome this challenge, Wang et al. utilized UiO-66-NH2,
known for its excellent stability in water and organic solvents, to design a dual-emission ra-
tiometric fluorescence probe based on the inner filter effect (IFE) for glucose and cholesterol
detection (Figure 8B) [160]. In the presence of GOx, glucose is converted to H2O2, which
etches Ag NPs into silver ions (Ag+), leading to fluorescent 2,3-diaminophenazine (DAP)
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generation from o-Phenylenediamine (OPD). The emission spectrum of Ag NPs/UiO-66-
NH2 and the excitation spectrum of DAP produce an effective overlap. The fluorescence
intensity ratio (F555 nm/F425 nm) increases with the target concentration, and the color of
the solution changes from blue to yellow-green, enabling higher resolution color variance
and better visualization. Furthermore, the reaction reagent is integrated into filter pa-
per, creating a user-friendly test paper that reads RGB values using a smartphone-based
portable platform.

Dai et al. introduced a novel concept by combining a responsive MOF with a MOF-
enzyme composite, creating a multifunctional “all-in-one” particle that incorporates both
catalytic and luminescence capabilities [23]. They successfully encapsulated GOx molecules
within the O2-sensitive, luminescent CuI triazolate MOF (MAF-2), named GOx@MAF-2
(Figure 8C). This innovative composite offers a noble metal-free solution and provides
a single particle with diverse functionalities. The increasing concentration of glucose
accelerated the consumption of dissolved oxygen, resulting in the enhancive luminescence
intensity of GOx@MAF-2 suspension. The luminescence intensity of the suspension shows
good linearity with the logarithmic concentration of glucose in the ranges of 20–200 and
500–30,000 µM, and the detection limit is approximately 1.4 µM (S/N = 3).

The difference between CL and FL is that CL is a luminescence phenomenon in which
the outer electrons of a molecule absorb the energy of a chemical reaction and are in
an excited state, and return to the ground state by a radiative leap [166]. CL reaction
involves two key steps, namely chemical excitation and luminescence. The CL reaction
between luminol and H2O2 is generally slow and inefficient, but the reaction rate can be
greatly enhanced when there are certain catalysts. CL analysis possesses the advantage
of high sensitivity, fast responsibility, easy operation, inexpensive instrumentation, low
background signal, and so on [158].

In 2018, Huang et al. successfully prepared β-Cyclodextrin functionalization of the
metal–organic framework MOF-235 [23]. Due to the synergistic interaction between β-CD
and MOF-235, the MOF-235/β-CD hybrid exhibited high catalytic activity on the luminol-
H2O2 system. Compared to the luminol-H2O2 system, the CL response of the system using
MOFs was enhanced more than 30 times, resulting in much lower detection limits for H2O2
and glucose (5 nM and 10 nM, respectively) (Figure 8D). Following in 2019, Zhang et al.
synthesized a 2D-MOF nanosheet with peroxidase activity and sequentially labeled luminol
and GOx on the 2D-MOF nanosheet to obtain a simple CL-functionalized glucose sensor
(Co-TCPP(Fe)@Luminol@GOD) (Figure 8E) [90]. When GOx oxidizes glucose to produce
gluconic acid and H2O2, 2D-MOF can catalyze the decomposition of H2O2, further oxidize
luminol to generate a strong CL response, and finally realize the rapid detection of glucose
with a LOD of 10.667 µg/L (~0.0592 µM).

All in all, future research is likely to focus on enhancing the water stability, dispersibil-
ity in solvents, and fluorescence performance of MOF-based FL and CL sensors under
real-time environments (pressure, temperature, and mechanical stress) through improved
synthetic strategies.

3.2.3. Surface-Enhanced Raman Scattering

SERS is a sensitive analytical technique that can significantly enhance the Raman
signal of molecules adsorbed on the surface of precious metal nanomaterials by either
electromagnetic enhancement (EM) or chemical enhancement (CM) mechanisms [167].
By introducing MOFs, there are two main factors that improve the stability of the SERS
substrates: firstly, the large specific surface area of MOFs provides an abundance of sites
to capture target analytes; secondly, the MOFs shell protects the NPs from oxidation and
corrosion [168]. Thus, the research on the synthesis of SERS substrates based on MOFs has
become more and more active in recent times.
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Figure 8. (A) Reaction mechanism of FL detection of glucose based on an Eu-MOF (reproduced with
permission from [157], copyright © 2019, Elsevier). (B) The smartphone-based Ag NPs/UiO-66-NH2

and OPD composite film for glucose detection (reproduced with permission from [160], copyright ©
2021, American Chemical Society). (C) Synthesis of the GOx@MAF-2 composite and its application in
glucose detection (reproduced with permission from [23], copyright © 2019, John Wiley and Sons).
(D) CL enhancement mechanism of the luminol-H2O2 system by MOF-235/β-CD composite (repro-
duced with permission from [23], copyright © 2018, Elsevier). (E) Principle of the novel CL sensor for
one-step ultrasensitive glucose detection (i) preparation of Co-TCPP(Fe)@luminol@GOD; (ii) process
of one-step detection for glucose (reproduced with permission from [90], copyright © 2019, American
Chemical Society). (F) Fabrication and detection principle of MMA (reproduced with permission
from [159], copyright © 2022, Springer Nature).

Yang et al. modified AuNPs on the 2D metalloporphyrinic MOF (Cu-tetra(4-carboxyphenyl)
porphyrin chloride(Fe(III)), Cu-TCPP(Fe)) in situ, named Au NPs/Cu-TCPP(Fe) [75]. Au
NPs converted glucose in saliva to H2O2, and then H2O2 can be catalyzed by Cu-TCPP(Fe)
nanosheets to oxidize leucomalachite green (LMG) into the malachite green (MG), which is
a Raman-active molecule. Subsequently, the detection of MG could be performed using
SERS. SERS activity is also enhanced in the presence of Au NPs. The linear range of glucose
detection is 0.16–8 mM, and the LOD is 3.9 µM (S/N = 3) without interference from fructose,
lactose, and maltose in saliva.

Cui et al. developed a highly sensitive SERS probe named MBs@MIL-100(Fe)@Ag(MMA)
(Figure 8F) [159]. This probe demonstrated excellent SERS activity and peroxidase-like
catalytic activity, making it ideal for glucose detection. The probe utilized the catalytic cas-
cade reaction between MMA and GOx using TMB molecules enriched by MMA as Raman
beacons, resulting in remarkable sensitivity in detecting glucose. Based on the enrichment
and size screening capabilities of MIL-100(Fe), MMA has excellent anti-interference proper-
ties, allowing it to specifically enrich indicator molecules even in non-ferrous beverages or
complex biological fluids (saliva) while excluding the influence of other impurities (dyes,
proteins, etc.). In addition, the self-cleaning properties of MMA permitted the recycling of
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the probe for detection, which reduced the cost of the solution and provided a new versatile
strategy for the accurate detection of glucose in complex samples such as biofluids and
food and beverages.

The preparation process of MOF-based SERS substrates is simpler than the conven-
tional SERS substrate preparation process. However, the SERS-enhanced mechanism of
MOF-based substrates is still unclear. Further research is needed regarding practicality,
portability, and commercialization.

4. Novel MOF-Based Glucose Detection Devices
4.1. Flexible Wearable Devices for Glucose Detection

Compared to traditional glucose sensors, flexible wearable devices have emerged as
highly promising tools for in situ biomarker analysis in body fluids, such as sweat and
interstitial fluids, providing a means to monitor blood glucose levels [169]. Sweat glucose
has shown a qualitative correlation with blood glucose levels [170], and the integration
of flexible electrodes with printed circuit boards (PCBs) has enabled the development
of complete wearable devices. When coupled with mobile devices using wireless com-
munication technology, these wearables allow for real-time data collection, transmission,
and analysis [171]. It has been reported that there are about 450 million cases of diabetes
worldwide, and the number may reach 700 million by 2045 [172]. Compared to traditional
glucose testers, flexible wearable glucose-sensing devices offer the advantages of portability,
comfort, and real-time monitoring, making them highly desirable for the growing number
of diabetes cases worldwide [163].

Hu et al. developed a highly stretchable wearable electrochemical sensor called
NCGP fiber for tracking glucose levels in sweat [140]. The sensor was based on a Ni-Co
metal–organic framework/Ag/reduced graphene oxide/polyurethane (Ni-Co MOF/Ag/
rGO/PU) composite, which was prepared using an improved wet spinning technique. The
Ni-Co MOF nanosheets were coated onto the surface of reduced graphene oxide/polyurethane
fiber (rGO/PU), along with conductive Ag glue (Figure 9A). This NCGP fiber sensor
exhibited excellent electrocatalytic performance for glucose detection, with a linear range
from 10 µM to 0.66 mM, a sensitivity of 425.9 µA mM−1 cm−2, and a low limit of detection
(LOD) of 3.28 µM (S/N = 3). Similarly, Liu et al. successfully manufactured a MOF film
using a “coffee ring”-inspired approach, creating a hierarchical and oriented pore structure
for improved electron transport efficiency (Figure 9B) [148]. The resulting MOF film-based
sweat sensor demonstrated a linear range from 5 µM to 1775 µM, a sensitivity of 1.69 mA
mM−1 cm−2, and a LOD of 2 µM (S/N = 3). These innovative approaches offer promising
solutions for non-invasive glucose monitoring, showcasing the potential of MOF-based
materials in wearable sensing devices.

Wu et al. developed a multi-enzyme system by immobilizing highly loaded enzymes
in a nanocage-based zeolite imidazole framework (NC-ZIF) using a dual restriction strategy
to obtain GOx/Hemin@NC-ZIF [24]. The enzyme protection has two lines of defense,
the outer shell of NC-ZIF and the inner nanocage of NC-ZIF. In addition to preventing
enzyme leakage, the commodious internal space refrains from disrupting enzyme primitive
conformation. The resulting GOx/Hemin@NC-ZIF multi-enzyme system exhibits 8.3- and
16-fold higher catalytic cascade activity than free enzymes in a solution in colorimetric and
electrochemical sensors for glucose detection, and it also demonstrates long-term stability,
excellent selectivity, and reusability (Figure 9C). At an applied potential of 0.6 V, the system
showed a good linear range of 50–600 µM and a LOD of 2 µM (S/N = 3). Continuous
glucose monitoring of sweat was successfully achieved by integrating an enzyme@NC-ZIF-
based sensor and PCB into the sweatband and connecting it to a smartphone via Bluetooth.

In addition to detecting glucose in sweat, a MOF-based mouthguard sensor can also be
developed to detect glucose in saliva. Moreover, MOFs and their carbon derivatives possess
excellent electron-capture capacities and multifunctional structures, making them ideal as
active electrode materials for triboelectric nanogenerators (TENG) [173]. By incorporating
MOF-based TENG into the design of flexible wearable devices, the potential of self-powered,
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environmentally friendly, and powerful wearable glucose-monitoring devices becomes
promising [174]. Another avenue for improvement lies in refining the wearable device from
the software side. By combining flexible wearable devices with deep learning algorithms,
meaningful information can be extracted from the collected data to predict subsequent
blood glucose levels with greater accuracy and efficiency [175,176].
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the NCGP working electrode and Ag/AgCl fiber reference electrode, (iii) the NCGP glucose sensor
integrated into the elastic fabric, and (iv) the physical image of the device attached to the volun-
teer’s arm (reproduced with permission from [140], copyright © 2021, American Chemical Society).
(B) The fabrication process of biomimetic Murray Cu2(NDC)2/PDHP (reproduced with permission
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based on the electrochemical biosensor and the all-integrated sensor fabricated on a polyimide (PI)
sheet. Right: A photograph of the smartphone with an app for the perspiration analysis (reproduced
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4.2. Microfluidic Chips for Glucose Detection

The miniaturized total analytical system (µTAS), sometimes called lab-on-chip (LOC),
integrates the operations of chemistry and/or biology experiments (e.g., sample handling,
separation, reaction, testing, etc.) on a small chip for fast and accurate analyses of a
handful of samples [177]. The first microfluidic paper-based analytical device (µPAD) was
proposed by Whitesides et al. in 2007, and since then, µPADs have become one of the
most popular POCT platforms [178]. A µPAD is typically made of paper with a liquid
channel and a reaction zone that allows a sample to be injected into the paper and moved
to the reaction zone for analysis through capillary force and absorption by the paper fibers.
Moreover, it is cost-effective and easy to read [179]. In the POCT process, the analyte is
sensed by the functionalized paper, and then the color signal is reported [163]. Gomez et al.
utilized Fe-centered porphyrinic Zr-PCN-222(Fe) MOF for encapsulating GOx to make
well-based and lateral-flow assay (LFA)-based µPADs [162]. Employing the peroxidase-
like activity of Zr-PCN-222(Fe), MOF can achieve colorimetric detection of glucose on
these purpose-made µPADs (Figure 10A,B). The well-based µPAD, where reaction, mixing,
and analysis are all conducted in a single “well”, prevents sample loss and has a lower
detection limit compared to the LFA-based µPAD. However, well-based and LFA-based
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µPADs take too long to detect glucose, 3.5 and 2 h, respectively, and there is subjective
uncertainty in the assessment of color by the naked eye. As traditional spectrometers
struggle to identify paper colors, many people tend to use mobile apps. Al Lawati et al.
designed a disposable 3D µPAD that can use a smartphone to record the color of a paper
chip after sample injection within 3–40 min (Figure 10C) [25]. The CeO2 NPs@NH2-MIL-
88B(Fe)/TMB/specific enzyme complex was loaded in each detection zone. Simultaneous
quantification of glucose, fructose, sucrose, and maltose in food and biological samples was
successfully achieved by using a distribution layer to disperse samples from the sample
injection layer to the four detection zones of the detection layer.

Thin, soft, skin-compatible microfluidic systems have rocketed to popularity in recent
years, which are composed of inlet/outlet ports, microfluidic channels, microreservoirs,
and colorimetric sensors to collect, capture, store, and analyze sweat [180]. Apart from the
paper base, combining skin-interfaced microfluidic systems with MOF-based colorimetric
devices may also be a good solution for glucose detection.
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5. Conclusions

In this review, we summarized the various preparation strategies for four types of
MOF-based materials utilized in glucose detection: pristine MOFs, nano-particles in/on
MOFs, enzymes in/on MOFs, and MOF-derived materials. We have also explored the two
primary mechanisms for MOF-based glucose sensors: electrochemical and optical methods.
Notably, this review highlights the significant advancements in flexible wearable sensors
and microfluidic chips for glucose sensing. The exceptional properties of MOF materials,
such as their large specific surface area, tunable pores, abundant active sites, and diverse
capabilities (including catalysis and fluorescence), play crucial roles in the development of
glucose sensors. For instance, for electrochemical-based glucose sensors, the large specific
surface area of MOFs aids in the immobilization of GOx or promotes the conductivity of
modified electrodes. On the other hand, optical-based glucose sensors benefit from the
enzyme-like activities or fluorescence properties of MOFs, enabling a more visualized and
convenient glucose-detection process. As we move forward, the potential of MOF-based
electrochemical flexible wearable devices, such as sweatbands and mouthguards, along
with optical skin-like biosensors and skin-compatible microfluidic systems, appears highly
promising for the future of glucose and other biological analyte detection.
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