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Abstract: Quantum tunneling electrical probes, consisting of a pair of nanoelectrodes with a gap
width of less than 5 nm, can be used as a robust electrical sensing platform for the detection of
various nanoscale objects. To achieve this, stable and gap-width-controllable electrodes are essential.
Although various methods, including lithography and electrochemical strategies, have been proposed
for the fabrication of tunneling electrodes, the ability to precisely control the gap width and ensure
reproducibility is still lacking. Here, we report a feedback-controlled electrochemical etching approach
to fabricate the tunneling electrodes with a controlled nanogap. The connected nanoelectrodes,
derived from a dual-barrel nanopipette, were subjected to a controlled electrochemical etching
process from a short-circuited state to a tunneling gap. The resulting tunneling electrodes exhibited
solvent-response current–voltage electrical behavior, which was well fitted with the Simons model,
indicating the formation of tunneling electrodes. Overall, a success rate of more than 60% could be
achieved to obtain the tunneling gaps. Furthermore, to verify the function of tunneling electrodes,
we used the etched-tunneling electrodes for free-diffusing protein detection, showing the potential of
etched-tunneling electrodes as single-molecule sensors.

Keywords: quantum tunneling probe; nanogap width electrode; single-molecule detection

1. Introduction

Single-molecule detection methods based on electrical signals can achieve direct,
real-time, and label-free monitoring of the dynamic processes of molecular events at the
single-molecule level [1]. It provides a platform for exploring the detailed information of
chemical and biological reaction processes, including intermediate/transient states and
stochastic processes, which usually drown in traditional ensemble-average experimental
methods that are crucial to chemistry, biology, and medicine research [2,3]. Among these
newly developed detection technologies, the method based on the quantum tunneling effect
has excellent performance in the field of single-molecule detection due to its advantages of
high spatial resolution, ultra-high sensitivity, and easy integration [4].

The quantum tunneling effect refers to the transport of microscopic particles such
as electrons across the potential barrier, including a nanogap, a molecule, a nano-sized
insulating layer, etc. It becomes increasingly pronounced as the gap width decreases to
sub-5 nm [5]. Quantum tunneling sensors, which are composed of a pair of electrodes
with a gap of sub-5 nm, have recently gained considerable attention due to their label-free
direct in situ sensing ability in liquid environments and the potential for on-chip integrated
platforms [4–7]. When a bias voltage is applied to the electrodes, electrons transport
across the gap due to the tunneling effect, generating a tunneling current. The current is
dependent on the applied bias, the gap width, and the medium between electrodes [4,8]. In
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a typical sensing system, if a specific molecule enters the tunneling region, the tunneling
current will be modulated, producing a characteristic electrical signal. The acquired signal
is normally superimposed on the tunneling current, with the featured current amplitude
and dwell time. By extracting and analyzing these features, specific information about
the target molecule can be revealed, including the sub-molecular structure and electronic
structure [4].

The fabrication of tunneling electrodes with controllable gaps is the key to quantum
sensing applications. In recent years, a variety of techniques have been developed for this
purpose, including scanning tunneling microscope (STM) [9,10], breaking junctions [11–14],
electrodeposition [5,15], electromigration [16], and advanced lithography [17–19]. Accord-
ing to the main methods used for nanogap formation, the techniques can be divided into
three main categories, including additive, subtractive, and splitting methods. The additive
methods, such as electrodeposition and shadow mask deposition, mainly form nanogaps
by depositing electrode materials. In subtractive methods like electron beam lithography
(EBL) and focused ion beam (FIB) lithography, the electrode material is removed to create
a nanogap. For splitting methods including mechanically controllable break junctions
(MCBJs) and crack-defined break junctions, the nanogap is generated by the fracture of
electrode material. Typically, these methods have their own priorities in fabricating the
tunneling gaps and cannot combine the advantages of controllability, reproducibility, sta-
bility, and mass production. For instance, shadow mask deposition produces nanogap
electrodes by depositing electrode materials and local blocking suspended masks, while
the grain-like growth phenomenon of metallic electrode material will cause instability and
uncontrollability of electrode gap width [20]. FIB lithography generates sub-5 nm nanogaps
by directly applying ion beams to electrode materials without the need for a resistance
layer or a mask. It has the advantages of being maskless and having high reliability, but
the ion sputtering process may cause contamination of the electrode surface. Besides the
high cost, the long time consumed also influences reproducibility [18,19,21]. MCBJ allows
for the formation of tunneling electrodes with an adjustable gap width by controlling
the piezo actuator and is not suitable for large-scale preparation [11,21]. Moreover, most
of these fabrication methods require state-of-the-art facilities, instruments, and sophisti-
cated processes, which leads to high costs [21–23]. Therefore, it is essential to develop
new strategies for fabricating tunneling electrodes with a more controllable gap width
and reproducibility. Meanwhile, it is worth noting that a combination of manufacturing
techniques is usually utilized to create nanogaps. Recently, some novel hybrid methods
have been proposed to fabricate gap-width-controllable electrodes [24–26]. For instance, in
situ adjustable metal nanogaps can be achieved by either a lateral expandable piezoelectric
sheet or a stretchable membrane [26]. These nanogaps with angstrom resolution were
developed into in-plane molecular break junctions and successfully applied to measure
single-molecule conductance.

Recently, we reported feedback-controlled electrochemical deposition for efficiently
fabricating standalone tunneling probes, which can be used directly in solution for single-
molecule detection [5]. However, this electrodeposition approach tends to form narrow
gaps, making it difficult to control the gap width from the atomic contact scale to a wider
scale. Here, we demonstrate an electrochemical etching-assisted method for fabricating
the tunneling electrodes with stable nanogaps, which can be used either independently or
as a complementary method to the electrodeposition approach. Although electrochemical
etching has been widely applied in STM probe fabrication with various materials such as
gold (Au) [27–29], platinum (Pt) [30], and tungsten (W) [31], few studies have explored
its capability to directly form the tunneling gap. We used a mixed solution of potassium
chloride (KCl) and potassium thiosulfate (K2S2O3) as the electrolyte and a double-electrode
potentiostatic electrochemical setup as the etching strategy. We achieved a success rate of
approximately 60% in fabricating the tunneling probes. We further applied our tunneling
electrodes to single-molecule detection. We conducted free diffusion detection on two
different protein molecules (bovine serum albumin and glucose oxidase) and obtained
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evident single-molecule tunneling signals. Data analysis shows that there are differences
in the distribution of conductance and signal dwell time between the two proteins. The
results indicate that our etched-tunneling electrodes have reliable and sensitive sensing
capability at the single-molecular level in liquid environments.

2. Materials and Methods
2.1. Chemicals and Materials

The Au-plating solution, consisting of 4.4 mmol/L NH4AuSO3 dissolved in 52 mmol/L
(NH4)2SO3, was purchased from Tianyue (Shenzhen, China). Potassium thiosulfate (K2S2O3),
with a purity of 98%, was purchased from Chentong Biochemical Technology Co., Ltd.
(Hangzhou, China). All the other reagents not mentioned above used for device fabrica-
tion and characterization in this study were purchased from Sigma Aldrich (Burlington,
MA, USA). All aqueous solutions should be prepared using ultrapure deionized water
(18.2 MΩ·cm at 25 ◦C). Dual-barrel theta-shaped quartz capillaries (Friedrich & Dimmock,
Inc. (Millville, NJ, USA), 1.2 mm outside diameter (OD), 0.90 mm inside diameter (ID), 75 mm
long) were used for fabricating tunneling electrodes. Copper wires were 0.25 mm in diameter
and purchased from Goodfellow (Shanghai, China). Silver wires (Agar Scientific, Stansted,
UK, 0.25 mm OD) were made into silver/silver chloride (Ag/AgCl) electrodes in 1 mol/L
potassium chloride (KCl) aqueous solution through an electrochemical workstation.

2.2. Apparatus and Characterization

The puller we used for pulling quartz capillaries was the P-2000 laser puller from
Sutter Instrument (Novato, CA, USA). All electrochemical processes in this work were
conducted on a CHI760c electrochemical workstation (Chenhua Instruments Shanghai
Co., Ltd., Shanghai, China). All tunneling current measurements were performed using a
MultiClamp 700B (Molecular Devices, San Jose, CA, USA) operated in voltage-clamp mode.
The recorded signals were filtered using a four-pole Bessel filter at 10 kHz and digitized
using an Axon Digidata 1550B (Molecular Devices, San Jose, CA, USA). Data analysis was
performed using custom-written MATLAB code developed in-house. During tunneling
current measurements, the tunneling electrode and the amplifier headstage were placed in
a Faraday cage to shield external electrical noise. The setup was placed on stable support
to minimize vibrational interference. In addition, short cables and electrode connecting
wires were selected in priority to minimize electrical noise. The amplifier, Faraday cage,
and supporting platform were connected to the same grounding point. Morphological
characterization of the electrode tip was performed by a Zeiss ULTRA-55 field-emission
scanning electron microscope (Oberkochen, Germany) under an operating voltage of 10 kV.

2.3. Fabrication of Dual-Barrel Au-Deposited Nanoelectrodes

The Au-deposited probes, consisting of two proximally addressable Au nanoelec-
trodes in a standalone double-barrel nanopipette, were obtained according to our previous
work [5]. Briefly, a theta-shaped dual-barrel quartz capillary was first laser-pulled into a
sharp nanopipette using a P-2000 laser puller with a custom two-line program (First line,
Heat = 850, Filament = 4, Velocity = 30, Delay = 160, Pull = 100. Second line, Heat = 860,
Filament = 3, Velocity = 20, Delay = 128, Pull = 160). The two nanopores formed at the
probe tip were 20~60 nm in diameter and separated by a septum of about 20 nm. Next,
both barrels were filled with carbon by the pyrolytic decomposition of butane, resulting in
two coplanar carbon nanoelectrodes at the tip of the pipette. Copper wires were inserted
from the end of the quartz capillary, in close contact with the deposited carbon, to provide
the electrical connection to the instrumentation. Carbon etching was followed and formed
a pit on the carbon electrode surface. This is beneficial for the subsequent electrochemical
deposition of gold and improves the stability of the final prepared tunneling electrode.
Then, gold was electrochemically deposited on the carbon electrodes in a bipotentiostatic
configuration until it formed the connected electrodes (>4.75 µS in conductance).
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3. Results and Discussion
3.1. Electrochemical Etching Tunneling Electrodes Fabrication

The tunneling probes were obtained with an electrochemical etching strategy, as shown
in Figure 1a. At first, the dual-barrel Au-deposited nanoelectrodes were fabricated via our
previously reported method [5]. The detailed fabrication procedure has been shown above
(see Section 2). Subsequently, the Au deposited on the electrodes was controllably removed
to generate the tunneling gap in a double-electrode electrochemical etching configuration.
In the potentiostatic electrochemical experimental setup, both of the connected electrodes
were immersed in the etching electrolyte as the working electrodes (WE1 and WE2), and
the silver/silver chloride electrode was used as the counter electrode and the reference
electrode (CE and RE). In principle, under the presence of the etching agent potassium
chloride (KCl), Au is dissolved in AuCl2− by reacting with Cl− at a positive potential [32]. It
should be noted that the formed AuCl2− will be partially transformed to Au (0) and AuCl4−

in solution. The Au reduced by disproportionation will adhere to the electrode surface,
roughening the electrode surface or even reconnecting the etched-open electrode. In order
to increase the controllability of the etching process and to obtain a smooth electrode
surface, we introduced the solvent potassium thiosulfate (K2S2O3) into the etching solution,
which could efficiently react with the disproportionated Au and form the Au2S2O3 complex
(Equation (1)) [15].

2Au+S2O2−
3 
 Au2S2O3+2e− (1)
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Figure 1. Fabrication of tunneling electrodes by electrochemical etching. (a) Schematic diagram
of experimental setup. A double-electrode potentiostatic electrochemical system is used for Au
etching. The potentials applied to working electrode 1 (WE1) and working electrode 2 (WE2) are
1.1 V and 1.2 V, respectively. A local enlargement of the etching process at the electrode tip is shown
on the right. (b) Redox curves measured in 1 mol/L potassium chloride (KCl) aqueous solution
and 2 mol/L potassium thiosulfate (K2S2O3) aqueous solution with a volume ratio of 4:1. (c) Three
typical current–time (I–t) curves measured during the etching process.
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We further investigated the chemical composition of the etching electrolyte. The
etching rate increases with the increase in the concentration of KCl. In order to control
the etching rate in an appropriate range, we determined that a mixed solution containing
1 mol/L KCl aqueous solution and 2 mol/L K2S2O3 aqueous solution with a volume ratio
of 4:1 is optimal.

The potentials we applied to the two working electrodes were selected based on
the redox curve, as shown in Figure 1b. During the etching process, when the voltage
exceeds 0.6 V, Au is oxidized to Au+ on the anode. In addition, the reaction becomes
intense as the voltage increases. When the voltage reaches 1.4 V, the current oscillates
due to the continuous dissolution and disproportionation reduction in Au [32], which
increases the roughness of the electrode surface and makes the etching process more
uncontrollable. Hence, a voltage range of 0.9 V to 1.2 V is preferred for etching. In
order to obtain real-time feedback information from the current–time (I–t) curve and help
determine the timing of etching cessation, a bias of 100 mV is set between two working
electrodes. Due to the exponential correlation between tunneling current and the tunneling
gap distance, the measured current containing tunneling current will sharply decrease
as the gap broadens. Therefore, if a sharp decrease in measured current is observed, the
etching can be stopped, which demonstrates the formation of the tunneling electrodes.
Accordingly, we selected etching potentials of 1.1 V and 1.2 V for working electrode 1 (WE1)
and working electrode 2 (WE2), respectively. The etching rate can be adjusted by changing
the potentials of WE1 and WE2 during the etching process.

The real-time current monitoring at working electrodes revealed the etching process,
as shown by the typical current curves shown in Figure 1c. Generally, the current mea-
sured at working electrodes is composed of conduction current (Iconduct, on the order of
10−6 A, under the set working potential, the same below), tunneling current (Itunneling, on
the order of 10−9 A~10−6 A), and ion current (Iion, on the order of 10−10 A), such that
Imeasure = Iconduct + Itunneling + Iion for WE1 and Imeasure = (−Iconduct) + (−Itunneling) + Iion
for WE2. The positive and negative signs represent the direction of the current. The con-
duction current is generated by the directional flow of electrons between the two electrodes
when they contact, and the tunneling current occurs when the electrode gap enters the
tunneling range. The ion current is related to the directional flow of ions in an electrolyte
solution. Due to the fact that the ion current is much smaller than the former two parts
of the measured current, the currents of WE1 and WE2 exhibit symmetric changes in the
curve. During the etching process, the current measured decreased with time. At the start
of the etching process, the two electrodes are connected, and the conduction current is
dominant under the potential difference applied to the two working electrodes. As the
etching process progresses, when the electrodes are etched apart, the conduction current
almost goes down to zero and the tunneling current becomes the dominant factor, which
depends exponentially on the gap width. To obtain tunneling electrodes, the etching is
stopped at this stage. If the etching continues, more Au will be etched away, resulting in
wider gap-width electrodes.

3.2. Characterization of Electrochemical Etching Electrodes

The schematic diagrams of the structure of connected electrodes, tunneling electrodes,
and open electrodes are shown in Figure 2a. We performed current–voltage (I–V) charac-
terization on three types of electrodes separately. All the I–V curves shown in Figure 2b
had the same scale of horizontal and vertical coordinates. The connected electrodes had a
large conductance (>4.75 µS), which showed up on the curve as a straight line with a very
high slope. The tunneling junction showed a classical S-shape on the curve, which is the
feature that represents tunneling, and the conductance typically ranged in 0.1~2 µS. The
open electrode had a gap greater than 3 nm between electrodes, and the curve was almost
a horizontal line on the order of 10−10 A.
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Figure 2. Characterization of electrochemical etching electrodes. (a) Schematics of connected elec-
trodes, tunneling electrodes, and open electrodes. (b) I–V curves of connected electrodes, tunneling
electrodes, and open electrodes. (c) The steady-state current curves of the same electrode in the
carbon electrode state, connected electrode state, and etched-open electrode state. (d) The optical
image of the tunneling electrode and SEM images of connected electrodes or open electrodes. Inset:
the magnified SEM image of the electrode tip (inside the red circle).

Steady-state voltammetry is a reliable electrochemical method used to estimate the size
of ultrasmall electrodes. This method calculates the effective radius of the electrode from the
steady-state current of the electrode obtained by measuring the cyclic voltammetry curve
of the redox pair. Assuming the electrode is hemispherical and the RG value (RG = rg/a,
where rg is the radius of the insulator around the electrode and a is the effective radius
of the electrode) is greater than 10, the effective radius can be estimated by steady-state
current using Equation (2) [33].

Ilim = 2πneaFDc (2)

where Ilim is the steady-state current, ne is the number of electrons transferred in electro-
chemical reactions, F is the Faraday constant, and D = 7.2 × 10−6 cm2 s−1 is the diffusion
coefficient of [Fe(CN)6]3−. C is the concentration of the redox mediator, and a is the elec-
trode radius. Here, we obtained the voltammograms in 10 mmol/L K3[Fe(CN)6] using the
standard three-electrode system. Figure 2c shows typical curves of the same electrode in
the carbon electrode state, connected state, and etched-open electrode state. The estimated
effective radius of carbon electrodes, connected electrodes, and open electrodes is 23 nm,
1540 nm, and 25 nm, respectively. The size of the etched-open electrode is similar to the ini-
tial carbon electrode size, indicating that the gold on the electrode surface can be effectively
etched away. The tips of the electrodes we fabricated are semi-elliptical in shape, with RG
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1.5~2. Hence, the radius calculated by steady-state current is only an approximation of the
actual electrode radius. The optical image of the tunneling electrode and SEM images of
connected electrodes and open electrodes are shown in Figure 2d. The upper-right inset
shows an enlarged SEM image of the tunneling electrode tip (inside the red circle). There
is a lot of Au attached to the tip of the connected electrodes, and it has a relatively large
area. As for open electrodes, we can see that Au on the tip has been etched away, exposing
theta-shaped holes (about 50~100 nm in diameter).

We further characterized the etched-tunneling electrodes by I–V curves and fitted them
with the Simons model. To give an intuitive comparison, we present the typical I–V curves
of the connected, tunneling, and open electrodes in one graph, as shown in Figure 3a. The
area on the yellow background is the typical curve of connected electrodes. The etched-
open electrodes are displayed in the gray background area, and the remaining regions
represent the etched-tunneling electrodes. The I–V curves of the tunneling electrodes are
fitted by the Simons model, and the fitted curve is represented by solid lines in the graph.
Generally, the I–V curves of electrodes with a smaller gap width tend to have steeper slopes
and take on a more linear shape. The gap width can be obtained by fitting curves using
the Simons model, and the gap width distribution of tunneling electrodes is shown in the
Supplementary Materials (Figure S1). In total, 29 standalone etched-tunneling electrodes
were fabricated with gap widths ranging from 1 nm to 3.5 nm.
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Figure 3. Graph of statistical results of electrodes fabricated by electrochemical etching. (a) Typical
I–V curves of connected electrodes (yellow background), tunneling electrodes, and etched-open
electrodes (gray background) measured in air. (b) I–V curves of the same etched-tunneling electrodes
in air, DI water, tetrachloromethane (CCl4), and hexane. The curves from top to below in panel b:
water, air, hexane and CCl4.

To further confirm the functionality of the etched-tunneling electrodes, I–V curves
were measured in different materials with different barrier heights, including air, DI water,
tetrachloromethane (CCl4), and hexane. The data for all four substances were collected
by the same electrode. We measured 30 I–V curves for each material. When switching
electrodes from one material to another, we first dipped the electrodes in ethanol for 5 min
to dissolve the residue and then kept them in the air for 2 min to evaporate the ethanol,
which can reduce the impact caused by the residue on the electrode. The average I–V
curves fitted by the Simons model are shown in Figure 3b. According to Equation (3) [34],
there is an exponential dependence between the square root of barrier height and the
tunneling current.

Itunnel ∼ Vbias
z

exp
(
−A

√
φeffz

)
(3)

where Vbias is the bias potential between electrodes, A is the effective tunneling area, z is
the gap width, and Φeff is the effective barrier height. That means, while using the same
electrode and under the same voltage, the tunneling current is negatively correlated with
the barrier height. From this point of view, the order of barrier height of hexane, DI water,
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and CCl4 determined by I–V curves is consistent with the previous results [35], that is,
φCCl4 > φhexane > φwater. It is worth mentioning that the Simons model fitting method can
also be used to calculate the medium barrier height. However, due to cross-contamination
of the electrodes, the fitting results are not accurate enough, so we chose the former method
for analysis.

3.3. Single-Molecule Detection Using Etched-Tunneling Electrodes

In order to confirm the function of the etched-tunneling junctions, we applied the
obtained quantum tunneling electrodes to single-molecule detection. Single-molecule
tunneling detection methods can be divided into two categories based on whether the
molecule is fixed to the electrodes: single-molecule junctions (SMJs) and molecular-free
diffusion. SMJ methods bridge the molecules between two separate electrodes by chemical
modification and obtain molecular conductance and other information by measuring the
current. However, this method requires specific molecular modification systems, and the
complexity of modification and measurements leads to low reproducibility and stability.
For methods based on molecular free diffusion, the amplitude of tunneling current is
related to the intrinsic properties of molecules and the interaction between electrodes and
molecules [36,37]. We conducted free-diffusing single-molecule signal measurements on
two protein molecules, bovine serum albumin (BSA) and glucose oxidase (GOD). BSA is
the main component in bovine serum and is widely used in biochemical laboratories, with
a molecular size of approximately 4 × 4 × 10 nm3. GOD is widely present in animals,
plants, and microorganisms and is an important industrial enzyme in the food industry. Its
molecular size is about 7 × 5.5 × 8 nm3. The size of both proteins is much larger than the
gap width, so both of them cannot fully diffuse into the tunneling region.

BSA in 0.01 mol/L phosphate buffered saline (PBS, pH 7.4) with a concentration of
10 nmol/L was measured using an electrode with a gap distance of 2 nm by applying
a constant voltage of 100 mV. The typical I–t curve and signal peak shape measured are
shown in Figure 4a. The signal height that reflects the conductance of the electrode itself
is about 5 nA. The pulse signal appearing indicates that BSA molecules were in or near
the tunneling region, affecting electron transport and generating characteristic signals
related to molecular characteristics in the measured current. The low-amplitude signals
were attributed to the adsorption and desorption of small molecules by a single electrode.
While the higher amplitude signals were likely caused by protein molecules bridging
and binding to both electrodes, followed by desorption. For studying the conductivity
of individual protein molecules, the higher-amplitude signals formed by bridging are
believed to be effective, while low-amplitude adsorption signals are ignored. A statistical
analysis was conducted on the signal curve with a time length of 120 s. The distribution
of characteristic signal peaks and dwell time obtained is shown in Figure 4b. The signal
peaks are concentrated around 4 nA, with a dwell time mostly less than 5 ms. The same
experiments were conducted on 10 nmol/L GOD in a 0.01 mol/L PBS solution with an
electrode with a 2.1 nm gap distance, and the typical current–time curve and signal peak
shape are shown in Figure 4c. The signal height was about 2 nA. It is worth noting that the
instability of the voltage applied during the measurement process can lead to a baseline
offset. The signals with an apparently longer duration (>10 ms) in the figure are believed
to be caused by the voltage instability between the two electrodes. Baseline fitting should
be used to remove the influence of such signals during analysis. After statistical analysis,
the distribution of peaks and dwell time of the signals is shown in Figure 4d, with a peak
of about 5 nA and dwell time mostly below 5 ms. Figure 4e shows the histogram of the
conductance distribution of BSA and GOD. The graph shows that the conductance of
BSA is about 38 nS and the conductance of GOD is about 50 nS, which means the two
protein molecules can be distinguished by the conductance distribution. The magnitude of
the measured values of BSA conductivity is consistent with the data reported in previous
reports [38,39], indicating the reliability of this method. In addition, the measured tunneling
current signals of GOD obtained from the same electrode under different bias voltages
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(50~200 mV) were analyzed, and a predominately linear current dependence on voltage
was observed with a slope of 25.77 ± 1.54 nS (Figure S2). Figure 4f shows the dwell time
histograms of BSA and GOD, indicating differences in the dwell time distribution of the
two proteins. The experiment results indicate the potential to differentiate proteins directly
through specific tunneling signal characteristics and demonstrate the feasibility of applying
this method to drug screening and biomarker detection.
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Figure 4. Free-diffusing protein detection using the etched-tunneling electrodes. (a) The I–t curve and
typical signal peak figure of bovine serum albumin protein (BSA). (b) Scatter plot of peak amplitude
and dwell time distribution of BSA detection signals. (c) The I–t curve and typical signal peak figure
of glucose oxidase (GOD). (d) Scatter plot of peak amplitude and dwell time distribution of GOD
detection signals. (e) Histograms of conductance distribution for BSA and GOD. (f) Histograms of
dwell time distribution for BSA and GOD.

4. Conclusions

In summary, we proposed and experimentally confirmed that electrochemical etching
can be used independently for the fabrication of tunneling electrodes or as a complement to
the electrodeposition method. We used various methods to characterize the obtained elec-
trode, demonstrating the feasibility of the scheme. Electrochemical etching combined with
electrodeposition greatly increases the success rate of electrode fabrication and improves
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electrode reusability. We verified the tunneling performance of the obtained electrodes by
measuring the barrier heights of different substances. Moreover, we have demonstrated
that the tunneling electrodes fabricated by electrochemical etching can be used in free
diffusing protein molecule detection via tunneling current, which verifies the function of
the fabricated quantum tunneling probes with nanogap width and shows a new strategy
for developing quantum tunneling sensors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors11090480/s1, Figure S1: Histogram of gap width
distribution for etched-tunneling electrodes; Figure S2: Tunneling current measurement of GOD
under different bias voltages.
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