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Abstract: To improve the control and detection methods of thiabendazole (TBZ), a fungicide and
parasiticide often used in food products, we investigated the performance of the SERS technique
applied to frozen blueberry fruits available on the market. TBZ-treated fruit extracts provided a
multiplexed SERS feature, where the SERS bands of TBZ could be distinctly recorded among the
characteristic anthocyanidins from blueberries. Quantitative SERS of TBZ in a concentration range
from 20 µM to 0.2 µM has been achieved in solutions. However, quantitative multiplexed SERS
is challenging due to the gradually increasing spectral background of polyphenols from extracts,
which covers the TBZ signal with increasing concentration. The strategy proposed here was to
employ food bentonite to filter a substantial amount of flavonoids to allow a higher SERS signal-to-
background recording and TBZ recognition. Using bentonite, the LOD for SERS analysis of blueberry
extracts provided a detection limit of 0.09 µM. From the relative intensity of the specific SERS bands
as a function of concentration, we estimated the detection capability of TBZ to be 0.0001 mg/kg
in blueberry extracts, which is two orders of magnitude lower than the maximum allowed by
current regulations.

Keywords: thiabendazole; SERS; food safety; blueberries; bentonite-filtered extracts; anthocyanidins

1. Introduction

Pesticides are toxic chemicals that can be potentially hazardous to humans, animals,
and other organisms, and they can damage the environment; therefore, they require strict
monitoring [1]. The main intake of pesticides takes place through food ingestion, rather
than through consumed water or air inhalation. Thiabendazole (TBZ), (2-(4-thiazolyl)
benzimidazole, C10H7N3S, denoted as E233, is one of the most widely used pesticides to
control different fungal diseases in fruits and vegetables [2]. Additionally, TBZ is used as a
food additive [3].

Since fruit and vegetables are treated with plant protection products and are unpro-
cessed when eaten, they have become the main source of pesticide residues in the human
body. Nevertheless, because of the negative effects of pesticides on human health and
consumer awareness regarding food safety, strict maximum residue levels (MRL) have been
established by the European Food Safety Authority (EFSA) to limit consumers’ total dietary
intake. The Commission Regulation (EU) 2021/1807 set maximum residue levels of TBZ
(0.01 mg/kg) in fresh or frozen fruits and vegetables [4]. The Environmental Protection
Agency (EPA) 40 CFR 180.242 established tolerance levels for thiabendazole, including
its metabolites and degradants, in or on strawberries to 5 ppm [5]. For other berry fruits,
such as the blueberry, there has been no identification of a TBZ tolerance level; only other
pesticides have been investigated so far. In this context, it is of the utmost importance to
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develop adapted sensing protocols with great applicability in food safety and control by
employing simple, affordable, and accessible techniques.

Since fresh products may not be available for the entire year, frozen products represent
an affordable alternative. They are solutions both acting as agricultural commodities at
relatively low costs and satisfying consumer demand for a variety of products throughout
the year. Among the huge varieties of frozen products, blueberries are also continuously
in demand. Due to their elevated levels of antioxidants, anthocyanidins, vitamins, and
other health-beneficial microelements, nutritionists consider blueberries one of the most
high-value plant-based foods, one of the so-called “superfoods” that are readily available.
A problem still remains, because depending on the product’s origin, an increased amount
of pesticides might be present and untraceable in frozen products due to a lack of local
regulation [6].

Although it is stipulated by law that manufacturers are obliged to indicate the content
of food additives on food product labels [7], the market situation is complicated. From
the two available types of frozen samples, bio/eco/organic or non-bio/eco/organic, only
bio/eco/organic samples have been awarded the siglum RO-ECO, which means that the
use of chemical fertilizers has been avoided.

Frozen products are almost always flash-frozen the same day that they are harvested,
preserving the natural nutrients and antioxidants that are present during their peak of
freshness. Thus, it can be assumed that frozen fruits and vegetable products have much
lower levels of pesticide and crop spray exposure and residue. However, an additive may
be present in food without having been directly added as the result of a transfer from
an ingredient wherein the additive was authorized, or pesticides can be absorbed from
soil [8]. Subsequently, ultrasensitive monitoring of TBZ in commonly consumed food
products is a current need for preventing such conditions and preventing exposure over
the regulated limits.

An analysis of pesticides in food is regularly carried out using chromatographic
techniques such as gas chromatography (GC), liquid chromatography (LC) [9,10], and high-
performance liquid chromatography in tandem with mass spectrometry [11–14], using
electrochemical sensors and biosensors for detection [15]. These methods require compli-
cated laboratory sample preparation, are time-consuming, and need qualified persons to
carry out the analysis.

In this context, one of the most promising analytical methods for the rapid, reliable,
and direct detection of pesticides at trace levels, either in liquid samples or on the surface
of a solid sample, is surface-enhanced Raman spectroscopy (SERS). So far, there have
been no reports on using SERS for monitoring pesticides in frozen products, even though
SERS-based approaches have been successfully employed for the trace-level sensing of
contaminants within a wide range of food control and safety issues related to plant-based
products [1,16].

Previously reported studies on red soil extracts using SERS based on AuNPs have
found a TBZ concentration in the range of 0.1–10 mg/L and an LOD of 0.1 mg/L [8].
SERS has also been demonstrated to be a very effective method for the detection of pes-
ticide residues on tomatoes [17]. In situ detection of TBZ was achieved via SERS tattoo,
and revealed a detection limit of 0.2 ppm in oranges, which is below EU-specified max-
imum residue levels [18]. Another study detected TBZ in food by using SERS based on
a silver nano-substrate combined with chemometric methods with a limit of detection of
0.1 mg/L [19]. Simultaneous detection of TBZ on the surfaces of apples, tomatoes, and
pears was achieved by SERS coupled with interfacial self-assembly gold nanorod array
substrates with detection limits of 0.79, 0.76, and 0.80 ng/cm2, respectively [20].

These examples highlight the possibility of TBZ detection from fruit samples through
SERS if silver nanoparticles are involved, being similar to other results reported in the
literature for various types of pesticides, as summarized in Supplementary Table S1.

The present study aimed to assess the detection capability of SERS techniques for TBZ
in frozen products available on the market. A particular application was developed for
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randomly selected frozen market products, such as blueberries. In frozen fruits, traces
of pesticides can occur if they were previously applied to fresh products before freezing
and commercialization. Thus, here, we selected two independent stocks of commercially
available blueberries and, furthermore, their crude extracts of frozen fruits. The extracts
were subject to spectroscopic analysis in their raw form and were subsequently tested
using SERS to find the characteristic fingerprints of TBZ. Moreover, several extracts were
artificially exposed to TBZ and subsequently tested regarding the quantitative assessment
of TBZ using SERS.

Quantitative multiplexed SERS is challenging due to gradually increasing spectral
background polyphenols from extracts, which cover the TBZ signal in increasing concentra-
tions. The strategy employed here proposed food bentonite to filter a substantial amount
of flavonoids co-existent in extracts, in order to probe higher SERS signal-to-background
recording and TBZ recognition.

Bentonite is an absorbent swelling clay especially used as a filter, with the ability to
absorb large quantities of water or solutions [21]. We consider this biochemical precipitation
step a key aspect of our sensing technique for trace levels of TBZ, and also an original
approach in combination with SERS as an analytical tool.

2. Material and Methods
2.1. Materials

The TBZ, C10H7N3S, was purchased from Sigma-Aldrich as a powder ≥99%. Food
bentonite (100 g) was purchased from a local market by producer Mifalchim. Food bentonite
for the wine industry (vinification) is a product made from clay rock (bentonite) to stabilize
wines and give them transparency. We used it to adsorb macromolecular ingredients from
fruits extracts to lower their fluorescence when exposed to Raman analysis and SERS.

2.2. Silver Colloid Synthesis

As the SERS active surface, silver colloids prepared according to the Leopold and
Lendl method were used [22]. The materials required for the preparation of the colloid, the
hydroxylamine hydrochloride, and silver nitrate were purchased from Sigma-Aldrich, and
the sodium hydroxide from Merck.

Briefly, the colloid was prepared by dissolving 0.017 g of AgNO3 in 90 mL of water.
Separately, 0.021 g of hydroxylamine hydrochloride (HONH2·HCl) was dissolved in 5 mL
water, and 4.5 mL 0.1 M sodium hydroxide was added. The mixture was rapidly added
to the AgNO3 solution, and in a few seconds, a grey-brown solution was obtained. The
resulting AgNPs were freshly characterized using UV-VIS absorption spectroscopy, and
their absorbance peaked at 412 nm, in line with the previous characterization. The Raman
spectrum of the blank colloid sowed only weak bands of water, as expected.

2.3. Sample Preparation and Analysis
2.3.1. Concentration Dependence SERS Spectra of TBZ

Different concentration stock solutions of TBZ in the 10−3 to 10−6 mol L−1 range
were prepared from TBZ powder dissolved in ethanol of analytical purity. SERS samples
were prepared by adding 10 µL from each TBZ stock solution to 490 µL colloidal Ag and
measured immediately after preparation. The TBZ final SERS final concentrations were in
the range of 2 × 10−5 mol L−1 (20 µM) to 2 × 10−8 mol L−1 (0.2 µM).

2.3.2. SERS Spectra of the Frozen Blueberry Fruit Extracts and TBZ-Treated Extracts

Several frozen fruit stocks of both EU and non-EU provenance were acquired from
popular local markets and employed for sampling. Their labeling comprises the nutritional
information, but any information regarding their potential chemical treatment or contami-
nation is not specified; only the package of bio/organic/eco frozen fruit samples had labels
indicating they were from ECO Agriculture, the principle of which is no-chemical synthetic
pesticides and fertilizers [23,24].
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Subsamples were prepared from each stock by immersing 1g of frozen fruit in 1.5 mL
of ethanol of analytical purity. Strongly colored extracts were obtained after 24 h. The
supernatant was carefully separated, sealed, and deposited in cold and dark conditions for
further use. All crude extracts were analyzed with SERS by adding 10 µL from each extract
to 490 µL colloidal Ag, and measured immediately.

To evaluate the detection of TBZ in frozen fruit samples, two bio/eco/organic extracts
of these frozen fruits were chosen. Specifically, two blueberry stocks from different pro-
ducers and origins were selected. These extracts were utilized to create TBZ-treated frozen
fruit extracts for probing TBZ detection in samples. The TBZ samples were made by adding
a 10−3 M solution of TBZ to the fruit extract solution in a proportion of 1/1 (v/v). For
TBZ-treated extract solutions, SERS samples were made by adding 1 µL to 490 µL silver
colloidal solution. A small amount of 1, 2, 3, 4 and 5 µL of the resulting mixed solution was
further used for SERS sampling and immediate spectra recording. The SERS solutions were
measured immediately after preparation. The SERS spectra were recorded from each in
triplicate, and the average spectrum has been further used for analyses.

2.3.3. SERS Spectra of the Bentonite-Filtered Extracts

The second set of experiments employed bentonite for lowering the polyphenolic
content of extracts. The bentonite filtered samples were made by adding 0.0625 g food
bentonite powder to 500 µL extract solution. The obtained mixtures were stirred for about
1 min, afterward being left for 3 h to rest, thereby resulting in a bentonite-filtered sample.
The supernatant was further separated and used for SERS analyses. The TBZ-treated
bentonite filtered samples were made by adding a 10−3 M solution of TBZ to extract the
supernatant from the bentonite solution in a proportion of 1/1 (v/v). A small amount of 1,
2, 3, 4, and 5 µL of resulting bentonite-filtered solution was further used for SERS sampling
and immediate spectra recording. The illustrative graphical sketch of the successive steps
taken to conduct SERS analysis for TBZ detection is presented in Figure 1.
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2.4. Instrumentation

The SERS spectra were recorded using a Confocal Renishaw InVia Reflex Raman
system with a 532 nm line for excitation and an output power of 100 mW. SERS spectra
were recorded in triplicate in the 50–1800 cm−1 spectral range with 0.5 cm−1 resolution.

The TBZ concentration values reached by SERS are indicated on each spectrum. The
experiments were conducted three times using different samples prepared from the same
lot. All the measurements were performed at room temperature.

3. Results
3.1. SERS Spectra of the Frozen Blueberry Fruit Extracts

Several frozen blueberry fruit stocks, both bio/ecologic/organic and non-bio/ecologic/
organic, were acquired from popular local markets and employed for sampling. Their
extracts were investigated with SERS by adding 10 µL from each extract solution to 490 µL
colloidal Ag, and measured immediately. Figure 2 shows the bio (olive color and non-bio
(blue color) blueberry extracts’ SERS spectra in comparison with the SERS spectra of TBZ
at 10−3 M concentration (red color).
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Figure 2. (A) Typical SERS spectra of 11 different crude blueberry extracts—from different market
stocks. The “bio” and “non-bio” stocks are indicated with different colors. The SERS spectrum of
TBZ alone is given in bottom as a dotted line for the eye guide. The FT-Raman spectrum of blueberry
is given with black color on the top. (B) Spectral detail in the 1400–1700 cm−1 range is given in the
right panel to highlight that the main TBZ band is not overlapped by the crude extracts’ bands.

Blueberries are rich in flavonoids and their extracts SERS signature is characteris-
tic of these compounds. The most intense SERS bands of catechins were reported at
1035/1039 cm−1, 1328 cm−1, and 1513 cm−1. Anthocyanins are also expected to be ob-
served as prominent SERS bands in the ranges of 1325–1339 cm−1, 1516–1545 cm−1, and
one distinct, intense band between 1624–1645 cm−1, among others [25].

Supplementary Table S2 summarizes the observed bands in SERS spectra of frozen
blueberry extracts and their vibrational bands’ assignment based on the literature [25].

Independent blueberry stocks provided similar SERS signals in terms of band positions,
but with slight differences in their relative intensity, indicating a slightly different balance
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of flavonoids content from one stock fruit to another. Among the flavonoids’ bands, the
TBZ fingerprint could not be observed in raw extracts.

The crude extracts’ SERS analyses clearly showed the absence of the TBZ SERS bands,
which could suggest that the purchased stocks of market fruits were free of TBZ (or that
TBZ was not detectable in all randomly acquired fruit stocks).

3.2. The Concentration Dependence SERS Spectra of TBZ

A series of SERS spectra of 20 µM to 0.2 µM TBZ solution are presented in Figure 3A.
The SERS spectra at the chosen concentrations showed reproducible features, meaning
that the main SERS bands are observed with similar relative intensities and band posi-
tions. Theoretically, the SERS effect could be influenced by concentrations, in a certain
range exceeding the so-called coverage effect (many molecules, completely occupying
every plasmonic surface, which could completely change the SERS feature in terms of
observed bands).
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Figure 3. (A) SERS spectra of TBZ on hydroxylamine-reduced AgNPs at different concentrations,
from 20 µmol l−1 to 0.2 µmol l−1, as indicated on each spectrum; excitation: 532 nm. (B–D) The linear
regression equations between SERS band intensity and TBZ solution concentration for three different
TBZ SERS bands: (B) 1571 cm−1; (C) 1005 cm−1; (D) 778 cm−1. Error bars were inserted, representing
a 3% percentage of data values.

The most significant SERS bands are observed at 1618, 1571, 1400, 1318, 1005, and
778 cm−1, in agreement with previous reports on SERS of TBZ on various nanostructured
substrates [19,26–28]. Additional weak and medium peaks are also observed, as summa-
rized in Supplementary Table S3, along with their vibrational assignment. Taking into
account the SERS selection rules, which explain the strong enhancement on the nanoparti-
cles’ surface, SERS data suggested an approach orientation of the TBZ skeletal molecular
structure relative to the AgNPs’ surface via N atoms. The presence of the SERS band at
239 cm−1 attributed to the Ag-N in SERS complex supports molecular chemisorption with
respect to the AgNPs’ surface [29].

The SERS spectral shape suggests that the concentration decreasing does not affect the
orientation of the adsorbed species with respect to the Ag surface in the discussed concen-
tration range (from 20 µM to 0.2 µM). The SERS spectral shape of TBZ at 2 × 10−7 mol L−1

(0.2 µM) is still consistent with the main fingerprint of the TBZ.
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Figure 3B–D shows the linear relationship between the SERS intensity of the main
TBZ peaks and the TBZ concentrations. Based on the concentration dependence spectra
of TBZ, linear regression equations describing the intensity variation with concentration
of the three most prominent Raman bands at 778, 1005, and 1571 cm−1 were established.
The TBZ concentrations were 0.5, 2, 5, 10, and 20 µM, respectively. Although visible as
weak bands, at the lower concentration values of TBZ, the overall SERS feature is changed
for very low concentrations, suggesting a slightly different orientation mechanism of the
molecules with respect to the nanoparticles’ surface. Consequently, the SERS feature
at lower concentrations, although useful for observing the TBZ weak bands, was not
included in the calibration curves due to the different mechanisms governing their overall
SERS feature.

With the increase in TBZ concentration, the SERS intensity at 1571 cm−1, gradually
increased, which was used for quantitative SERS analysis with R2 = 0.96064 (Figure 3B). For
the third important band of TBZ spectra (778 cm−1), an acceptable correlation was obtained
for the investigated concentration range, (Figure 3D). The band at 778 cm−1 is assigned to
the υ(C-S) and breathing mode of the penta ring of TBZ, as shown in the Supplementary
Material, Table S3. This medium band is less sensitive to lower concentrations, in line with
previously cited studies [28] (indicating a TBZ SERS affinity to AgNPs via N atoms rather
than S atoms); thus, this vibrational mode is not directly involved in the SERS adsorption
process. The cited reference also supports these considerations, highlighting that at a
concentration of 0.1 µm, the 778 cm−1 band is not visible in their SERS spectrum. This is
because for the main SERS band of TBZ at 1571 cm−1, the linear correlation coefficient was
superior, and we can assume a strong linear correlation between the SERS signal intensity
and the concentration of TBZ. In other words, the main band at 1571 cm−1 is directly related
to the SERS adsorption, due to the interaction of the skeletal TBZ structure via N atoms.
Consequently, the SERS technique proves to be reliable and accurate in quantifying the
TBZ analyte in the sample, allowing for precise and accurate measurements to be obtained.

The successful quantitative dependency of SERS intensity on the TBZ concentrations
readily enables the present SERS assay of in situ monitoring of pesticides.

3.3. SERS Spectra of the TBZ-Treated Frozen Blueberry Fruit Extracts (Multiplexed SERS)

The TBZ samples were made by adding a 10−3 M solution of TBZ to fruit extract
solutions in proportion a of 1/1 (v/v). For TBZ-treated extract solutions, SERS samples
were made by adding 1 µL to 490 µL silver colloidal solution. A small amount of 1, 2, 3, 4
and, 5 µL of the resulting mixed solution was used for SERS sampling. The TBZ-treated
fruit extracts provide a multiplexed SERS feature, where the SERS bands of TBZ could be
distinctly recorded among the characteristic anthocyanins from blueberries; thus, TBZ is
detectable in a pool of flavonoids.

The measurements were conducted for two independent and randomly selected
blueberry stocks, denoted stock 1 and stock 2 in Figure 4. SERS measurements were run in
similar conditions, and the SERS protocol was similar. The volume ratio of extract to TBZ
solutions used revealed that increasing the amount of sample (extract + TBZ) results in
increasing the SERS background, along with the increased TBZ characteristic SERS bands
(Figure 4A, E). Even so, data analysis revealed that the three main bands of TBZ at 1571,
1005, and 778 cm−1 were detectable in the multiplexed SERS feature among the flavonoid
bands, and their intensity increased with the increasing TBZ concentration. The linear fit
of intensity plot of the three main bands of TBZ at 1571, 1005, and 778 cm−1 as a function
of concentration showed a coefficient R2 of 0.81, 0.94 and 0.93 (Figure 4B–D) for stock 1
and 0.98, 0.89, and 0.91 (Figure 4F–H) for stock 2, respectively, as comparatively shown in
Figure 4 for the two independent stocks. Thus, using any of the three main bands of TBZ,
the limit of detection was submicromolar in each case, as indicated in Figure 4.
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Figure 4. SERS spectra of blueberry extracts: (A) stock 1, (E) stock 2, as indicated, treated with TBZ at
concentrations from 1.01 to 5.06 µM, as shown by the color code. The inserts showed spectral details
of the three prominent bands of TBZ, at 1571, 1005, and 778 cm−1, respectively, and the plot of the
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SERS intensity of these bands of TBZ as a function of concentration is shown individually by (B–D) for
stock 1, and by (F–H) for stock 2. A linear fit with a slightly different R2 coefficient of determination
and the LOD is given in each plot. Error bars represent the relative error of each determination
(percentage); excitation: 532 nm.

Due to the multiplexed SERS signature of the berry extracts and TBZ, we further used
an original approach to lower the extract molecular contribution of complex samples to
the overall SERS signature, namely by filtering the fruit extracts on bentonite to reduce
the flavonoid content, which is responsible for the increased SERS background with the
increasing concentration of TBZ-treated extract on AgNPs.

Bentonite is known to adsorb efficiently; thus, we assume substantial adsorption of
major molecular compounds from extracts. Therefore, the signal of TBZ is expected to be
more effectively observed in a SERS analysis for the purpose of quantification.

3.4. SERS Spectra of Bentonite-Filtered Extracts

Bentonite appeared to adsorb a significant amount of compounds from crude extracts;
thus, the comparative spectra of crude extracts and bentonite-filtered extracts revealed a
much weaker SERS signal of the latter, as depicted for the two cases in Figure 5. It is worth
mentioning that the two extracts denoted 1 and 2 in Figure 5 showed different balances of
compounds, the most common being flavonoids, including catechins, epicatechins, and
anthocyanins [30].
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Figure 5. (A) Image of the two different stocks of blueberry extracts filtered on bentonite. (B) The
SERS spectra of two different blueberry extracts, samples 1 and 2, compared with the corresponding
SERS spectra of bentonite-filtered extracts, respectively. Note the decreased SERS intensity and lower
spectral background in the bentonite-filtered samples.

Catechins were previously studied using SERS, and their prominent bands were used
for quantitative analysis [31]. Thus, using AgNPs, the bands of extracts are expected to
reveal the most intense SERS bands of catechins, which were reported at 1035/1039 cm−1,
1328 cm−1, and 1513 cm−1. Anthocyanins are also expected to be observed as prominent
SERS bands in the ranges 1325–1339 cm−1, 1516–1545 cm−1 range, and one distinct, intense
band between 1624–1645 cm−1, among others [25]. Unfortunately, these spectral ranges
are very common for multiple flavonoid compounds; therefore, analyzing the SERS bands’
positions in a blueberry extract, it is difficult to precisely identify one flavonoid from another.



Chemosensors 2023, 11, 505 10 of 16

Certainly, their balance in the two extracts is different, as the relative intensities of the SERS
bands of two distinct crude extracts in Figure 5 are different in similar SERS experimental
conditions. However, the same band positions are observed in both investigated sample
extracts, indicating that the SERS method applied here to control the presence of TBZ is
effective, although crude extracts from different provenances show different balances of
flavonoids.

The crude extracts’ SERS analyses clearly showed the absence of the TBZ SERS bands,
which could suggest that the two independent stocks of market fruits were free of TBZ.

Comparing the bands’ positions in the filtered versus non-filtered berry extracts on
bentonite from Figure 5, it appears that bentonite adsorbs a significant number of flavonoid
compounds; moreover, the SERS bands after bentonite filtration appeared with small shifts,
which may indicate that certain compounds (very sensitive to pH) are adsorbed, and the
remnants in the solution above bentonite clay are distinct compounds with less adsorption
availability.

Thus, we can tentatively conclude that the number and amount of flavonoids from ex-
tracts are substantially lowered by bentonite adsorption. The supernatant on bentonite is likely
to reveal a lesser fluorescence background in the SERS spectra of bentonite-treated extracts.

3.5. SERS Spectra of the Bentonite-Filtered Extracts Treated with TBZ

The TBZ samples were made by adding a 10−3 M solution of TBZ to bentonite filtered
fruit extracts solution in a proportion of 1/1 (v/v). For TBZ-treated bentonite filtered extract
solutions, SERS samples were made by adding 1 µL to 490 µL silver colloidal solution. A
small amount of 1, 2, 3, 4 and 5 µL of resulting mix solution was used for SERS sampling.

The SERS spectra of bentonite-filtered blueberry extracts shown in Figure 6 (upper:
stock 1, lower- stock 2, as indicated) treated with TBZ clearly show an increased intensity
of the TBZ SERS bands with increasing concentration. The insert in Figure 6 shows the
spectral details of the three main bands of TBZ, at 1571, 1005, and 778 cm−1, respectively,
and the plot of SERS intensity of these bands of TBZ as a function of concentration. A linear
fit with a slightly different R2 coefficient of determination and the LOD is given in each plot.
Error bars represent the relative error of each determination (percentage). In this case, the
LOD of TBZ was 0.09 µM when the main SERS band of TBZ at 1571 cm−1 was used, and
0.15 and 0.17 µM in the case of using the bands at 1005 and 778 cm−1, respectively. Note
the lower LOD compared to that from Figure 4 (non-filtered on bentonite). The slightly
different values are due to the complex mechanism of SERS enhancement underlying the
specific polarizability components of each vibrational mode in the discussion. Overall,
comparing Figures 4 and 6, the bentonite-treated fruit extracts allowed for the lowering of
the limit of detection within an order of magnitude (from 0.4 to 0.09 µM).

Bentonite will not influence the TBZ content, regardless of adding it before or after
filtering. According to literature [32], bentonite adsorbs cations, having a high cation exchange
capacity (CEC) [33]. Thiabendazole could be potentially adsorbed, provided that changing
the ionization status is achieved, namely passing from a neutral to a protonated form. In
the present study, the TBZ solution has a pH of 7. According to PubChem, Thiabendazole is
“stable in water and in acid and alkaline solution; stable under normal conditions to hydrolysis,
light, and heat” [34], and its dissociation constant is pKa 4.64 (at 25 ◦C).

Furthermore, in our previous study on the detection of thiabendazole applied to citrus
fruits and bananas using SERS [27], we conducted theoretical calculations of the pKa values
of TBZ molecule using ACD/LABS pKa calculator software, version 2010-2013 ACD/LABS.
The theoretical predictions indicated that the first protonated form (N from ring 2) appears
at pKa 3.4”. The cumulative conclusions from the above-cited references are that in the
TBZ solution used herein, the TBZ species is present in a neutral form, and not protonated;
thus, it is not suitable as a cation for adsorption on bentonite.

These bentonite-treated versus non-treated extracts were further comparatively inves-
tigated regarding SERS detection of TBZ. The SERS spectra of the bentonite-treated versus
non-treated extracts treated with TBZ 10−3 M are displayed in Figure 7.
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Figure 6. SERS spectra of bentonite-filtered blueberry extracts (upper, (A): stock 1, lower, (E)- stock
2, as indicated) treated with TBZ at concentrations from 1.01 to 5.06 µM as showed with color code.
The insert showed spectral details of the three main bands of TBZ, at 1571, 1005, and 778 cm−1,
respectively, and the plot of SERS intensity of these bands of TBZ as a function of concentration is
shown is shown individually, (B–D) for stock 1, (F–H) for stock 2. A linear fit with a slightly different



Chemosensors 2023, 11, 505 12 of 16

R2 coefficient of determination and the LOD is given in each plot. Error bars represent the relative
error of each determination (percentage). Excitation: 532 nm. Note the lower LOD compared to those
from Figure 4 (non-filtered on bentonite).
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comparison with TBZ-treated ones (B) SERS spectra of bentonite-filtered blueberry fruit extract
in comparison with TBZ-treated ones and the calculated spectral difference (between treated and
normal) are plotted in (C), respectively; (D,E). Raw SERS spectra of blueberry fruit extract from
independent market fruit stock (sample 2) in comparison with the TBZ-treated one; (F) SERS spectra
of bentonite-filtered blueberry fruit extract compared to the TBZ-treated one; and the calculated
spectral differences (between TBZ-treated and normal) from (E,F) are plotted in (G,H), respectively.
Note the improved and unambiguous detection of the TBZ bands in the bentonite-filtered extract
from (H). SERS of TBZ is showed in the dotted spectrum from (H).

The bentonite filtered samples treated with TBZ were made by adding a 10−3 M
solution of TBZ to extract the supernatant on bentonite in a proportion of 1/1 (v/v). From
this solution, 1 µL was added to 490 µL AgNPs and used for SERS measurements. The
spectral difference in every case is calculated and displayed in Figure 7C, D for stock 1, and
Figure 7G, H, for stock 2.

Comparing the band intensities at 1571 cm−1 in Figure 7B, F of the filtered versus
non-filtered extracts on bentonite-filtered extract treated with TZB, it appears that when
a larger amount of mixed solution was added to the AgNPs, the SERS band intensities
decreased.

This observation does not contradict our previous statement that with the increasing
concentration of the TBZ, the fingerprint bands’ intensities increase merely with an increase
in the amount of TBZ extract; the overall fluorescence background is increased, to the
detriment of the signal-to-background ratio.

Raw SERS spectra of blueberry fruit extract from independent market fruit stock
(sample 2) were used to validate the method. In comparison with the raw TBZ-treated
fruit extract, the bentonite-filtered extract revealed, upon spectral differences, a clear SERS
signature of the TBZ, indicating unambiguous detection of the added TBZ. The calculated
spectral differences (between TZB-treated and normal) from Figure 7A,B are plotted in
Figure 7C,D, respectively. SERS of TBZ is shown in the dotted spectrum from Figure 7D for
the eye guide.

4. Conclusions

The sensitivity of the proposed method allows for the efficient monitoring of TBZ
in solutions resulting from frozen fruit extracts reaching the detection limits (LOD) of
this approach at 10−7 M. The blueberry fruit extracts control for TBZ via SERS, resulting
in a multiplexing assay; this is due to the strong SERS signal of anthocyanins, which is
characteristic of these fruit products. Here, we employed bentonite to adsorb a substantial
amount of molecular extracts and lower the SERS background for improved SERS detection
of TBZ in frozen fruits.

This work proposes a simple, affordable, and sensitive method for the improved
detection of TBZ from blueberry samples, involving the bentonite filtration and subsequent
SERS supernatant analysis of flavonoid-rich frozen fruit extracts. Through this approach, it
was possible to get rid of the main SERS fingerprint bands, which are characteristic of the
blueberry fruits, by extaracting them.

The sensitivity of the proposed method allows for the efficient monitoring of TBZ in
solutions resulting from frozen fruit extracts. Thus, using bentonite, the LOD for SERS
analysis allowed a detection limit of 0.09 µM. More precisely, from the relative intensity of
the specific SERS bands as a function of concentration, we estimated a total amount of TBZ
of 0.0001 mg/kg in blueberry extracts, which is two orders of magnitude lower than the
maximum allowed by current regulations.

To validate, an independent stock of frozen fruits was taken for analysis, and a similar
approach was applied. This analysis showed that the blueberry fruits exhibited slightly
different molecular ratios of the main compounds, revealing the strongest SERS bands; the
detection capability of the technique produced evidence of TBZ from artificially treated
fruits. This approach shows promise for a fast and cheap food control approach when a
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robust SERS calibration curve is available. By these means, we were able to increase the
specificity and performance of TBZ detection on real-world samples, by reaching an LOD
two orders of magnitude lower than the maximum allowed by current regulations. The
demonstrated practical efficiency and the very low costs of SERS-based TBZ sensing in
frozen products mean we can recommend our approach as a promising alternative in the
food safety monitoring of omnipresent pesticides in commercial products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11090505/s1, Table S1: Detection of pesticides
from fruits and vegetables using SERS substrates [35–53]; Table S2: The proposed assignment of SERS
peaks of frozen blueberry extracts [25]; Table S3: The proposed assignment of the main Raman and
SERS bands of TBZ on the hydrox-ylamine-reduced AgNPs [19,26–28].
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