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Abstract: Lead pollution poses a serious threat to the natural environment, and a fast and high-
sensitivity method is urgently needed. SERS can be used for the detection of Pb2+ ions, which
is urgently needed. Based on the SERS spectral reference data set of lead nitride (Pb(NO3)2), a
model for detecting Pb2+ was established by using a traditional machine learning algorithm and
the GBDT algorithm. Principal component analysis was used to compare the batch effect reduction
in different pretreatment methods in order to find the optimal combination of such methods and
machine learning models. The combination of LightGBM algorithms successfully identified Pb2+

from cross-batch data, exceeding the 84.6% balanced accuracy of the baseline correction+ radial basis
function kernel support vector machine (BC+RBFSVM) model and showing satisfactory results, with
a 91.4% balanced accuracy and a 0.9313 area under the ROC curve.

Keywords: surface-enhanced Raman spectroscopy (SERS); machine learning (ML); heavy metal ion;
light gradient boosting machine (LightGBM)

1. Introduction

With the rapid development of human activities such as mining, fertilizer production,
and battery manufacturing [1,2], heavy metal pollution poses a serious threat to the health
of organisms and the ecological balance of the environment. As one of the most toxic heavy
metal ions [3–5], lead can cause irreversible damage to various organ systems, which can
lead to cancer [6,7] and intellectual disabilities [8–14]. Due to its non-biodegradable proper-
ties, Pb2+ is easily amplified through the food chain and eventually enters the human body.
Traditional heavy metal ion detection methods include the following: spectroscopic analy-
sis, including atomic absorption spectroscopy (AAS) [15], fluorescence spectroscopy [16,17],
and other methods [18–22], and chromatographic analysis, including gas chromatography
(GC) [23] and high-performance liquid chromatography (HPLC) [24]. The main method of
electrochemical analysis is electrochemical sensing [25,26]. Among them, fluorescence spec-
troscopy is mostly developed in an organic solvent system, which has some disadvantages,
such as hydrophobicity, limited emission wavelength, and weak fluorescence enhancement.
AAS is often considered expensive and time consuming. At present, chromatographic
analysis plays an important role in wastewater analysis, but it is limited by high sample
preparation requirements, overlapping detection regimes, and chemical waste generation.
Due to expensive equipment [27] and sample damage, these methods cannot detect heavy
metal ions simply, quickly, and sensitively; thus, technology for simple, high-sensitivity,
and fast Pb2+ ion detection is urgently needed.

Surface-enhanced Raman spectroscopy (SERS) has been widely used in detection,
medical treatment, archaeology, and other fields due to its ultrahigh sensitivity, short
response time, good selectivity, simple operation, and rich spectral fingerprint informa-
tion [28–34]. Good SERS substrates can carry out the trace detection of molecules. For
example, Shi Bai et al. used liquid interface-assisted SERS to achieve marker-free trace
detection of biomolecules with a detection limit of pM~fM [35]. As a free metal cation, Pb2+
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is a vibration-free substance [36]. The detection of Pb2+ uses an indirect SERS method that
relies on molecular receptors that selectively interact with the target transition metal with
high affinity. In the indirect method, the measurable SERS signal, which reflects the content
of the target pollutant, is provided by an external molecular source [37]. The method of
detecting lead ions through SERS can be roughly divided into two types based on differ-
ent label molecules. One is marked by DNA/RNA molecules, such as Pb2+-dependent
DNAzymes and aptamers (Apt) [38,39]. The Raman reporter can approach or stay away
from the noble metal substrate by cleaving the DNA. Apt can combine with Pb2+ to form
stable complexes. Both of them can cause changes in the SERS signal. Wang et al. pro-
posed a sensitive and specific SERS-DNAzyme biosensor to detect Pb2+ [40]. The other
label molecules are metal nanoparticles modified with specific functional groups. Specific
functional groups can coordinate with Pb2+ to place the Raman reporter close to or far
away from the precious metal substrate, thereby causing changes in the SERS signal [41].
For instance, Frost et al. demonstrated a citrate-modified AuNP SERS sensor to analyze
lead ions, relying on the coordination interaction between the ions and the carboxylate and
hydroxyl groups of citrate [42].

As a data mining and modeling tool, machine learning (ML) significantly simplifies
Raman data processing and is suitable for spectral data analysis [43,44]. Chen et al. made a
distinction between ovarian cancer, cysts, and normal patients based on machine learning
algorithms [45]. W. Gao and coworkers carried out the fast and accurate prediction of
lignin content by using a random forest algorithm. Seongyong Park and coworkers used
the RBFSVM classifier to detect Pb2+ in water [1]. Xu et al. reviewed the basic principle and
strategy of Pb2+ detection based on SERS, which provided a good theoretical basis for the
combination of machine learning and SERS to detect Pb2+ [41]. These examples illustrate
the successful implementation of machine learning techniques on spectroscopy data sets.

Besides the classical ML algorithms, several advanced gradient boosting decision tree
(GBDT) algorithms have been proposed in recent years, such as the light gradient boosting
machine (LightGBM) and eXtreme Gradient Boosting (XGBoost). These advanced GBDT
algorithms have been used for classification and regression tasks in many fields and have
shown good performance. If used to build heavy metal ion Pb2+ detection models, these
advanced GBDT algorithms may have great potential to yield higher accuracy. Figure 1
shows the flow chart of the study. In this study, heavy metal ions of Pb2+ are detected by
combining SERS technology and a GBDT algorithm. Using the publicly available SERS
data set of lead nitride (Pb(NO3)2), model training and testing are conducted on SERS
spectra of similar construction but independently measured. Principal component analysis
(PCA) is used to prove that there are some domain generalization problems in the data set,
which would seriously affect the performance of the classifier in the processing of unseen
data. The effects of a Savitzky–Golay (SG) filter, the airPLS algorithm, standard normal
variate (SNV) normalization, area normalization, and other pretreatment methods on the
performance of unseen data processing are studied. By comparing the traditional machine
learning algorithm with the GBDT algorithm, the optimal prediction model is selected. In
the validation analysis, the LightGBM algorithm shows satisfactory results, with a balanced
accuracy (BACC) of 91.4% and an area under the receiver operating characteristic curve
(AUROC) of 0.9313.
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Figure 1. Configuration of the study. In confusion matrix, the color deepens as the number of
classified samples increases.

2. Materials and Methods
2.1. Material

The SERS data set for lead (II) nitrate (Pb(NO3)2) is a public data set generated by
Seongyong Park, available for download from GitHub (https://github.com/psychemistz/
sersml (accessed on 20 September 2023)). Pb(NO3)2 was purchased from Sigma Aldrich
(Yongin, Republic of Korea). Since the accuracy of a Raman spectrum is not affected by
the buffer solution, deionized water was used as the solvent. Spectral measurements were
performed using commercially available SERS substrates (SERSpace, Kwanglim Precision
Co., Ltd., Daegu, Republic of Korea). Ag nanoparticle substrate was used to enhance
the Raman signal. The Raman spectrometer (NS200, Nanosystems Co., Ltd., Daejeon,
Republic of Korea) had a wavelength of 785 nm, and its laser power and exposure time
were fixed at 200 mW and 500 ms, respectively. The spectral measurement range was
100~3600 cm−1, and each test sample consisted of 2000 wave numbers. The 2.5 µL sample
was dripped on the SERS substrates and dried at room temperature (27 ◦C). In order to
minimize signal degradation, the interval of each SERS measurement was 10 s (in each
case, the total acquisition time was 1 h 40 min). In order to ensure the repeatability of the
experimental results, two independent experiments were conducted. The concentration
of each independent experiment sample was 0.01 µM, 0.1 µM, 10 µM, and 1000 µM, and
500 groups of data were measured for each concentration. A total of 4000 groups of data
were measured. According to the WHO guidelines for heavy metal detection, the positive
threshold should be ≥0.01 µM. Each independent experiment consisted of 500 negative
samples and 1500 positive samples. To ensure that the measurement had variability in
equipment and operation, SERS measurements of different batches and concentrations
were performed using a separate substrate. Theoretically, the concentration of each batch
was the same. In practice, the error caused by manual operation could not be excluded.

Figure 2 shows the original Raman spectrum measured by actual experiments without
any processing. As shown in Figure 2, the SERS repeatability of a single batch was good.
The SERS spectrum mean and standard deviation of different concentrations of lead nitrate
(Pb(NO3)2) in two batches were significantly different. A batch effect existed in two separate
tests (see Section 3), which caused some domain generalization problems and seriously
affected the performance of the classifier on unseen data processing.

https://github.com/psychemistz/sersml
https://github.com/psychemistz/sersml
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(A) conc = 1000 µM, (B) conc = 10 µM, (C) conc = 0.1 µM, (D) conc = 0.01 µM.

2.2. Raman Spectrum Pretreatment

In order to reduce interference from unexpected external factors, such as fluorescence
emission, thermal noise, and the quality of the substrate used, preprocessing such as
smoothing and baseline correction is often required. Due to the batch effect of the data
set used, the performance of the model trained with different pretreatment techniques
was compared that of the model design based on machine learning. In this study, an SG
filtering algorithm was used for smooth denoising and the airPLS algorithm was used to
eliminate the effect of the baseline. Normalization is the removal of sources of systematic
variation between sample profiles to ensure that the spectra are comparable across related
sample sets [46]. Maximum and minimum value normalization and area normalization
are considered for the normalization of data sets. For the maximum and minimum value
normalization, the normalization value for the j-th wavenumber of the i-th sample Si,j is
defined as:

Smini,j =
Si,j − min(Si)

max(Si)− min(Si)
(1)

where Smini,j is the normalized value of each spectral value, Si,j is the original spectral
value, and max(Si) and min(Si) are the maximum and minimum values of the original
spectrum, respectively.

For the area normalization, the preprocessed sample spectrum Sareai,j is defined as:

Sareai,j =
Ai,j

∑ Ai,j
(2)

where Sareai,j is the normalized value of each spectral value, Ai,j is the area for the j-th
wavenumber of the i-th sample Si,j, and ∑ Ai,j is the sum of the original spectral areas. It is
calculated with the composite trapezoidal rule.

In particular, SNV normalization is considered to standardize the data set so that the
mean value of each spectrum is 0 and the standard deviation is 1.

For SNV normalization, the preprocessed sample spectrum Ssnvi,j is defined as:

Ssnvi,j =
Si,j − µ

σ
(3)

where Ssnvi,j is the normalized value of each spectral value, and Si,j is the original spectral
value. µ and σ are the mean value and standard deviation of the whole range of each input
variable, respectively.
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2.3. Feature Extraction

In the analysis of Raman spectroscopy, the Raman shift corresponds to the Raman
intensity one by one. By observing the Raman shift and the intensity of the spectral data
set, the spectral characteristics can be identified. The detection of Pb2+ uses an indirect
SERS method. The coordination of Pb2+ with some groups or atoms causes the Raman
spectrum peak to change. The change in the Raman spectrum peak on the SERS substrate
can reflect the change in heavy metal ion concentration. With this change, the intensity
and position of the Raman peak markedly change. The information extracted from a
large number of Raman spectrum data requires in-depth analysis by experienced experts,
and the complexity of problem analysis limits the application of a Raman spectrum in
practice. In this study, feature extraction was used to reduce the feature space by creating
some independent features that combine several old features. PCA ensured the maximum
variance of the original data in low-dimensional space by linearly mapping the data into the
space. After PCA treatment, the valuable part of the feature was retained, the unimportant
part was deleted, and the new feature was independent of other features. The batch effect
of the used data set was proven by the identification of the spectral peak and PCA, which
was consistent with the fact that there were unconcerned factors in the actual measurement.

2.4. Model Optimization, Training/Testing, and Model Evaluation

For model optimization, the GridSearchCV function in the scikit-learn library was
used to search for optimal hyperparameters. Grid search is an exhaustive search method
that combines k-fold CV to determine the given parameter values. After all the parameter
combinations of the fitting function were traversed, the best parameter combination was
returned automatically [44]. In this study, k = 10, the root mean square error (RMSE)
was selected as the loss function, and the best parameter combination corresponded to
the lowest RMSE. For data splitting, the training test split function in the scikit-learn
library was used to split the training set/test set. The model training used 80% of the
data set obtained from a single independent experiment, and the remaining 20% was used
for verification after the training. After the model was verified, it was tested on a data
set obtained from another independent experiment. In this paper, k-nearest neighbor
(KNN), naive Bayes (NB), SVM, logistic regression (LR), decision trees (DTs), random forest
(RF), XGBoost, and LightGBM were used for the detection of the heavy metal ion Pb2+.
LightGBM 3.3.3 and XGBoost 1.7.1 were used to implement the GBDT and LGBM. Based
on scikit-learn 1.1.3, KNN, NB, LR, RF, SVM, and DT were realized. All methods were run
on computers equipped with Intel Core i5 and GeForce GTX1650. In order to determine the
optimal prediction model for Pb2+ detection, BACC and AUROC were selected as the main
indicators to evaluate the model performance. Sensitivity, accuracy, F1 score, Matthew’s
correlation coefficient (MCC), and Youden’s index were used as supplementary indicators.
BACC handles unbalanced data sets in binary and multiclass sorting problems. It is defined
as the average recall rate for each class. AUC is a performance index to measure the quality
of a classifier: Those corresponding to a larger AUC have a better effect. It was appropriate
to choose BACC and AUROC as the main indicators to evaluate the models’ performance.

3. Results
3.1. Fingerprint Range Analysis Results

Vibration peaks of Pb(NO3)2 solutions of different concentrations were identified by
Raman spectra, and the results are shown in Figure 3. Pb(NO3)2 molecules were prepared
in deionized water. The vibration peak of the Raman spectrum is distributed in the range
of 100~2000 cm−1, so it is most meaningful to analyze the vibration peak of that part. The
vibration peak of NO3

− ion is located at 1040 cm−1 [47], and its intensity was relatively
weak compared with other peaks. Therefore, the vibration peak in the figure may have been
related to Pb2+ or SERS substrates. In the two batches of data, the intensity of the vibration
peaks at 215 cm−1 and 360 cm−1 occupied a dominant position in the total vibration peaks.
The relative intensity of the two peaks changed relatively little with different concentrations,
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which may have been related to SERS substrates and was less affected by the concentration
of Pb2+.
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In batch 1, Raman spectral vibration peaks for a sample concentration of 1000 µM
were located at 1565 cm−1, 814 cm−1, 1600 cm−1, 855 cm−1, and 1350 cm−1; those for a
sample concentration of 10 µM were located at 650 cm−1, 975 cm−1, 1360 cm−1, 530 cm−1,
and 1210 cm−1; and those for a sample concentration of 0.1 µM were located at 640 cm−1,
1320 cm−1, 1550 cm−1, 525 cm−1, and 1445 cm−1. The intensity of these peaks was close to
that of the corresponding concentration at 360 cm−1. Such intensities of Raman spectra for
a sample concentration of 0.01 µM were close and much smaller than the one at 215 cm−1.
In batch 2, the vibration peaks for a sample concentration of 1000 µM were located at
1575 cm−1, 1240 cm−1, 825 cm−1, 1108 cm−1, and 1475 cm−1, and their intensity was
close to that at 360 cm−1. The peak intensities for sample concentrations of 0.01 µM,
0.1 µM, and 10 µM were close and far smaller than the one at 215 cm−1. In batch 1, with
the decrease in sample concentration, the intensity of the Raman spectral vibration peak
basically showed a decreasing trend. The position of this peak changed, and the peak with
a higher intensity appeared in the position with a smaller Raman frequency shift. When
the sample concentration was 0.01 µM, the intensity of other vibration peaks could be
almost ignored, except the one at 215 cm−1. In batch 2, the vibration peak of a sample
concentration of 1000 µM was similar to that of batch 1, with the same concentration. When
the sample concentration was reduced from 1000 µM to 10 µM or less, the vibration peak
strength was similar to the peak of the 0.01 µM sample concentration in batch 1. The
vibration peak intensity of batch 2 changed more dramatically.

The fingerprint range analysis shows that there were obvious differences between the
Raman spectra of the two batches of data, which increases the difficulty of direct manual
judgment and requires further analysis.

3.2. Exploratory Analysis of Data Sets

In practice, errors caused by manual operation cannot be excluded, and it has been
proven that there are obvious differences in Raman spectra, so it is necessary to analyze
data sets. PCA can achieve feature dimension reduction by calculating feature vectors in its
feature covariance matrix. The eigenvector corresponding to the principal component is
used to reconstruct the new data, which has the greatest variance in the direction of the
eigenvector. A single batch of data sets was used to learn PCA, which was then used to
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process another batch of secondary data sets, retaining 95% of the variance. We projected
the principal components of two batches of data onto a public space; these are shown
in Figure 4. The positive and negative samples of these two batches were aggregated
separately and could not be linearly separated in their respective classes. This indicates
that the batch effect existed in the data set, causing some domain generalization problems
and seriously affecting the classifier’s performance in processing unseen data.
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In order to reduce the adverse effects caused by the batch effect, the corresponding
effects of different pretreatment techniques were studied, including the SG filter, the airPLS
algorithm, standard normal distribution normalization, area normalization, and so on.
Figures 5 and 6 show the PCA visualization results after pretreatment using different
combinations of methods. As can be seen from Figure 5, the SG filtering algorithm had
a large gap and poor effect compared with the airPLS algorithm. As in previous studies,
using the airPLS algorithm to remove the baseline reduced the adverse effects of the batch
effect and improved linear separability. However, when combined with the normalization
method, the SG filtering algorithm performed well in this aspect, had good alignment, and
improved the linear separability of the data. The GBDT algorithm performed better than
the others in the above method and the best in the SG+area+SNV method.



Chemosensors 2023, 11, 509 8 of 15
Chemosensors 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Visualization of the PCs of the SERS spectrum for (A,B) Savitzky–Golay, (C,D) airPLS, and 
(E,F) Savitzky–Golay+airPLS. Left: batch 1; right: batch 2. 

 
Figure 6. Visualization of the PCs of the SG spectrum for (A,E) area normalization, (B,F) SNV nor-
malization, (C,G) maximum and minimum value normalization + SNV normalization, and (D,H) 
area normalization + SNV normalization. Top: batch 1. Bottom: batch 2. 

3.3. Models Built with Advanced GBDT Algorithms 
A single batch of data was used for training and another batch of secondary data was 

used to test the performance of the model. A total of 10 independent tests were conducted 
for each batch of data, and a total of 20 independent tests were conducted to compare 
performance using the average test results. LightGBM hyperparameters included learn-
ing_rate = 0.05, max_depth = 3, and min_data_in_leaf = 20. Table 1 shows the performance 
of the LightGBM training model after different pretreatment algorithms. Table 2 shows 
the performance evaluation of the LightGBM training model after different preprocessing 
algorithms. Figure 7 shows the confusion matrix of the GBDT model test results. 

Figure 5. Visualization of the PCs of the SERS spectrum for (A,B) Savitzky–Golay, (C,D) airPLS, and
(E,F) Savitzky–Golay+airPLS. Left: batch 1; right: batch 2.

Chemosensors 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. Visualization of the PCs of the SERS spectrum for (A,B) Savitzky–Golay, (C,D) airPLS, and 
(E,F) Savitzky–Golay+airPLS. Left: batch 1; right: batch 2. 

 
Figure 6. Visualization of the PCs of the SG spectrum for (A,E) area normalization, (B,F) SNV nor-
malization, (C,G) maximum and minimum value normalization + SNV normalization, and (D,H) 
area normalization + SNV normalization. Top: batch 1. Bottom: batch 2. 

3.3. Models Built with Advanced GBDT Algorithms 
A single batch of data was used for training and another batch of secondary data was 

used to test the performance of the model. A total of 10 independent tests were conducted 
for each batch of data, and a total of 20 independent tests were conducted to compare 
performance using the average test results. LightGBM hyperparameters included learn-
ing_rate = 0.05, max_depth = 3, and min_data_in_leaf = 20. Table 1 shows the performance 
of the LightGBM training model after different pretreatment algorithms. Table 2 shows 
the performance evaluation of the LightGBM training model after different preprocessing 
algorithms. Figure 7 shows the confusion matrix of the GBDT model test results. 

Figure 6. Visualization of the PCs of the SG spectrum for (A,E) area normalization, (B,F) SNV
normalization, (C,G) maximum and minimum value normalization + SNV normalization, and
(D,H) area normalization + SNV normalization. Top: batch 1. Bottom: batch 2.

3.3. Models Built with Advanced GBDT Algorithms

A single batch of data was used for training and another batch of secondary data was
used to test the performance of the model. A total of 10 independent tests were conducted
for each batch of data, and a total of 20 independent tests were conducted to compare
performance using the average test results. LightGBM hyperparameters included learn-
ing_rate = 0.05, max_depth = 3, and min_data_in_leaf = 20. Table 1 shows the performance
of the LightGBM training model after different pretreatment algorithms. Table 2 shows
the performance evaluation of the LightGBM training model after different preprocessing
algorithms. Figure 7 shows the confusion matrix of the GBDT model test results.
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Table 1. Performance summary of the GBDT model.

Data Set Train Test BACC AUROC F1 MCC Youden’s Index

Raw
Batch 1 Batch 2 0.345 0.336 0.652 −0.298 −0.311
Batch 2 Batch 1 0.3213 0.363 0.650 −0.349 −0.357

Average 0.333 0.349 0.651 −0.324 −0.334

SG
Batch 1 Batch 2 0.295 0.367 0.613 −0.385 −0.410
Batch 2 Batch 1 0.337 0.414 0.668 −0.319 −0.326

Average 0.316 0.390 0.641 −0.352 −0.368

airPLS
Batch 1 Batch 2 0.524 0.709 0.652 0.038 0.048
Batch 2 Batch 1 0.686 0.753 0.816 0.469 0.372

Average 0.605 0.731 0.734 0.254 0.210

SG+airPLS
Batch 1 Batch 2 0.708 0.852 0.588 0.389 0.417
Batch 2 Batch 1 0.661 0.598 0.871 0.461 0.321

Average 0.685 0.725 0.730 0.425 0.369

SG+area+SNV
Batch 1 Batch 2 0.833 0.865 0.799 0.576 0.665
Batch 2 Batch 1 0.996 0.997 0.998 0.992 0.993

Average 0.915 0.931 0.898 0.784 0.829

Table 2. Performance evaluation of the GBDT model.

Data Set Train Test Accuracy Recall Precision Specificity

Raw
Batch 1 Batch 2 0.491 0.637 0.668 0.052
Batch 2 Batch 1 0.482 0.643 0.657 0

Average 0.486 0.640 0.662 0.026

SG
Batch 1 Batch 2 0.442 0.590 0.638 0
Batch 2 Batch 1 0.506 0.674 0.662 0

Average 0.474 0.632 0.650 0

airPLS
Batch 1 Batch 2 0.551 0.578 0.748 0.469
Batch 2 Batch 1 0.760 0.834 0.799 0.538

Average 0.656 0.706 0.764 0.504

SG+airPLS
Batch 1 Batch 2 0.563 0.417 0.997 1
Batch 2 Batch 1 0.801 0.941 0.811 0.380

Average 0.682 0.679 0.789 0.690

SG+area+SNV
Batch 1 Batch 2 0.749 0.665 1 1
Batch 2 Batch 1 0.997 0.998 0.998 0.995

Average 0.873 0.831 0.977 0.998
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Overall, the LightGBM method achieved a 0.873, 0.831, 0.998, 0.898, 0.784, 0.915,
and 0.829 average accuracy (acc), sensitivity (sen), specificity, F1-score, MCC, BACC, and
Youden’s index, respectively, which in turn were 0.146, 0.139, −0.002, 0.093, 0.161, 0.069, and
0.137 units higher than the BC + RBFSVM method, respectively [1]. The model established
with the GBDT algorithm proposed in this paper was superior to the model established
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using SVM, DT, and other traditional machine learning algorithms; the model established
using the LightGBM algorithm in particular had the best performance and saw a significant
improvement compared to previous studies. XGBoost’s performance was generally worse
than LightGBM’s, except for the data processed by area normalization. The former is
a useful algorithm that combines gradient enhancement techniques with multisequence
growing DTs; a decision tree is generated based on structural risk minimization. When
generating a CART tree, its complexity is considered. By fitting the second derivative
expansion of the previous round of the loss function, each subsequent DT learns and grows
from the mistakes of the previous one. Tree splitting is controlled by limiting the minimum
sample weight sum to avoid overfitting. XGBoost learning stops when the subsequent
DT is deep enough or the previous tree no longer leaves error patterns [46,48]. LightGBM
uses a leaf-wise leaf-growth strategy with depth constraints, whereas other enhancement
algorithms segment the tree depth or level. Therefore, when growing equivalent leaves
in LightGBM, compared with the level-wise strategy, the leaf-wise strategy can reduce
more errors and obtain better accuracy with the same number of splitting times. It may
grow a relatively deep decision tree, resulting in overfitting. This is the disadvantage
of the leaf-wise strategy. The maximum depth limit prevents overfitting while ensuring
high efficiency [49]. This may be the reason why the LightGBM algorithm outperformed
the XGBoost algorithm in this study. In fact, both LightGBM and XGBoost belong to the
gradient-enhanced decision tree, and both of them iteratively fit the sequences of such trees
through the hyperparameters. The performance of the two algorithms belongs to the first
echelon in the test algorithm.

3.4. Comparison and Analysis with Traditional Machine Learning Algorithms

A total of eight algorithms were selected during the test. The performance of the NB
algorithm was average; its BACC in the verification results was less than 90%, whereas
that of other algorithms was almost 99%. NB is a classification method based on Bayes’
theorem and independent assumption of feature conditions. For items to be classified, a
posterior probability distribution is calculated by the learned model. That is, the probability
of occurrence of each target category is calculated under the condition of occurrence of this
item, and the class with the largest posterior probability is taken as the category to which
the item to be classified belongs. Since the assumption of sample attribute independence
is used, the effect is not good if the feature attributes are correlated. In addition, the need
to calculate the prior probability mostly depends on the hypothesis; if the prior model is
not suitable, it may lead to poor prediction. In the present study, the batch effect existed in
the data set, so the feature dimension was not reduced, and the feature attributes of the
data might have been correlated. Therefore, the NB method with poor performance in the
validation set model need to be excluded during the comparative analysis.

A total of seven ML algorithms were selected to build the model; Table 3 shows the
performance of each. Table 4 shows the performance evaluation of each. Figure 8 shows
the confusion matrix of the ML model test results. Compared with the model established
using the classical ML algorithm, this paper proposes that the model established using
the advanced GBDT algorithm had better performance and successfully avoided the error
situation of the model trained under normalized conditions, which predicted only the
positive category in the previous study. Although it was not as good as the GBDT algorithm,
the performance of the RBFSVM algorithm was better than that of GBDT in the airPLS
method. This is the same as the previous study. However, the performance of the PCA
method was significantly worse than that of other methods, whereas the performance of the
RBFSVM algorithm was better. This may be due to the fact that after the PCA mapped the
data to the low-dimensional space, the linearly indivisible points there were changed into
linearly separable ones by the supercircle found by the RBF kernel in the attribute space.
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Table 3. Performance summary of the ML model.

Model BACC AUROC F1 MCC Youden’s Index

KNN 0.8352 0.842 0.795 0.652 0.670
DT 0.807 0.807 0.787 0.617 0.615
LR 0.586 0.677 0.607 0.171 0.172

RBFSVM 0.731 0.799 0.666 0.431 0.462
RF 0.842 0.864 0.801 0.672 0.683

XGBoost 0.834 0.904 0.879 0.695 0.707
LightGBM 0.915 0.931 0.898 0.784 0.829

Table 4. Performance evaluation of the ML model.

Model Accuracy Recall Precision Specificity

KNN 0.774 0.713 0.898 0.957
DT 0.763 0.719 0.869 0.896
LR 0.546 0.505 0.761 0.667

RBFSVM 0.637 0.543 0.861 0.919
RF 0.781 0.721 0.901 0.962

XGBoost 0.842 0.830 0.934 0.878
LightGBM 0.873 0.831 0.977 0.998
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4. Discussion

In fact, with the exception of some heavy metal ions such as arsenic and chromium,
most heavy metal ions are free metal cations. Inorganic arsenic has two forms: arsenic
(III) and arsenic (V). There are two characteristic peaks of pentavalent arsenic at around
780–812 cm−1 and 420 cm−1 and of trivalent arsenic at approximately 720–750 cm−1 and
439 cm−1. Chromium ions are usually found in the form of chromate (VI), which can be
detected directly through the symmetric stretching vibrations of the Cr–O band at around
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796 cm−1. The characteristic peaks of heavy metal ions in this part are obviously different
from those of Pb2+ and have little influence on the detection of Pb2+. Free metal cations
are vibration-free substances that have zero intensity in the Raman spectrum. However,
these free metal cations may affect the reaction of SERS substrates with Pb2+, which in
turn affects the detection of Pb2+. Whether free metal cations affect the detection of Pb2+

depends on the material and properties of the SERS substrate. Different SERS substrates
are affected differently.

In the solution of Pb2+ compounds, Pb2+ exists in the form of free metal cations,
and most of the others are inorganic compound groups. For example, PbSO4 solution
consists mainly of two ions, Pb2+ and SO4

2−. Inorganic compound groups have different
characteristic peaks based on their vibration mode. The characteristic peak of SO4

2− is
located at 980 cm−1 and that of CO3

− is located at 1065 cm−1. Raman spectrometers
measure substrate and inorganic compound groups. As a vibration-free substance, Pb2+

is not measured directly but rather indirectly by causing SERS signal changes. This study
mainly focused on Pb(NO3)2 solution. For other Pb2+ compounds, Pb2+ could still cause
SERS signal changes, so it should be measured.

The combination of SERS and machine learning for substance detection has been
widely studied. However, most research has focused on model training and testing using
spectra obtained from a single batch of experiments. In tightly controlled experiments,
there are still variables that have not received attention but have an impact on experimental
results. However, in reality, there are more unconsidered factors that may have a greater
impact on experimental results. Therefore, the reliability of the model’s performance,
which is tested using a single batch of data, requires additional consideration in an actual
application environment. Faced with the challenge of cross-batch data, there is a gap in the
relevant research.

At present, few discussions have taken place on cross-batch data detection, and there
have been few studies on the repeatability of unseen data models’ detection results. To fill
in the gaps, this study used a batch effect data set. The reduction in such an effect through
different pretreatment methods was studied using PCA. After comparing the effectiveness
of these methods, seven ML algorithms were used to build a model. A single batch of data
was used for model training and verification and another batch of secondary data was used
for model testing in order to verify the repeatability of the results.

The GBDT algorithm combined with Raman spectroscopy has broad prospects in
the detection of Pb2+ ions. In this study, the effects of different pretreatment methods on
the performance of machine learning models were compared. A fast, simple, and highly
sensitive method was provided for the detection of Pb2+ ions, and the problems of sample
destruction and contamination were solved. In addition, since only one metal ion, Pb2+,
was selected as the research material in this study, the presence of other heavy metal ions
was not studied to verify the feasibility of the method. Future work can revolve around
rectifying this.

5. Conclusions

Based on a SERS data set, this study adopted a classic ML algorithm and an advanced
GBDT algorithm to establish a model for the detection of Pb(NO3)2 molecules. In addition,
the influence of different pretreatment methods on SERS identification accuracy across
batches was compared to ensure repeatability. Compared with the model established
using the RBFSVM algorithm, the model established using the LightGBM algorithm had
an improved BACC and AUROC. Therefore, the GBDT algorithm can be combined with
Raman spectra to successfully establish a model for rapidly and accurately detecting
Pb2+ ions.
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