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Abstract: This work consists of a study to detect prostate cancer using E-senses devices based on
electronic tongue and electronic nose systems. Therefore, two groups of confirmed prostate cancer
and control patients were invited to participate through urine and exhaled breath samples, where
the control patients group was categorized as Benign Prostatic Hyperplasia, Prostatitis, and Healthy
patients. Afterward, the samples were subsequently classified using Pattern Recognition and machine
learning methods, where the results were compared through clinical history, obtaining a 92.9% success
rate in the PCa and control samples’ classification accuracy by using eTongue and a 100% success
rate of classification using eNose.

Keywords: urine; exhaled breath; prostate cancer; electronic nose; electronic tongue; pattern
recognition; machine learning

1. Introduction

Prostate cancer (PCa) is a malignant tumor diagnosed in the male population, ranking
second only to lung cancer, as reported by GLOBOCAN (Global Cancer Observatory) in
2020; it is the second most frequent cancer in more than half (112 cases out of 185) of
the countries of the world and the fifth cause of death in men [1]. In many cases, stage
PCa normally grows very slowly and often produces no symptoms or problems for years;
however, the symptoms produced by this tumor arise when the disease is locally advanced
or metastatic, which makes early diagnosis of the disease a public health challenge since
diagnosing this type of cancer in its early stage can improve the mortality rate and quality
of life [2].

Currently, the main diagnostic and monitoring tests for PCa are prostate-specific
antigen (PSA), a physical examination of the prostate gland, rectal examination (DRE), and
transrectal biopsy, which is the standard commonly used to confirm the disease. However,
in recent years, there has been controversy as to the effectiveness and efficiency of early
diagnosis of PCa using these methods [3]. PSA is recognized as an important tumor marker
for the detection and monitoring of PCa, as it is a protein produced by normal cells as
well as by malignant cells in the prostate gland [4]. According to the literature, in the
past, the serum PSA levels accepted as a normal reference range for all age groups was
4 ng/mL (nanograms per milliliter of blood). However, it has been shown that this test is
not always sensitive since studies have indicated that some men with PSA concentrations
less than 4.0 ng/mL had PCa and that many men with higher concentrations did not have
the disease [5,6]; that is why between 10% and 12% of men who undergo periodic PSA
tests will obtain a false positive result. The second important aspect to consider is that
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the PSA is not specific to PCa since its concentration can be elevated for several reasons,
such as age, ethnicity, urinary retention, and benign prostate diseases, such as Prostatitis
and Benign Prostatic Hyperplasia (BPH). As reported, in patients with Prostatitis, PSA
increases exceeding 30 ng/mL can be detected; this value normalizes after six to eight
weeks. In patients with BPH, 25% to 50% see PSA levels increase >4 ng/mL, but no higher
than 10 ng/mL [7,8]. As mentioned above, the inability of this test to distinguish on its
own between benign prostate diseases and localized tumors can be demonstrated, leading
to unnecessary false-positive prostate biopsies [9], overdiagnosis [10], and overtreatment
against PCa, causing considerable side effects [11], including erectile dysfunction and
urinary incontinence [12].

With regard to the digital rectal examination (DRE), it is the oldest and cheapest
screening tool. However, it is a technique with low reproducibility due to the variability
between examiners who can interpret the results differently [13,14], since the presence of
rectal touch abnormalities can include prostate enlargement, the appearance of suspicious
nodules, lobular asymmetry, and hard consistency, among others; the above are not nec-
essarily related to PCa, so they may be related to some other prostate disease. Another
disadvantage presented by the DRE test is that the PCa in its early stage may not have the
necessary size and rigidity to be palpable [15]. This test additionally causes considerable
discomfort, is uncomfortable and embarrassing for patients, and is less accurate than the
PSA test [16]. That is why, when there are abnormalities found in the DRE or PSA, it is
advisable to perform a prostate biopsy; this is an invasive test that involves the rectal
insertion of an ultrasound probe to diagnose and confirm PCa, to evaluate the histological
architecture using the Gleason grade [17].

On the other hand, transrectal ultrasound (TRUS)-guided systematic biopsy (SB) is the
most reliable and currently used method to ensure the accurate sampling of prostate tissue
in men considered at high risk of having PCa [18,19]. About 25% of the male population
undergoing prostate biopsy due to elevated PSA or abnormal DRE have prostate cancer,
indicating that the other 75% of the study population is undergoing this test following
a false positive generated by PSA or DRE [20]. This subjects patients to uncomfortable
procedures and causes complications such as rectal bleeding, urinary retention, erectile
dysfunction, infections, pain, stress, anxiety, costs, and long waiting times [21,22].

Because of the problems mentioned, there is a need to find and apply new tools for
the early diagnosis of the disease. These tests should be effective, non-invasive, easily
affordable, reliable, and reproducible, with a high accuracy, sensitivity, specificity, and
precision, where applicable and feasible at a low cost to patients who are of a risk low level.

In recent years, interest has increased in studying metabolic alterations that are a
distinctive characteristics of cancer cells, since they imply significant changes in cellular
metabolism (increased glycolysis, lipid metabolism, altered amino acids, oxidative stress,
and Reactive Oxygen Species (ROS)) compared with normal cells. These metabolic alter-
ations not only support cancer growth but also contribute to the generation of chemical
compounds that can be detected in different biological fluids, and their presence or altered
levels could serve as biomarkers for cancer detection, monitoring disease progression, pre-
dicting disease recurrence, and therapeutic treatment effectiveness, among others [23–26].
The analysis and identification of biomarkers is conducted through analytical platforms
such as Nuclear Magnetic Resonance Spectroscopy (NMR) [27–29], Gas Chromatogra-
phy coupled with Mass Spectrometry (GC-MS) [29–32], Liquid Chromatography coupled
with Mass Spectrometry (LC-MS) [33–35], High-Performance Liquid Chromatography
(HPLC) [36,37], and computer and statistical tools. All these analytical techniques can
detect and quantify different compounds with low concentrations. However, they have
several drawbacks since they are complex, take a long time to diagnose, are expensive,
require trained personnel, and are not portable [38].

Sensory perception systems such as the electronic nose and electronic tongue combined
with chemometric and pattern recognition tools [39–43] have evolved over the years to stand
out as promising tools for the non-invasive, rapid, and potentially inexpensive diagnosis
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of health conditions, such as cancer. In addition, they have portability characteristics,
facilitating their flexibility [44–47].

Today, the electronic nose (eNose) represents a potential tool capable of mimicking the
olfactory system of dogs, who were the pioneers in demonstrating the detection capacity of
PCa-specific Volatile Organic Compounds (VOCs) in healthy patients, with a sensitivity and
specificity above 90%; even so, according to the promising results obtained, the researchers
recognized certain disadvantages in the test, due to the time it took to train the canine
(approximately 12 months) and the high cost of the procedure [48–53]. The eNose system
is composed of gas sensors with partially overlapping sensitivities that generate electrical
signals which are acquired by means of basic and programmable electronics to generate a
set of data characteristic of the compound or odor to be analyzed by means of a pattern
recognition unit based on machine learning algorithms and artificial intelligence [54]. In the
field of PCa diagnosis, Bernabei et al. investigated the operation of an electronic nose based
on quartz crystal microbalance (QCM) gas sensors, coated with different metalloporphyrins,
to assess urine headspace for the detection of patients with PCa, bladder cancer, and
controls. The data were processed by principal component analysis (PCA) and discriminant
analysis using partial least squares (PLS-DA), achieving good discrimination between
the groups [55]. In another study reported by D’Amico et al., urine samples from PCa
patients and controls were analyzed using an eNose with eight non-selective gas sensors,
coated with metalloporphyrins. Subsequently, the data were processed by PLS-DA and a
qualitative graph was presented to evaluate the discrimination achieved [56]. Roine et al.
applied a commercial ChemPro 100 Nose to discriminate patients with PCa and patients
with BPH using urine samples, achieving a sensitivity and specificity of 78% and 67%,
respectively [57]. Filianoti, et al. in 2022 conducted a study to determine the efficiency of
the urinary volatiloma profile to distinguish patients with PCa from healthy controls, using
a commercial nose called Cyranose C320, in which a sensitivity of 82.7% was obtained, and
a specificity of 88.5% for the technique [58]. Likewise, other studies have been reported in
different sources [59–62].

Another widely studied sample type is breath, which is widely used to diagnose
cancer [63–65]. In a recent study, Waltman et al. conducted a study that histologically
confirmed PCa patients and control patients with negative biopsies and diseases related to
prostate enlargement, for which exhaled breath samples were collected from 85 patients:
32 with PCa and 53 controls. An analysis of exhaled breath samples was obtained, which
could be detected with an electronic nose called Aeonose and was able to differentiate
between patients with PCa and healthy patients. However, the authors need to conduct
further tests to confirm the findings [66].

Regarding the electronic tongue (eTongue), it is an analytical device inspired by the
biological systems of taste. These devices are defined as a set of non-selective chemical
electrodes with partial sensitivity to different components, which are capable of performing
quantitative and qualitative analyses of complex solutions. eTongue systems, like eNose,
are technologies that, in recent years, have been applied to develop various research in the
health sector to analyze biological samples [67]. However, the use of these systems has
been little explored in the detection of prostate cancer. Pascual et al. evaluated the potential
of an eTongue using cyclic voltammetry with metal electrodes for the detection of PCa
from urine samples. In total, they analyzed 71 urine samples from patients with PCa before
surgery, 26 urine samples from patients with PCa after surgery, and 17 urine samples from
patients with BPH, in which they achieved a sensitivity of 91% and a specificity of 73%,
respectively, to distinguish the urine of cancer and non-cancer patients [68].

In another study, a simple multi-sensor potentiometric system was developed to
distinguish urine samples from patients with diagnosed PCa, and a group of samples
from healthy patients. Therein, 28 potentiometric electrodes with different types of sensor
membranes, including PVC-plasticized, chalcogenide glass, and polycrystalline membranes
were used due to the variety of cationic and anionic species in the urine, as well as the
presence of Redox pairs. A total of 89 urine samples were studied (43 from cancer patients
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confirmed using prostate biopsy and 46 from the healthy control group), and different
classification techniques were applied for data analysis. The best results were obtained
with the logistic regression model, which reached a sensitivity of 100% and a specificity of
93% in the set of independent test samples [69].

In the present study, two different sensory perception systems, or E-senses, were used,
one based on an electronic nose developed especially for this study called “VOCaP” and
an electronic tongue for detecting prostate cancer from exhaled breath and urine samples.
In this new study, it is important to highlight, and compare with the previously mentioned
works, that the detection of prostate cancer was carried out using both devices applied to
patients in a non-invasive way, based on the detection of volatile organic compounds and
chemical changes in both breath and urine samples.

2. Materials and Methods

Figure 1 illustrates a schematic diagram of the methodology used in prostate cancer
detection, which consisted of 4 differentiated stages: (1) selection of patients, (2) condition-
ing of biological samples for measurement with E-senses devices, (3) data acquisition, and
(4) data processing.
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2.1. Measurement Protocol

The methodology used for the selection of the volunteer patients in the study is
described in detail below.

2.1.1. Patient Selection

Breath and urine samples from patients were collected at the Uronorte S.A clinic in
Cúcuta, Norte de Santander (Colombia). The study population was a total of 113 cases,
which were divided into two groups: (i) PCa group (66 cases) and (ii) control group
(47 cases), where the inclusion criteria for the PCa group were patients proven histopatho-
logically through prostate biopsies, and aged between 50 and 89 years. Concerning the
control group, people with prostate-related diseases (BPH and Prostatitis) and patients with
a negative history of urinary symptoms and without evidence of any neoplastic disease
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(Healthy) were included. The general characteristics of all volunteer patients confirmed
through the medical history of both PCa and controls are described in Table 1.

Table 1. Overall characteristics of volunteer patients.

Category Number Range
(Years)

PSA
(ng/mL) Smokers Comorbidities

PCa 66 53–89 5–34 4 (3.5%)

Diabetes
Hypertension

Thyroid
COPD

BPH 30 53–78 3–5 0 (0.0%) Diabetes
Prostatitis 6 64–74 4–12 1 (0.88%) Hypertension
Healthy 11 50–81 <1 1 (0.88%) Thyroid, Glaucoma

This study was endorsed by the ethics committee of the urology center of Uronorte SA,
where each volunteer was aware of the scope of the research and, therefore, an informed
consent document was signed. Then, each of the patients underwent a survey in order
to obtain the basic information, and a technical sheet was also filled out to learn about
additional aspects (e.g., family history with PCa, comorbidities, medications, if they were
smokers, among others).

2.1.2. Collection and Storage of Samples

To minimize some factors that could affect the results of the study through the E-senses
systems, the patients were provided with some recommendations that they should take
into account before collecting the breath and urine samples, for example, fasting 10 h before
the test, avoiding using tobacco, alcohol, or food the previous night that could alter the
breath and urine tests, not using perfumes, not brushing their teeth, and not applying
aerosol deodorants.

For the collection of urine samples, each patient collected the first urine in the morning
in two sterile containers of 50 mL each, and subsequently they were stored at a temperature
of −20 ◦C, until their corresponding analysis.

On the other hand, the collection of exhaled breath samples was carried out in a
room located on the clinic premises, at an ambient temperature of 24 ◦C, with relative
humidity between 47% and 50% RH, at 07:00 and 10:00 a.m. The above was to improve the
accuracy and efficiency of the analysis of breath samples. It should be noted that before the
breath samples collection, the volunteers remained at rest for 10 min to maintain the same
conditions a priori to performing the tests.

2.2. eNose-VOCaP

For this study, the prototype VOCaP was used, as mentioned above, developed by
the research group of Multisensory Systems and Pattern Recognition (GISM), Electronic
Engineering program of the Universidad de Pamplona, and mainly applied for the detection
of prostate cancer (see Figure 2).

The VOCaP system is a multi-sensory device composed mainly of a gas sample
conditioning chamber, and a digital and analog gas sensor chamber.

The data acquisition process begins when the sample gaseously enters the device
through a disposable nozzle or system inlet. To carry out the above, a sample preparation
stage was carried out, where different parameters such as temperature, humidity, pressure,
and flow were controlled, the above being to obtain the same operating conditions for
the acquisition of the measurements. In addition, the device contains an electric pump
that draws the sample into the sensor chamber to maintain the operating conditions, and
thus ensure sensitivity and repeatability during each of the measurements made by the
multisensory device.
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The measurement chamber is composed of two arrays of sensors (digital and analog)
of MOX (metal oxide) class, based on Microhotplates, and MEMS (manufactured with
micro-electro-mechanical system)-type technology, which has a sensitive layer of metal
oxides that can detect VOCs emitted by biological samples, for which it uses a detection
mechanism, composed of three phases: (1) diffusion of the target gas molecules on the
surface of the metal oxide, (2) adsorption of the gas molecules on the metal oxide, and
(3) reaction between the gas and the metal oxide [70].

The digital sensor array is composed of 4 different references of MOX-MEMS sensors,
such as (a) 2 × CCS811 with a sensitive layer (manufactured by Sciosense, Premstaetten,
Austria), (b) 2 × BME-680 with a sensitive layer for gases and temperature, humidity, and
pressure sensors (manufactured by BOSH, Reutlingen, Germany), and (c) 2 × SPG30 with
two independent sensitive layers (manufactured by Sensirion, Staefa, Switzerland). On the
other hand, the analog sensor array is also composed of 4 MOX-MEMS sensor references,
whose references and quantities are as follows: 1 × MICS 4514 with 2 independent sensory
layers (manufactured by SGX sensortech, Corcelles, Switzerland), 1 × MICS 6814 with
3 independent sensory layers (manufactured by SGX sensortech, Corcelles, Switzerland),
1 × GM-502B with a sensory layer (manufactured by Winsen Electronics, Zhengzhou,
China), and 1 × CCS801 with a sensory layer (manufactured by Sciosense, Premstaetten,
Austria). Therefore, a total of 15 independent sensory layers were available (among all the
sensors), which have the capacity to record 15 signals from a single gas sample, and in
this way cover a wide spectrum of VOCs, with the aim of identifying a sample in a more
significant and differentiated way with respect to others, to detect the PCa disease.

MEMS technology, being compact, has a low energy consumption and, being built as
a Surface Mounting Device (SMD), the structure of the sensors is given in small dimensions
which allows the increase in the density or quantity of these components in a small space.
This allows the sensor chamber to have an approximate volume of 10 mL, ensuring that
the concentration of the sample is homogeneous due to its cylindrical shape; therefore, the
exposure of each sensor to the sample is the same. In addition, some of the sensors, such as
the BME-680, have other sensors to measure temperature, humidity, and pressure, which
makes it possible not only to measure VOCs but also to record these variables to make
corrections and compensations due to drifts generated in the sensors [70].

For the operation of the eNose, a graphical interface was developed through the free
Python software (exclusive Version 3.9.2), with the necessary acquisition functionalities
for the registration of the category and the type of sample, such as the case of exhaled
breath and the urine headspace. Also, the software, apart from performing the acquisition
of the samples, automatically performs and controls each of the devices of the multisensory
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system, due to the configuration capacity through the flexible interface and with “on-line”
monitoring with an Internet of Things (IoT) connection service.

2.2.1. Measurement Protocol with eNose for Urine Samples

A total of 113 urine samples were stored at −20 ◦C, and subsequently thawed at 4 ◦C;
they were then transferred in aliquots to 20 mL falcon tubes to be centrifuged at 2500 rpm
for 5 min, to concentrate the sediments and eliminate them.

As the aim of the eNose is to analyze gaseous samples, it was necessary to generate
the headspace of each of the urine samples. To do this, 20 mL of the centrifuged urine was
added into a glass container with septum, and then heated to a constant temperature of
60 ◦C using a hotplate over a period of 30 min. The compounds generated by the urine
headspace were taken to the sampling chamber, stabilizing its interior at an approximate
temperature of 40 ◦C, to reduce the humidity inside the device and prevent condensation
in the measurement chamber to improve the release of the sample VOCs towards the
gas sensors.

For the sample detection, a constant flow of 0.9 L/min, controlled by an electric pump,
was used to drag the compounds towards the sensor chamber, maintaining a temperature
between 39 ◦C and 41 ◦C and a humidity of 30% RH; at this stage the responses of the
sensors due to the passage of the sample in the measurement chamber were recorded. The
recording of the different stages of the acquisition of a sample was performed at different
acquisition times of the initial baseline, for a period of 2 min, and entering ambient air
or pressurized oxygen was used to stabilize the gas sensors. Then, upon entering the
sample, it was recorded for 3 min; additionally, the flow and pressures in the sampling and
measurement chambers were monitored, so that the sensors detected the sample due to the
VOCs, and not due to the change in flow. At the end, ambient air was supplied for a period
of 2 min, to clean the gas sensors and eliminate the possible memory effect on the internal
pipe and the measuring chamber.

It is important to note that the cleaning of the sampling and measurement chambers
was carried out through the intake of ambient air, where an Ultraviolet-Light Emitting
Diodes (UV-LED) array was subsequently activated, which was located in the sampling
chamber with an exposure time of 4 min, to effectively clean the system due to the mea-
surement previously carried out. In addition, the gas residues were evacuated to the
atmosphere through an activated carbon outlet filter and a high efficiency particulate air
(HEPA) filter as well. The reason for using UV-LED was to avoid contamination of patients
and medical personnel due to the SARS-CoV-2 virus (COVID-19).

2.2.2. Measurement Protocol for Breath Samples Using the eNose

For breath samples, each patient was asked to exhale directly into the VOCaP device,
through a disposable mouthpiece, where 2 exhalations per patient were performed, acquir-
ing a total of 226 samples and with a cleaning period of 5 min between each exhalation of
the patient. Each patient was asked to exhale continuously, in order to obtain the alveolar
air sample, which is the last portion of the exhaled breath that contains high concentrations
of endogenous, and for being the essential part of the exhalation that is detected by the
multisensory device.

On the other hand, a pressure sensor was located in the system to confirm that the
breath sample was considered correct; therefore, in the patient, at the time of exhaling,
the sensor detected a threshold value and, in turn, a flow sensor determined if air was
entering the measurement chamber. It should be clarified that throughout the measurement
process the patient was given instructions and was being monitored during the breath
measurement, which took 15 min in total.

2.3. eTongue

For the electrochemical measurements of urine samples, a portable multi-channel
potentiostat (see Figure 3) model µStat 8000 manufactured by the company DropSens was
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used, composed of 8 channels that operate independently, so it was possible to use up to 8
electrochemical sensors at the same time.
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The potentiostat was controlled by the “DropView 8400” software, version 3.6, that
allows processing the electrochemical measurements and analyzing the acquired data, so in
this study, screen-printed type C110 electrodes with different electrode materials (working
electrode (4 mm diameter) and Auxiliary = Carbon, and reference electrode = Silver) were
used. The carbon electrode is suitable for working with microvolumes or by dipping
them in solution, which is ideal to be used in platforms for decentralized assays or when
developing bio-sensors.

Figure 4 shows the electrode dimensions; it should be clarified that in this study tests
were carried out with other types of sensors, from which good results were not obtained.
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To obtain a reproducible response of the eTongue system to the urine sample, for
the analyses, a quantity of 50 µL of sample was applied with a micropipette, where the
technique used was cyclic voltammetry by setting the following measurement parameters:
Ebegin: −1 VDC; scan start potential, Evtx1: −1 VDC; scan investment potential, Evtx2: +1
VDC; voltage with scan stop and the number of scans = 1.
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2.4. Data Processing Methods

As mentioned above, for the use of the eNose, 226 breath samples were acquired
where they were subsequently averaged in order to match the amount of data with respect
to the amount of urine samples acquired with the eTongue (133 samples). In addition,
when obtaining the average of the two measurements, some variations were corrected at
the time of data acquisition, due to flow changes during each exhalation performed by the
patients and other experimental errors.

Once the samples were acquired by the E-senses systems, the characteristic extrac-
tion of the signals from both devices was performed through the following parameters:
∆R = Rmax − Rmin, ∆C1 = Cmax − Cmin, ∆C2 = C f inal − Cinitial, where Rmax = max-
imum resistance value of the gas sensor responses, Rmin = minimum resistance value
of the gas sensor responses, Cmax = maximum current value of the electrode response,
Cmin = minimum current value of the electrode response, Cfinal= final current value of
the electrode response, and Cinitial = initial current value of the electrode response. It is
important to note that in the eTongue, ∆C1 y ∆C2 were applied, while in the eNose, only
∆R was used; this is because the best results were obtained by selecting these parameters
for each of the two sensory devices.

Subsequently, the data were normalized from the mean-centering function, providing
a scale value to the data in a similar range. It consists of subtracting the mean-value of
the data from each observation, so that the new mean is equal to zero. On the other hand,
in the data acquired by eNose, the analysis was carried out by applying the Orthogonal
Signal Correction (OSC) algorithm to make the drift correction for the breath and urine
dataset. Once the drift correction was performed, two classic multivariate analysis tech-
niques, Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA),
were applied.

On the other hand, different machine learning algorithms such as Quadratic Discrimi-
nation Analysis (QDA), Naïve Bayes, Support Vector Machine (SVM), K-Nearest Neighbor
(K-NN), Random Forests, and Decision Trees were used with the corresponding kernel
previously selected.

Once the data were loaded with each learning model, a cross-validation (CV) algorithm
was applied with k-fold = 5 to avoid overfitting in the machine learning algorithm. K-fold
cross-validation is a technique used in machine learning to evaluate the performance of a
model more accurately and robustly; in addition, it was helpful in this study due to the
limited data and was used efficiently and without excessive consumption of resources to
train and evaluate the model. In this study, 113 measurements were split into groups, such
as 50% for training, 25% for validation, and 25% for testing; therefore, with CV, the first
75% were used for training/validation, and every sample of 75% was used for training and
validation randomly. This means that 25% of remaining samples were used for test data.

At the end of the processing, the device’s responses were analyzed through the metrics
calculated by the confusion matrix to obtain the accuracy, precision, sensitivity, specificity,
and negative predictive value of the predictions made by the classification model.

3. Results

The analysis was carried out in two stages, the first by dividing the database into
the PCa category (66 samples) and the control category (47 samples). On the other hand,
the second analysis was made to split the control category into different subgroups (BPH,
Prostatitis, and Healthy), as described in Table 1.

3.1. Results with eNose (VOCaP)

The measurement process made with the eNose for each type of sample (exhaled
breath and urine headspace) was carried out according to the aforementioned protocols,
which allowed the standardization of each sample acquisition and thus avoided significant
variations during the sampling time (samples/second), which could have negatively af-
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fected the results. In this way, the responses of the sensor array to a sample were acquired,
as can be seen in Figure 5a.
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Figure 5. Signals representative of the average resulting from the sensor array responses, normalized
to an exhaled breath sample: (a) sensor responses to a PCa and a control sample; (b) sensor responses
to the PCa, BPH, Prostatitis, and Healthy samples.

Therefore, a clear difference was observed between the response (amplitude) of a PCa
sample and a control sample. On the other hand, Figure 5b illustrates the analysis of PCa
and the control subgroups: BPH, Prostatitis, and Healthy, applying a normalization of data
scaling to observe the variation in amplitude of each category.

3.1.1. Analysis of Breath Samples with eNose (PCa vs. controls)

From the feature extraction of the sensor signals by ∆R and applying the mean-
centering normalization, the correction of the drifts was conducted through OSC, where
the PCA analysis was subsequently applied to the dataset, obtaining a 79.89% variation for
the PCa and control groups (see Figure 6a).
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Figure 6. Analysis of the PCa and control groups with exhaled breath samples acquired with the
eNose device: (a) PCA analysis, PCa vs. control patients, (b) DFA analysis, PCa vs. control patients.

On the other hand, Figure 6b shows the response of the DFA classifier where there is a
slight overlap of the measurements; however, it was possible to obtain a good separation
trend in both categories.

Applying different classification methods through the cross-validation technique with
k-fold = 5 to the data acquired from the PCa and control samples, the best results were
obtained with SVM and PCA scores, reaching 100% accuracy in the classification of the
samples, as shown in Table 2
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Table 2. Machine learning methods applied to breath samples (PCa vs. control) by using eNose.

Data
Breath 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Raw 69.9 60.2 69.9 67.3 70.8 61.1
Normalized 64.6 58.4 71.1 67.3 61.9 59.3

Scores (PCA) 92.0 92.0 100 73.5 93.8 92.0
Factor (DFA) 84.1 85.8 85.8 83.3 84.1 81.4

1 Gas sample.

Taking the best classification model (PCA and SVM) as a reference, Figure 7 shows
the confusion matrix results, in which the model’s performance in classifying exhaled
breath samples using the eNose is represented. Likewise, Table 3 lists the values of each of
the metrics.
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Figure 7. Confusion matrix of the SVM classification model through breath samples (PCa vs. control)
by using eNose.

Table 3. Metrics obtained from the confusion matrix (SVM), breath samples (PCa vs. control).

PCA-SVM PCa (100%) Control (100%)

Precision 100 100
Sensitivity 100 100
Specificity 100 100
Accuracy 100 100

NPV 100 100

3.1.2. PCa vs. BPH, Prostatitis, and Healthy Patients

In the following analysis, different subgroups (BPH, Prostatitis, and Healthy) of
the control category were created, where an 80% variance in the discrimination of the
samples was reached through the PCA analysis with two PCs (see Figure 8a). Likewise,
the selectivity in the discrimination of each category is observed, as some overlaps were
generated due to cases of patients with different conditions that make it difficult to separate
the categories. However, it was possible to identify each of the control subgroups and the
PCa observations through the projection of the measures using three first main components,
and obtaining a better discrimination of data with a variance of 85.4%, as seen in Figure 8b.
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Figure 8. (a) PCA analysis, breath samples (PCa vs. BPH, Prostatitis, Healthy) by using eNose, (b) PCA
analysis using 3-PCs with breath samples for Pca vs. (BPH, Prostatitis, Healthy) discrimination.

Applying the same procedure of the PCA analysis, Figure 9a represents the classifica-
tion results with the DFA model using two factors, where a better trend in separating the
categories is observed despite the dispersion presented in some observations, such as the
Prostatitis group.
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On the other hand, a better projection of the Pca categories and control subgroups was
achieved through three PCs, which are shown in Figure 9b.

It is important to note that PCA analysis provides a progressive result in relation to
the patient cases with Pca (horizontal axis at point 0, to the left), up to the cases of healthy
patients (without prostate involvement) (horizontal axis at point 0 to the right), and, among
them, the BPH and Prostatitis classes, obtaining a 70% success rate of classification.

Table 4 lists the classification results through the machine learning methods using
PCA scores and DFA factors, where the DFA classification method reached 95.6% success
rate in classifying the categories and subsequently using the KNN model.
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Table 4. Breath samples classification of Pca vs. (BPH, Prostatitis, Healthy) samples.

Data
Breath 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Scores (PCA) 73.5 73.5 69.9 59.3 70.8 74.3
Factors (DFA) 93.8 93.8 92.9 95.6 92.0 91.2

1 Gas sample.

Figure 10 shows the results of the two most relevant metrics extracted from the
confusion matrix of the DFA method and KNN model, where it is established that the
Prostatitis class has 66.7% sensitivity, 100% accuracy, and 100% specificity.
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Pca vs. BPH, Prostatitis, and Healthy categories by using eNose.

Regarding the results of Prostatitis, it should be clarified that the low representative
number of samples of this category was a predominant factor in the low classification rate
of the samples.

By means of the DFA method, it was possible to achieve a high classification of the
measurements through the KNN model, where an average accuracy of 95.5% was achieved,
in each of the categories. The metrics for breath samples in each category are listed in
Table 5.

Table 5. Metrics obtained from DFA-KNN through breath samples for Pca vs. (BPH, Prostatitis, Healthy).

Data
DFA-KNN Pca (%) BPH (%) Prostatitis (%) Healthy (%)

Precision 94.2 96.5 100 100
Sensitivity 98.4 96. 5 66.7 91.6
Specificity 91.4 98.8 100 100
Accuracy 95.5 95.5 95.5 95.5

NPV 97.7 98.8 98.1 99.1

3.1.3. Analysis of Urine Samples with the eNose Device

Regarding the protocol established for the measurement of urine samples previously
mentioned, the different analyses were carried out from the intercalated sampling of the
Pca and control samples.
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PCa vs. Control

In this analysis, the OSC and PCA methods were applied, as depicted in Figure 11,
where in the Pca and control groups, 98.7% of data variation was reached by PC1 and
PC2. In addition, it is illustrated that in the data distribution, an overlap was generated in
the two categories, where 5.3% was achieved, since the projection generated an overlap
greater than 50% in variation, where the discriminant trend in the categories could be
observed, in the same way as that achieved with the breath samples. In this analysis, better
discrimination was achieved by the PCA, since in the classification with DFA, there were
several Pca measures and misclassified controls.
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Figure 11. Plot analysis of PCa and control categories of urine samples by using eNose. (a) PCA
analysis of urine samples through Pca vs. control patients, (b) DFA analysis of urine samples, Pca vs.
control patients.

The classification based on machine learning applied to raw data obtained an average
of 55% classification and with the averaged normalized data, a 54.7% accuracy was accom-
plished. On the other hand, with the average of PCA scores calculated for each model, a
classification accuracy of 92.2% was achieved. Likewise, an 80.1% success rate was reached
based on the DFA factors. It should be further noted that the cross-validation method with
k-fold = 5 was applied to each learning model. Therefore, the Pca and control urine samples
were preconditioned to be used with the classification methods (see Table 6).

Table 6. Machine learning applied to urine samples using eNose, Pca vs. control classification.

Data
Urine 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Raw 40.7 56.6 58.4 61.9 61.1 53.1
Normalized 40.7 56.6 58.4 59.3 58.4 54.9

Scores (PCA) 93.8 93.8 100 75.2 97.3 92.9
Factor (DFA) 77.9 82.3 80.5 77.0 79.6 83.2

1 Gas sample.

Figure 12 represents the result of the confusion matrix through the SVM model and
the DFA factors, where a high accuracy was accomplished, and the metrics were obtained
from the confusion matrix.

Likewise, with the data from the urine samples, a good performance of the binary
classification model was achieved.

The metrics calculated with the PCA analysis and SVM model for urine samples in
each category are listed in Table 7.
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Table 7. Confusion matrix obtained of urine samples through SVM, Pca vs. control using eNose.

PCA-SVM Pca (100%) Control (100%)

Precision 100 100
Sensitivity 100 100
Specificity 100 100
Accuracy 100 100

NPV 100 100

Pca vs. (BPH, Prostatitis, Healthy)

In the following analysis, urine data were labeled in Pca and subcategories (BPH,
Prostatitis, and Healthy) of the control category. Therefore, dimensionality reduction was
performed through the PCA model, where Figure 13a illustrates 98% of the data variation
through the first two PCs. The location and dispersion of each category in the plot can also
be determined in a similar way to that generated with the PCA model of the exhaled breath
samples, maintaining the separation of the Pca samples and the subgroups of the control
samples. Like breath samples, a separation trend and projection of categories is indicated
in the 3D plot (see Figure 13b).
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Figure 13. (a) PCA analysis with urine samples through the eNose device for the discrimination of
PCa vs. BPH, Prostatitis, Healthy categories, (b) Discrimination of the samples based on the selection
of three main components.
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As performed with the PCA analysis, the data were analyzed through the DFA classi-
fier for the four categories of urine samples. Figure 14a shows the projection and, again,
the trend in discrimination of the Pca, BPH, and Healthy categories, where the Prostatis cat-
egory has an uneven behavior since the samples have a slight dispersion that allows them
to be identified more clearly. However, there is an increase in poorly classified samples
from the other Healthy categories for Pca and BPH, where it is also possible to compare
the results obtained with breath samples. Consequently, the 3D plot of the DFA method
was developed (Figure 14b) where the separation of healthy patients is better illustrated,
resulting in a better projection of the measurements with three PCs.
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Figure 14. (a) DFA analysis of urine samples, for PCa vs. (BPH, Prostatitis, Healthy) classification by
using eNose, (b) DFA analysis using 3-PCs of urine samples for Pca vs. (BPH, Prostatitis, Healthy)
classification.

In general, the results with the classification models with the raw data and the normal-
ized data reached 53.8% and 70.35% accuracy, using the k-fold = 5, with the first two PCs of
PCA. Likewise, for the factors based on the DFA analysis, an average of 88.2% accuracy was
obtained with the DFA model applying the Decision Trees and Random Forest classification
methods with the highest accuracy, reaching a 91.2% success rate for the urine headspace
samples (see Table 8).

Table 8. Machine learning applied to urine samples using eNose for Pca vs. (BPH, Prostatitis, Healthy)
classification.

Data
Urine 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Raw 30.1 50.4 61.1 58.4 63.7 54.0
Normalized 29.2 51.3 60.2 63.7 68.1 54.9

Scores (PCA) 69.9 69.9 61.9 58.4 77.0 85.0
Factor (DFA) 90.3 90.3 89.4 86.7 91.2 91.2

1 Gas sample.

Regarding the confusion matrix developed from the DFA classification technique
with the Decision Trees model, a smaller number of samples was classified due to the
overlapping with the Pca category, which corresponds to 10% of the data with respect to
the control category (see Figure 15). Therefore, the BPH category had a higher number of
errors with respect to Pca and the other categories.
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Figure 15. Confusion matrix, classification using Decision Trees, urine samples for Pca vs. (BPH,
Prostatitis, Healthy) classification.

From the metrics calculated through the confusion matrix (see Table 9), it can be
concluded that the Random Forest model performed well in the dataset by having an
accuracy rate of 91.2% and a sensitivity rate of 88.3%.

Table 9. Metrics from confusion matrix of urine samples for Pca vs. (BPH, Prostatitis, Healthy)
categories classification using DFA and Random Forest model.

DFA-Random Forest Pca (%) BPH (%) Prostatitis (%) Healthy (%)

Precision 90.0 92.3 100 91.6
Sensitivity 95.5 82.8 83.3 91.7
Specificity 85.1 97.6 100 99.0
Accuracy 91.2 91.2 91.2 91.2

NPV 93.0 94.3 99.1 99.0

3.1.4. Data Fusion Analysis of Breath and Urine Samples Acquired with the eNose Device

Once the models with exhaled breath samples and urine headspace acquired with the
eNose system were analyzed, the two datasets were combined, in order to perform a more
complete analysis of their performance, using the information extracted from each type of
sample; for this, the fusion was initiated from the scores extracted with PCA and the DFA
factors with greater accuracy, in order to be merged and introduced as input parameters
for the new analysis through machine learning methods.

PCa vs. Control

The PCA scores and the DFA factors of each category corresponding to Pca and
controls were merged, and the PCA fusion projections were made. Figures 16 and 17 depict
the two categories of data projected, where a variance of 96.74% was obtained through two
first PCs, where a slight increase in the classification of the two categories through DFA
is also observed, decreasing the number of misclassified samples to 5.26% with DFA, and
2.25% with PCA, respectively, of the variation in the data. In both cases, a good selectivity of
the categories was obtained, with PCA resulting in the best selectivity achieved. Therefore,
it is concluded that the discrimination results of the measurements improved successfully,
including information from urine and breath samples.
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With the classification methods, an average of 94.5% of success was achieved, with
k-fold = 5 for the two PCA and DFA models, from which the Decision Trees and KNN
classification methods were selected and applied, with which the best successes were
achieved in the classification of Pca and control measures (see Table 10).

Table 10. Machine learning applied to breath and urine samples merged, Pca vs. control.

Data
Breath 1 and

Urine 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Scores (PCA) 92.9 94.7 99.1 100 92.9 100
Factor (DFA) 94.7 95.6 94.7 92.9 92.9 94.7

1 Gas sample.

According to the confusion matrices of Figure 18a, it is observed how the samples
were appropriately classified through the Decision Tree’s classification model applied with
PCA; on the other hand, the Naïve Bayes model with the DFA incorrectly classified 8.5%
of the control category concerning the Pca category. In the end, a sample was classified as
incorrect in the Pca category, which represented a 1.5% accuracy, as illustrated in Figure 18b.
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Figure 18. Confusion matrix using Decision Trees (a) and Naïve Bayes (b) through breath and urine
data merged for PCa vs. controls classification using eNose.

The calculated metrics from the confusion matrix in Table 11 denote the classification
models for PCA and DFA resulting from the fusion of the breath and urine data, where it is
confirmed that, by combining the information of each type of biological sample, the results
improved successfully, because in the individual analyses, a similar trend was observed in
the representation of the data of each category. Therefore, with more information in the
dataset, it is possible to increase the probability that it will be achieved in detecting the Pca
and control. In this case, the PCA analysis provided better results in relation to DFA, which
confirms the projection of the measurements in Figure 15.

Table 11. Metrics of confusion matrix obtained from PCA–Decision Trees and DFA–Naïve Bayes of
breath and urine data merged for Pca vs. controls classification using eNose.

Metrics
PCA–Decision Trees DFA–Naïve Bayes

Pca (%) Control (%) Pca (%) Control (%)

Precision 100 100 94.2 97.7
Sensitivity 100 100 98.5 91.5
Specificity 100 100 91.5 98.5
Accuracy 100 100 95.6 95.6

NPV 100 100 97.7 94.2

PCa vs. BPH, Prostatitis, and Healthy Patients

Through the PCA scores calculated from the original data of the breath samples, and
the data of the urine samples, the data fusion was performed, obtaining an approximate
variance of 98% employing the first three PCs. Therefore, by comparing the responses of
Figures 8 and 13, it is possible to observe a better separation of the categories from the data
fusion of the two types of samples (See Figure 19a,b). This indicates the difference that
exists in the samples’ discrimination with Pca and healthy patients, which determines the
high selectivity of the eNose system in the detection of the disease.

By means of the factors extracted with DFA, in Figure 20a,b, the results of the projection
of each of the breath and urine samples are depicted, where the data fusion was performed,
achieving a better classification of the categories compared with the results projected in
Figures 8 and 13. These results confirm the relationship that exists in the two types of
biological samples, since by merging the information of the characteristics of the data
of both breath and urine, it is possible to improve the response of the eNose in the Pca
detection and other related diseases.
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(b) PCA analysis, breath and urine data merged for Pca vs. (BPH, Prostatitis, Healthy).
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sification, (b) DFA analysis 3D, breath and urine data merged for Pca vs. (BPH, Prostatitis, Healthy).

With the classification models evaluated with k-fold = 5, the success rate in the
classification was increased, as can be seen in Table 12, where the average accuracy achieved
for the PCA analysis was 84.4% and for DFA, it achieved a 96.6% success rate.

Table 12. Metrics of confusion matrix, breath, and urine data merged, Pca vs. (BPH, Prostatitis,
Healthy), using eNose.

Data
Breath 1 and

Urine 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Scores (PCA) 78.8 81.4 94.5 92.9 69.0 88.5
Factor (DFA) 95.6 97.3 97.3 99.1 96.5 93.8

1 Gas sample.

Therefore, it is established that the data fusion applied to two biological samples of
both breath and urine through the eNose provides more characteristics of the data, which
allow us to find greater similarities between samples of the same category, thus improving
the prediction of them.

The results are then represented through two confusion matrices with the highest-
performing ranking models. Figure 21 illustrates that the SVM model presented difficulty
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in predicting the Prostatitis category, misclassifying 50% of the samples in this category,
having fewer representative samples. Unlike SVM, the KNN method obtained only one
BPH misclassified sample.
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vs. (BPH, Prostatitis, Healthy) classification, (b) Confusion matrix obtained from DFA-KNN model.

As shown in Table 13, the values of the metrics were similar with success rates of 95%,
with the exception of the Prostatitis category.

Table 13. Metrics of confusion matrix obtained from PCA–SVM, breath and urine samples merged,
PCa vs. (BPH, Prostatitis, Healthy) classification.

PCA–SVM
Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)

Precision 100 93.3 60.0 91.7
Sensitivity 100 96.5 50.0 91.7
Specificity 100 97.6 98.1 99.0
Accuracy 95.6 95.6 95.6 95.6

NPV 100 98.8 97.2 99.0

As mentioned, DFA and KNN reached an outstanding result as most of the metrics
gained above 95% success rates of classification (see Table 14).

Table 14. Metrics of confusion matrix obtained from DFA–KNN, breath and urine samples merged,
PCa vs. (BPH, Prostatitis, Healthy).

DFA–KNN
Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)

Precision 98.5 100 100 100
Sensitivity 100 96.5 100 100
Specificity 97.9 100 100 100
Accuracy 99.1 99.1 99.1 99.1

NPV 100 98.8 100 100

3.2. Analysis of Urine Samples through eTongue

Next, the results of the eTongue based on the C110 electrode response are described
below through pattern recognition methods and classification algorithms. Initially, the
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analysis was performed with the identified prostate cancer categories and control. Then,
another analysis was performed, where three types of control patients (i.e., BPH, Prostatitis,
and Healthy), and the PCa category were formed. It should be clarified that the groupings
were made based on the results achieved with the eNose.

Figure 22 shows the variations in the amplitudes and shapes of the voltammogram
signals acquired by the eTongue from patients with PCa and one of the control groups
(Healthy), which reveal that there are differences in the Oxidation–Reduction (REDOX)
reaction for the urine samples. For example, minerals such as Zinc in the urine could be
related and contribute to the discrimination of the data since some studies have proposed
it as a possible compound or biomarker of PCa. In addition, the healthy prostate contains
high concentrations of Zinc and these levels drastically decreased during the development
of PCa, including when it is in the early stage [71–74].
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Figure 22. Signals of measurements acquired with the eTongue based on the C110 electrode in
detecting PCa samples (Red) and controls (Blue).

3.2.1. PCa vs. Controls

Figure 23 illustrates the PCA plot performed with the data previously acquired by the
potentiostat, where the categories of PCa and controls were discriminated, although with
some overlaps between some measures of the two categories. In addition, in the graph, the
measurements are projected with almost 100% of the variance captured, where the totality
occurs in PC1.
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Figure 23. PCA analysis for the discrimination of PCa and controls measurements from the C110
carbon electrode responses.

It is important to note that two main characteristics were extracted once the signals
were acquired, taking the current signal (µA) from the measurements. Therefore, the
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maximum, minimum, initial, and final values of each of the signals were extracted, similar
to what was achieved with the eNose, where the variations of the signals were subsequently
calculated to obtain the static parameters. The method calculates the difference between the
maximum signal value and the baseline, and the difference between the final and the initial
value. On the other hand, the data were initially normalized by means of “mean-centering”,
and subsequently, the processing methods were applied to obtain the relevant information
of the data from the main components or factors of PCA and DFA.

Figure 24 represents the discrimination of the categories of PCa and control, where a
better separation of the clusters with respect to the PCA response is noted, and overlaps
are seen between some samples.
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the C110 electrode.

3.2.2. Analysis of the PCa Categories and Split of the Group of Control Patients into BPH,
Prostatitis, and Healthy

To discriminate and classify the control groups into different categories, the measures
of patients with BPH, Prostatitis, and Healthy were grouped to see the eTongue’s ability
in detecting PCa and the other control groups. Figure 25 demonstrates the discrimination
response from the PCA plot, where the same normalization was previously applied.
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Figure 25. PCA analysis for the discrimination of PCa measurements and the control groups (BPH,
Prostatitis, and Healthy), using the responses of the C110 electrode.

Regarding the classification of the three categories of controls, the DFA algorithm was
used, where the high selectivity of the control groups is clearly observed. It should be noted
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in Figure 26 that there are similar volatile organic compounds in some BPH and Prostatitis
samples with the PCa samples, since in the projection of the DFA factors at the point of
origin, most of the overlaps of the unclassified measurements appear. However, healthy
patients differ from patients with PCa.
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Figure 26. DFA analysis for the classification of PCa measurements and control categories (BPH,
Prostatitis, and Healthy), based on the responses of the C110 electrode.

3.2.3. Data Processing with Classification Methods

This section shows the results of the eTongue with the different classification methods,
where the analyses were carried out from the original, normalized data, using the PCA
scores and the DFA factors. Table 15 lists the percentages of accuracy calculated with each
of the methods for the classification of PCa and control categories.

Table 15. Metrics of confusion matrix urine samples, PCa vs. controls classification using eTongue.

Data
Urine 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Raw 89.4 90.3 89.4 90.3 91.2 86.7
Normalized 89.4 90.3 92.0 92.0 91.2 90.3

Scores (PCA) 88.5 88.5 91.2 91.2 89.4 89.4
Factors (DFA) 89.4 89.4 90.3 92.9 88.5 92.0

1 Liquid sample.

Through multivariate analysis methods with machine learning methods, the classifica-
tion of PCa vs. BPH, Prostatitis, and Healthy categories are represented in Table 16.

Table 16. Metrics of confusion matrix obtained from urine samples. PCa vs. (BPH, Prostatitis,
Healthy) categories using eTongue.

Data
Urine 1

QDA
(%)

Naïve
Bayes (%) SVM (%) KNN

(%)
Random

Forest (%)
Decision
Trees (%)

Raw 84.1 84.1 81.4 87.6 81.4 81.4
Normalized 84.1 83.2 84.1 86.7 85.8 85.0
Scores PCA 88.5 84.1 85.0 89.4 82.3 82.3
Factors DFA 85.8 85.8 83.2 86.7 82.3 85.0

1 Liquid sample.

Additionally, the metrics extracted from the confusion matrix are related through the
KNN result, when applying the PCA scores (see Table 17). It can be concluded that the
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accuracy value reached a 92.9% success rate, which indicates the good performance of the
eTongue in the classification of cancer patients.

Table 17. Metrics (KNN) of confusion matrix obtained from urine samples. PCa vs. control categories.

PCA-KNN
Metric PCa and Controls (%)

Precision 96.7
Sensitivity 90.0
Specificity 95.0
Accuracy 92.9

NPV 88.8

4. Discussion

In this study, the potential of E-senses for the detection of PCa and controls was
evaluated. According to the results, these systems stood out for obtaining high precision,
sensitivity, and specificity when it comes to discriminating and classifying patients with PCa
from the different controls, which represents a promising and supportive tool for the early,
non-invasive, rapid, and portable diagnosis of PCa and thus be able to address the problems
generated by current diagnostic methods, which lead to overdiagnosis, overtreatment, and
complications associated with invasive procedures, among others.

On the other hand, in this study, some endogenous and exogenous factors (tempera-
ture, humidity, flow, pressure, sample volume, time of measurements, fasting by patients,
rest period before taking the sample, and ambient air, among others) were considered when
collecting and analyzing biological samples (breath and urine), in order to standardize
and minimize the influence of these confounding factors that could influence the results
of the E-senses. However, in the present study, in the PCA and DFA figures, in the case
of eNose and eTongue, the measures that were not correctly discriminated or classified
may be due to other factors such as shared comorbidities, since some patients diagnosed
with PCa also had BPH or Prostatitis, which made it difficult for the data to be properly
classified in each of the groups. Likewise, some measures of the controls overlapped in the
group of patients with PCa and, as reported in the medical history, these patients presented
symptoms, elevated PSA values, and abnormal rectal examination, which, according to the
literature, would make them candidates for having PCa; however, after a biopsy, it was
shown that they had prostate-related diseases.

Additionally, and as evidenced in Table 1, patients diagnosed with PCa and controls
shared other diseases; the most relevant and those repeated in the majority of volunteers
were diabetes and hypertension, which could also affect the composition of VOCs and
non-volatile chemical compounds. However, to substantiate the aforementioned, a more
in-depth study would have to be performed to see the influence of other comorbidities.
Some studies have shown that men with diabetes have a low risk of being diagnosed with
PCa, but only several years after the diagnosis of diabetes [75–78].

In addition, other factors such as age, race, diet, and medications may also influence
the analysis of VOCs and chemical compounds. In the present study, patients with PCa
and controls with BPH and Prostatitis shared some drugs in their treatment, among the
most prominent of which was Tamsulosin, which belongs to the class of drugs called alpha
blockers. For example, Tamsulosin is used to treat and reduce symptoms of an enlarged
prostate (BPH), including difficulty and pain with urination, and is commonly used to
treat advanced prostate cancer. So far, some studies reported in the literature focused on
detecting PCa using alternative techniques such as nose or electronic tongue and biofluids
such as urine or breath.

It should be noted that this proposal is the first study where both sensory systems
have been evaluated to analyze urine and breath samples to detect Prostate Cancer [54–69].
In this study, a dataset was generated from E-senses devices to create ML models using
113 measurements; however, despite this limited number of cases, this representative



Chemosensors 2024, 12, 11 26 of 30

dataset can provide us with an excellent pathway to generate models to detect possible
PCa cases in the future.

Thus, this limitation can be addressed by making a campaign arranged by the local
health sector (i.e., Uronorte S.A, hospitals, clinical centers, etc.), which allows us to con-
duct further studies and acquire many measurements with the devices to enhance the
reliability and feasibility of these alternative and innovative methods for PCa detection in
Colombian patients.

5. Conclusions

In this study, two E-senses systems were implemented, composed of an electronic nose
and electronic tongue for the detection of previously acquired samples from patients with
prostate cancer and other related diseases such as Prostatitis, BPH, and Healthy patients.

The results of the classification of breath and urine samples independently through the
eNose-VOCaP in the PCa and control samples reached the maximum success rate (100%),
where the Prostatitis, BPH, and Healthy samples achieved 95.5% (DFA-KNN) and 91.2%
(DFA-Random Forest) in the classification of the breath and urine samples, respectively.

The eNose system obtained a good performance in the classification of the samples of
both breath and urine, where the data were merged to improve both the discrimination and
classification of the PCa measures and controls, reaching success rates in the classification of
measures of 100% through the PCA–SVM model, improving the separation and projection
of the samples based on the PCA, DFA, and machine learning methods graphs.

In addition, in the data fusion of the eNose with breath and urine samples, by dividing
the control samples into sub-categories such as Prostatitis, BPH, and Healthy, it was possible
to obtain a 95.5% accuracy, maintaining the same eNose result with the analysis of exhaled
breath samples through the DFA–KNN model.

On the other hand, the eTongue results for the classification of PCa samples and
controls obtained a 92.9% accuracy, which was achieved with the DFA–KNN model, con-
firming the performance of the model in the classification of the two types of biological
samples in the detection of prostate cancer. Likewise, the classification of the samples of
the PCa vs. (Prostatitis, BPH, and Healthy) categories obtained an 89.4% success rate of
classification in urine measurements.

Both digital and analog gas sensors gave good sensitivity and selectivity in the detec-
tion of VOCs since the measurements were discriminated and classified despite having
variations in the samples.

The “C110” carbon electrode performed well in patients confirmed with prostate
cancer and controls (Healthy), which was observed in multivariate analyses with PCA and
DFA. Although the results were good with the use of the C110 electrode, it is important
to make tests using other screen-printed electrodes with different materials, such as gold,
silver, platinum, and others, to obtain more information about the targets or molecules of
the measurements, for the detection of PCa.

As mentioned above, the eNose–VOCaP performed very well, which could be a low-
cost and reliable tool to be used in the health sector. However, to become a standard tool, it
is necessary to continue evaluating the classification capacity of the eNose system through
a study where a high number of samples are acquired as a social campaign, in order to plan
the early diagnosis of PCa.

In future work, to validate the results, the capacity, performance, and reliability of
the E-senses systems in the detection of CaP, it will be necessary to use classic analytical
techniques such as GC-MS and LC-MS, which can identify and quantify several individual
compounds in a sample that are statistically significant between PCa and control patients.
The above can be used as potential biomarkers, which can help the health sector to pursue
solutions in the prevention and diagnosis of PCa. The amount and type of biomarkers
identified in a given study depend on the analytical technique chosen and the biological
matrix (urine and breath).
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Therefore, urine and breath samples contain many VOCs, which can be released as
metabolic by-products or due to physiological processes within the body. These compounds
can potentially serve as biomarkers for different diseases or health conditions. However,
there are some variations in the concentration types of volatile compounds found in urine
and breath, and among the factors that can influence are the following: (1) metabolism,
since there are different metabolic pathways in the body that can lead to the production
of different volatile compounds, and (2) excretions due to urine being a waste material
that contains metabolic decomposition products of a wide range of foods, beverages,
medications, environmental pollutants, endogenous waste metabolites, and bacteria.

On the other hand, the breath generates volatile compounds to be transported from
the bloodstream to the lungs (by a diffusion mechanism through the pulmonary alveolar
membrane) for exhalation. Another factor is (3) sampling techniques and technologies,
because they can influence the identification and quantification of volatile compounds.
For example, some volatile compounds associated with the PCa and control groups have
been reported in the literature. For example, in urine compounds such as formalde-
hyde, 2,6-dimethyl-7-octen-2-ol, 3-octanone, 2-octanone, pentanal, furan, xylene, hexanal,
2,5-dimethylbenzaldehyde, 4-methylhexan-3-one, dihydroedulan IA, methylglyoxal, 3-
phenylpropionaldehyde, and furan-3-methanol, among others, have been reported in the
research [26,30,79–81]. In addition, there are a few studies of VOCs in patients with PCa and
controls that use breath, where some compounds used are Toluene, 2-amino-5-isopropyl-8-
methyl-1-azulenecarbonitrile, p-xylene, and 2,2-dimethyldecane [65].
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