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Abstract: In this study, a method was developed for the rapid online measurement of sodium nitrite
solutions using near-infrared spectroscopy. A series of standard solutions of sodium nitrite at different
concentrations were prepared, and the samples were measured in cuvettes and flow cells. Following
the preprocessing of raw spectra and band selection, partial least squares were used to establish a
prediction model, and the coefficient of determination (R2) of the validation set and the root mean
square error of prediction (RMSEP) of the model were 0.9989 and 0.0338. The results demonstrate
that the established model can meet the demands of online measurement and perform the rapid,
nondestructive detection of sodium nitrite solutions, which provides some basis for the automated
formulation of feedstock in spent fuel reprocessing.

Keywords: sodium nitrite; online measurement; near-infrared

1. Introduction

One of the central goals of reprocessing spent fuel is the recovery and purification
of uranium and plutonium [1–4]. This process requires tuning uranium and plutonium
valence states using reducing and oxidizing agents [5,6]. Among them, sodium nitrite is
widely used in plutonium valence adjustment, and this reagent is often used to destroy the
remaining reducing agent of the reaction. It needs to be prepared in large quantities when
it is used, and for different parts of the process and different material concentrations, the
concentration of sodium nitrite has different needs, generally in the range of 0.5–6 mol/L.
If the reducing agent is prepared manually, it consumes a lot of manpower and time, so
automated dosing is very necessary. And in automated dosing, besides the realization of
automatic machine mixing, the online measurement of the product’s concentration is also
an important step.

There are many methods to determine the concentration of sodium nitrite [7], includ-
ing spectrophotometry [8–10], chemiluminescence [11–13], electrochemistry [14–16], and
chromatography [17–19], in addition to the conventional titration of chemical reagents.
However, some of these methods are designed to detect trace concentrations. When higher
concentrations of formulated products are detected, they must be diluted before being
measured, making the process more cumbersome. However, many methods that allow
higher concentration measurements require sample destruction and are challenging to
measure online. In contrast, near-infrared (NIR) spectroscopy allows the faster and easier
measurement of sodium nitrite at higher concentrations.

Refs. [20,21] show how NIR spectroscopy has recently been widely used in food
processing [22], pharmaceutical manufacturing [23], and chemical product synthesis [24].
It has the advantage of rapid measurement without the loss of samples and is suitable for
online measurement. NIR spectroscopy measures electromagnetic waves with wavelengths
of 800–2500 nm. It is part of the multiplicative and combinatorial absorption spectra
molecular vibrational spectroscopy [25], which mainly detects C-H, N-H, and O-H bonds in
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samples [26], making them ideal for detecting organic matter. The vibration of the sample
is shown in Figure 1. However, NIR spectroscopy can also detect inorganic substances,
especially aqueous solutions. This is because the structure of water is susceptible to
temperature and solute interactions. The presence of other ions in the sample affects the
interaction between water molecules and alters the strength of hydrogen bonding, leading
to changes in the near-infrared spectrum. The perturbation of water via temperature and
electrolyte is linear [25,27–29], so aqueous solutions can be quantified using NIR.
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Figure 1. Example of the vibration of a sample (“+” indicates the vertical motion of the paper facing
inward, “−” indicates the vertical motion of the paper facing outward).

In this study, a series of different concentrations of sodium nitrite solutions were
measured, and an online measurement model of sodium nitrite was established and
validated using flow samples with the aim of the rapid, nondestructive, and online detection
of feedstock concentration in the automatic dosing of sodium nitrite.

2. Materials and Methods
2.1. Materials

The sodium nitrite used was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China) with a purity greater than 99.9%. The corresponding sodium nitrite was
accurately weighed according to the concentration requirement and dissolved in deionized
water with a resistivity of 18.2 MΩ·cm. The samples ranged from 0.3 to 6 mol/L, with a
total of 43 concentrations, of which 33 samples were used for calibration and 10 samples
were used for validation.

2.2. Instrumentation and Software

Spectroscopy was collected using a MATRIX-F NIR spectrometer (Bruker Optik GmbH,
Saarbrücken, Germany).

Spectrum pretreatment and partial least squares modeling were performed using
OPUS 8.5 spectral analysis software (Bruker).

2.3. Experimental Methods

The sample was placed in a quartz cuvette with an optical range of 2 mm for static
samples. The experiment was conducted with an air background, with a scanning range
of 12,000 to 4000 cm−1 and a resolution of 4 cm−1. The scan time was 32 scans, and each
concentration was measured at least twice.

For flow samples, the sample was placed in a beaker, and a flow pump was used to
circulate the liquid between the beaker and the flow cell; the optical range of the flow cell
was 2 mm, the flow pump speed was 50 mL/min, and the other test conditions were the
same as those for static samples. A simple schematic of the online device is shown below
(Figure 2).
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Figure 2. Schematic diagram of online device.

2.4. Pretreatment of Spectral Data

Spectral pretreatment is needed before modeling to make the quantitative model
more accurate and stable. The preprocessing methods used include eliminating constant
offsets, subtracting a straight line, max–min normalization, multiple scattering corrections,
vector normalization, first-order and second-order derivatives, and combinations of these
methods. The results of the different preprocessing methods were compared, and the
optimal combination was selected for modeling.

2.5. Model Alignment

A partial least squares method established a prediction model based on the NIR
spectra of a sodium nitrite standard solution. The partial least squares method is a classical
linear modeling method commonly used in NIR ranges quantitative analysis. It has the
advantages of noise cancellation, comprehensive spectrum data screening, and the complete
extraction of adequate spectral information. The reasonableness of the model is further
evaluated using the deterministic coefficient (R2), root mean square error of cross-validation
(RMSECV), and root mean square error of prediction (RMSEP).

3. Results and Discussion
3.1. NIR Spectrum Characteristics

The scanning range of spectra selected was 12,000–4000 cm−1, and the raw spectra
of several typical concentration samples are shown in Figure 3. In the raw spectra, a
significant variation in the absorbance intensity and the concentration of sample wave
number from 4250 to 4800 cm−1 and 5400 to 7100 cm−1 was observed in relation to the O-H
bond. Among them, the strong absorption peak near 6900 cm−1 was due to the symmetric
and antisymmetric stretching vibration (ν1 + ν3) of the O-H bond of water. In contrast, the
weak absorption peak near 5600 cm−1 comprised the bending vibration of the O-H bond
and the antisymmetric stretching vibration (ν2 + ν3) [30,31]. As for 4250–4800 cm−1, this
part of the absorption band was the firm absorption peaks of the adjacent two of the wave
valleys. The strong absorption peak at 5100 cm−1, which consists of a combination of three
vibrational modes of the O-H bond, was unsuitable for use in the model because its intensity
was too high. Since the power of O-H was affected by the concentration of the sample, the
difference in the intensity of these absorption peaks indirectly reflected the difference in
the attention of the sample. Although the differences between the spectra are evident, the



Chemosensors 2024, 12, 22 4 of 9

spectra overlap and are disturbed by the background, requiring the preprocessing of the
original spectra to make the resulting models more accurate.
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3.2. Screening of Preprocessing Methods

To reduce the interference information unrelated to the chemical composition of the
sample, the original spectrum of the sample was pretreated to make the final analysis
result more accurate. With a uniformly selected spectral band of 5400–7500 cm−1 for
modeling, 11 different spectral preprocessing methods were used in this study to process
the raw spectra. Comparisons of the corresponding sodium nitrite concentration prediction
models are shown in Table 1. The results from R2 and RMSECV show that the best method
was the multivariate scattering correction with 1.0000 and 0.0105 results, followed by
vector normalization with 1.0000 and 0.0116 results, and the worst method was the second
derivative with 0.9992 and 0.0454 results.

Table 1. Results of raw spectra after different pre-processing methods.

Number Preprocessing Method Wave Number (cm−1) R2 RMSECV

1 No spectral pretreatment 5400–7500 0.9999 0.0145
2 eliminating constant offset 5400–7500 0.9999 0.0197
3 subtracting a straight line 5400–7500 0.9999 0.0163
4 vector normalization 5400–7500 1.0000 0.0116
5 max–min normalization 5400–7500 1.0000 0.0122
6 multiple scattering correction (MSC) 5400–7500 1.0000 0.0105
7 First-order derivative 5400–7500 0.9999 0.0224
8 Second-order derivative 5400–7500 0.9992 0.0454
9 First-order derivative + subtracting a straight line 5400–7500 0.9999 0.0217
10 First-order derivative + vector normalization 5400–7500 0.9999 0.0208
11 First-order derivative + MSC 5400–7500 0.9999 0.0217

3.3. Spectrum Band Selection

Following the identification of models using multiple scattering correction methods,
the bands used for spectroscopy were optimized, and a total of 24 rounds were tested, as
shown in Table 2 below. The band with the best model predictions was 5450–7500 cm−1,
when the RMSECV value was the smallest, with a result of 0.0104, followed by 4250–4600 cm−1

and 5450–7500 cm−1, when the RMSECV value was 0.0106.
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Table 2. The effect of choosing different bands on modeling.

Number Wave Number (cm−1) RMSECV

1 5450–9400 0.0110
2 4250–4600, 6100–7500 0.0121
3 4250–4600, 5400–9400 0.0130
4 4250–4600, 5450–7500 0.0106
5 4250–4600, 6100–9400 0.0171
6 5450–7426 0.0109
7 5450–7500 0.0104
8 6100–7500 0.0204
9 6100–9400 0.0193

10 4250–4600, 5450–6100, 7500–9400 0.0125
11 4250–4600, 7500–9400 0.0250
12 5450–6100 0.0119
13 5450–6100, 7500–9400 0.0113
14 7424–9400 0.0114
15 4600–9400 0.0215
16 7500–9400 0.0205
17 4250–9400 0.0208
18 4250–5450, 6100–7500 0.0389
19 4600–7500 0.0318
20 4600–5450, 6100–7500 0.0403
21 4250–4600, 5450–6100 0.0203
22 4250–7500 0.0280
23 4250–5450, 6100–9400 0.0445
24 4600–5450, 6100–9400 0.0449

3.4. Identification of Latent Varying Numbers

After determining the optimal frequency band of the model, the latent varying num-
bers of the model were optimized. When the latent varying numbers were too small, the
match between the model and the training set was not good enough to make full use of the
adequate information of the spectrum; when the latent variable numbers were too large,
the model could overfit the training set, and the resulting model would have a significant
deviation in the subsequent validation process. In this study, the RSMECV values of models
with different latent variable numbers were used to measure the adequacy of the number of
latent varying numbers, as shown in Figure 4. The model had the smallest RSMECV value
of 0.0104 when the latent variable number was 5. As the latent variable number increased
or decreased from five, the RSMECV value of the model increased to more than 0.011.
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3.5. Validation of Predictive Models

Spectra of 10 samples with different concentrations of sodium nitrite were measured,
containing both stationary and flowing samples. The spectra were predicted using the
model developed, and the results of the prediction and evaluation are shown in Figure 5
below, with specific data in Supplementary Table S1, where 1–24 are flowing samples, and
25–30 are stationary samples.
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After calculation, the R2 value of the model validation set was 0.9955, and the RMSEP
value was 0.0707. The results show that the model predictions are more reliable for
stationary samples, but for flowing samples, some are better predicted, and some are
poorly predicted.

3.6. Predicted Results of the Modified Model

The prediction results in Section 3.5 show that the established spectral model still
has some defects; for stationary samples, the model was able to measure the sample
concentration more accurately, while for flowing samples, some of the predictions were
poor, so some of the predicted results that were close to the true value were not credible
enough. There may be many reasons for this deviation, such as the tiny bubbles that may
exist in the pipeline when flowing and the effect of the liquid’s own flow on the spectra.
Therefore, the spectra of four different concentrations of sodium nitrite flow samples
were additionally collected and added to the model for correction, and the model was
processed in the same way as Sections 3.2–3.4. The results can be seen in the Supplementary
Tables S2 and S3 and Supplementary Figure S1. The corrected model, whose pre-processing
method is still the multivariate scattering correction method, changed the optimal spectral
band of choice to 5450–7426 cm−1, and the number of factors remained unchanged.

The existing spectra were re-predicted using the new model, and the predicted results
are shown in Figure 6 below, with specific data in Supplementary Data Table S4.

After calculation, the R2 value of the model validation set was 0.9989, and the RMSEP
value was 0.0338. The results show that after correction, the predictive ability of the model
for stationary spectra decreased, but the relative error was still not higher than 2%, which
still met the practical needs, while the predictive ability of the flow spectra was significantly
improved, and the magnitude of the error value was significantly reduced.

In addition, some concentration samples were selected for longer online tests, and
the results are shown in Figure 7 below. After calculation, the relative deviation of the
predicted value of the samples compared with the mean value was generally below 1%,
the deviation of the samples increased occasionally, and its relative deviation was at the
maximum near 4%. Overall, the fluctuation of the predicted value of the samples in the
continuous test was relatively small, and it could be basically kept unchanged and satisfy
the demand for online measurement.
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