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Abstract: The aim of this work was to explore the possibility of using a Cu-exchanged zeolitic
volcanic tuff (which is natural and easy to prepare and apply) for the preparation of a new low-
cost carbon paste amperometric sensor for H2O2 detection. The properties of the zeolitic volcanic
tuff were determined using chemical analysis, energy-dispersive X-ray spectroscopy, the specific
surface area, electron microscopy, X-ray diffraction spectroscopy, and Fourier-transform infrared
spectroscopy. The sensor was successfully built and operates at pH 7, at an applied potential of
−150 mV Ag/AgCl/KClsat, presenting a sensitivity of 0.87 mA M−1, a detection limit of 10 µM and a
linear domain up to 30 mM H2O2. These good electroanalytic parameters for H2O2 detection (a low
detection limit and high sensitivity) support the possibility of using these sensors for the detection of
many analytes in environmental, food and medical applications.

Keywords: carbon paste electrodes; zeolite; amperometric sensor; hydrogen peroxide

1. Introduction

Zeolites are widely used in the environmental remediation of soil or water to immobi-
lize or remove toxic materials by cation exchange, e.g., Cu [1], due to their channel network
and exchangeable cations. They have specific properties: their adsorption–desorption
capacity, ion exchange capacity and catalytic properties [2]. Their ionic exchange capacity
allows for the modification of natural or synthetic zeolites with metal ions. Such modifica-
tion of zeolites opens up new ways in which they can be used.

Copper-modified zeolites have many applications: some modified electrodes pre-
pared using an aqueous ion-exchange method on synthetic zeolites have been tested for
their electrochemical stability [3]; other modified electrodes have been used as electro-
chemical sensors for the determination of dopamine, ascorbic acid and non-electroactive
cations [4–8].

Hydrogen peroxide (H2O2) is a bleaching agent used in the textile and paper industries
and shows oxidizing properties [9]. It is used as a disinfectant and antiseptic and as an
oxidizer for solid rocket propulsion [10], and is produced naturally in organisms as a
by-product of metabolism, regulating numerous states of oxidative stress [11,12].

Additionally, H2O2 has an important role in natural oxidation processes because it
is found in air, water and solid foods. It is an analyte used in food [13], agricultural [14],
pharmaceutical [15], clinical [16], industrial and environmental analyses [17,18]. Tech-
niques for detecting H2O2 include colorimetry [19,20], spectrometry [21], chemilumines-
cence [22,23], titrimetry [24], spectrophotometry [25], fluorimetry [26–32], the use of fiber-
optic devices [33] and chromatography [34], but most of these are time-consuming, use
expensive reagents and suffer with interference from various species. As such, the use
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of electrochemical methods such as voltammetry and amperometry presents advantages,
such as low detection limits and a rapid response time [35–48].

Taking into account all these considerations, the novelty of this work was to pre-
pare a new, low-cost carbon paste amperometric sensor for H2O2 detection based on
Cu-exchanged zeolitic volcanic tuff. The obtained amperometric sensor is low cost due
to the natural materials used to create it (natural zeolite), and it is easy to prepare and
apply. The advantages of this natural zeolite are its low energy consumption and the lack
of pollutants created throughout its entire life cycle, as well as the fact that it is found in
high quantities in the environment. Additionally, the chemical composition of the natural
zeolite was the same for many samples that were used to prepare the H2O2 amperometric
sensors, due to the high quality (homogeneity and zeolite content) of the deposit where the
samples were collected from.

The modified electrodes show good electroanalytic parameters for H2O2 detection (a
low detection limit and high sensitivity), which supports the possibility of using them to
detect many analytes in environmental, food and medical applications.

The modified zeolite was characterized using different methods (chemical analysis,
energy-dispersive X-ray spectroscopy, electron microscopy, X-ray diffraction spectroscopy
and Fourier-transform infrared spectroscopy). The copper-exchanged zeolite-modified
electrode was characterized using cyclic voltammetry and amperometry techniques.

2. Materials and Methods
2.1. Materials

Hydrogen peroxide, NaCl, CuSO4·5H2O and 25% ammonium solution were acquired
from Reactivul, Bucharest, Romania, and graphite powder and paraffin oil were purchased
from Fluka (Buchs, Switzerland).

For the preparation of phosphate-buffered solution, we employed K2HPO4·2H2O and
KH2PO4·H2O from Merck (Darmstadt, Germany).

2.1.1. Preparation of the Modified Zeolite

The zeolitic tuff sample was collected from a natural outcrop in Macicas (Cluj County,
Romania). To prepare the electrode material, the zeolitic tuff sample was ground to
0.2–0.4 mm (based on a previous test which showed that this fraction is the best for
retaining metal ions in fixed-bed column experiments) via grinding and size separation,
then washed with distilled water and dried at 105 ◦C. This physical treatment was followed
by an alkaline treatment (NaCl 1 M), as described in a previous work [49].

Modification of the zeolitic tuff sample was realized by contact with a copper syn-
thetic aqueous solution in dynamic conditions. The ionic exchange process took place, as
shown in Equation (1), when copper solution (0.25–16.6 g Cu2+/L prepared from analytical-
purity CuSO4·5H2O) was passed through a column containing 2.5 g of zeolitic volcanic
tuff (flooded, di = 15 mm) at a flow rate of 0.07 mL/s, as previously described [2]. The
experiments were realized at room temperature (22 ± 2 ◦C), without any pH adjustments,
until exhaustion of the zeolite volcanic tuff sample took place. Samples obtained in this
way were further subjected to drying at 105 ◦C for 6 h and calcination at 400 ◦C (in air)
for 4 h. The amount of copper incorporated into the zeolite sample was determined using
the initial and final concentrations of copper ions in solution, determined by spectrophoto-
metric measurements (Jenway 6305 spectrophotometer, Vernon Hills, Illinois, USA, 25%
ammonium solution, λmax = 440 nm):

2Z − Na + Cu2+ ⇆ Z2 − Cu + 2Na+ (1)

Cu–Z-modified zeolitic volcanic tuff was further used to prepare the modified carbon-
paste electrodes.
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2.1.2. Electrode Preparation

The zeolites were mixed with graphite (2:1, w/w) and paraffin oil to obtain carbon
paste electrodes modified with zeolite (Z-CPEs) and carbon paste electrodes modified with
Cu-enriched zeolite (Cu–Z-CPEs).

All the compounds were manually mixed in an agate mortar and pestle for 10 min
and the resulting samples were introduced into a Teflon tube equipped with an electrical
copper wire contact for external connection to the potentiostat/galvanostat. Finally, the
electrode’s surface preparation included a polishing step, carried out multiple times using
regular paper.

2.2. Methods
2.2.1. Physical and Chemical Characterization

The zeolitic volcanic tuff, in natural (Z) and modified (Cu–Z) forms, was characterized
using chemical analysis, energy dispersive X-ray spectroscopy (EDS), specific surface
area (BET), scanning and transmission electron microscopy (SEM, TEM), X-ray diffraction
spectroscopy (XRD) and Fourier-transform infrared spectroscopy (FTIR).

Chemical analysis of the bulk sample was realized using specific analytical methods for
silicate materials. Oxford Instruments EDS–Inca apparatus (Abingdon, United Kingdom)
was used for surface elemental analysis (EDS).

Measurement of the BET surface area (SBET) and pore size distribution was performed
using approximately 0.2 g of sample degassed in a vacuum at 106 ◦C for 20 h to remove all
the adsorbed species. A Sorptomatic 1990 (Thermo Electron Corporation, Waltham, MA,
USA) was used to record the nitrogen adsorption and desorption isotherms.

Powder X-ray diffraction was performed using a Siemens Bruker unit with a Cu Kα

anticathode. Diffraction patterns were obtained in the 5◦ ÷ 50◦ 2θ range and the following
analytical conditions: 20 kV, 40 mA and a step of 2 degrees. The mineral composition was
determined using a semi-quantitative X-ray diffraction method.

SEM images were obtained from samples deposited on double adhesive carbon discs,
covered with 10 nm Au in an Agar Automated Sputter Coater and examined using a Jeol
JSM5510Lvscanning electron microscope (Peabody, MA, USA). TEM images were obtained
from samples suspended in distilled water (ultrasonic bath), deposited on a 300-mesh
electrolytic grid, covered with carbon film (freshly deposited in vacuum) and examined
using a Jeol JEM1010 transmission electron microscope (Peabody, MA, USA)).

A Jasco 615 spectrophotometer (Tokyo, Japan) was used to collect the FTIR spectra
in the 400–4000 cm−1 range, with a resolution of 2 cm−1, on KBr pellets (2 mg sample in
200 mg KBr).

2.2.2. Electrochemical Measurements

A PC-controlled electrochemical analyzer (Autolab-PGSTAT 10, EcoChemie, Utrecht,
The Netherlands) managed by GPES 4.8 (General Purpose Electrochemical System soft-
ware package) was used for cyclic voltammetry and amperometry measurements, while
a EG&G rotator (Radiometer) was used to modulate the stirring rate of the working
electrode. The carbon paste electrode (CPE) was the working electrode, the Ag/AgCl
(3.0 mol L−1 KCl) was used as the reference electrode and a platinum electrode was used as a
counter electrode.

A pH-meter (HI255, Hanna Instruments, Cluj-Napoca, Romania) equipped with a
HI1131B glass electrode was used to adjust the pH during the addition of the phosphate
buffer solutions.

3. Results and Discussion
3.1. Physical and Chemical Characterization of Natural and Modified Zeolite Samples

The zeolitic tuff samples were collected from an outcrop in Macicas (Cluj County,
Romania). This deposit belongs to the Dej Tuff Level and it is of lower Badenian age. From
a structural point of view, volcanic tuffs from Macicas are massive cinerites represented
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by vitric-crystal and vitric tuffs. The main petrographical component is represented by
white-greyish or white-greenish volcanic tuff that may be interlayered with marls and
clays. Depending on the level, volcanic tuff varies from fine microporous to compact
macroporous [2].

The bulk chemical composition of the natural zeolitic tuff sample was determined
to be as follows, in mass %: SiO2 63.91, Al2O3 14.45, Fe2O3 1.74, CaO 5.34, MgO 0.30,
Na2O 1.02, K2O 0.86, TiO2 0.38 and loss of ignition at 1000 ◦C (L.O.I.) 12. The value of
the L.O.I. indicates that secondary and hydrated materials (zeolite and clay minerals) are
present in high amounts. The tuff samples collected from the studied area are remarkably
homogeneous in their mineralogical and chemical composition [49,50].

Figure 1A, B presents the SEM–EDS spectra and atomic weight composition of the Z
(A) and Cu–Z (B) samples. The EDS spectra for the natural sample indicates the following
elemental composition: Si, Al, Na, K, Ca, Mg and O (Figure 1A). For the Cu–Z-modified
sample, copper was identified alongside the main elements; Figure 1B. Several surface
regions of the Cu–Z and Cu–Z-CPE samples were analyzed; copper amounts of between
1.3 and 6.6% (average 3.95%) were determined. A high quantity of carbon from graphite,
up to 74.3%, was identified when the electrode material was subjected to EDS analysis.
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Figure 1. SEM–EDS spectra and atomic weight composition of the Z (A) and Cu–Z (B) samples.

According to N2 adsorption and desorption isotherm investigations, the BET specific
surface area of the unmodified zeolitic volcanic tuff sample had an average value of
35.7 m2/g, while after modification, a small decrease was observed—most probably due to
the thermal treatment applied (down to 30 m2/g). The adsorption–desorption isotherm,
shown in Figure 2A, is of type II with a H3 type loop, typical of slit-shaped pores [51]. The
pore size distribution, shown in Figure 2B, indicates that the considered samples had a
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multimodal distribution of mesopores in the small-size region (3–13 nm). For the modified
sample, a change in the pore size distribution was observed, which can be attributed to the
alteration of the pore size during the thermal treatment (pore volumes corresponding to
small pores decreased, while new nodal positions appeared at higher pore diameters).
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XRD powder diffractograms indicated that clinoptilolite was present in substantial
amounts and was the main zeolite species present. Based on a semi-quantitative esti-
mation, the zeolite—clinoptilolite—represented 70–80% of the crystallized fraction of the
tuff. Quartz, plagioclase, biotite and montmorillonite were identified as accompanying
minerals [2,49,50].

SEM and TEM images of the unmodified zeolitic volcanic tuff sample show that the
zeolite was present as tabular clinoptilolite crystals, shown in Figure 3, which varied in
size from 2 to 10 µm. Larger crystals were usually found in the pores of the bulk rock.

FTIR measurements were also used to characterize the samples of zeolitic volcanic
tuff and confirm the presence of clinoptilolite. Spectra of the natural sample (Figure 4)
confirmed the presence of specific zeolite peaks, identified in Table 1, in accordance with
the literature data [2,52–55]. For the Cu–Z sample, some minor modifications—specifically,
peak shifts (Figure 4)—were observed. This can be attributed to the partial destruction of
the zeolite’s three-dimensional structure during the calcination process [2].
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Table 1. The infrared bands of the Z and Cu–Z samples.

Sample
Shift b IR Signal Attribution

Z Cu–Z Z a

Wavenumber (cm−1)

3620 3620 3610 - O–H bond stretching

3446 3446 - - O–H bond stretching

1637 1637 1635 - H–O–H angular deformation

1209 shoulder 1210 ↓↓ (Si, Al)–O asymmetric internal stretching

1055 1074 1070 ↑ (Si, Al)–O asymmetric external stretching

796 788 790 ↓ (Si, Al)–O external symmetric stretching

733 726 740 ↓ (Si, Al)–O external symmetric stretching

669 674 670 ↑ (Si, Al)–O external symmetric stretching

606 607 602 ↑ ring-coupled (Si, Al)–O external vibration

467 459 465 ↓ O–(Si, Al)–O angular deformation
a literature data [2,53–55]. b IR band shift—↑ towards higher values, ↓ towards smaller values—Z vs. Cu–Z.
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Figure 4. FTIR spectra of the unmodified Z and copper modified Cu–Z zeolitic volcanic.

The breakthrough curve (time vs. concentration evolution) and cation exchange
capacity during the ionic exchange process and modification of the zeolitic tuff sample, (up
to 225 min, 900 mL copper solution) are presented in Figure 5. The cation exchange capacity
(“practical capacity” or “operating capacity” obtained under working conditions) [56,57],
in mg/g, was calculated by taking into consideration the initial concentration times t
concentration and the zeolitic volcanic tuff mass placed in the column. Following the ionic
exchange process evolution, shown in Figure 5A, it was observed that as the copper ion
initial concentration decreased, the breakthrough curve slope angle was smaller, indicating
that the ionic exchange reaction rate decreased and therefore that the ionic exchange
capacity had a smaller value; Figure 5B. Additionally, when a concentrated copper ion
solution made contact with the zeolitic volcanic tuff, the ionic exchange capacity increased
abruptly—up to 262.6 mg/g—showing a high capacity of the sample to retain metal ions
when mass transfer conditions are improved. The maximum calculated cation exchange
capacity values are presented in Figure 6.
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3.2. Electrochemical and H2O2 Electrocatalytic Measurements

The electrochemical characterization of the newly obtained modified electrodes was
realized in different experimental conditions to determine the electrochemical parame-
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ters and to study the influence of the supporting electrolyte pH and scan rate on the
voltammetric response.

The obtained electrodes were first electrochemically tested in a phosphate buffer so-
lution to observe their voltammetric response. As can be seen in Figure 7A, in phosphate
buffer solution as the supporting electrolyte, at 7 pH and a scan rate of 10 mV s−1, the
copper-enriched zeolite-modified electrodes (Cu–Z-CPEs) showed better voltammetric
signals than the carbon paste electrodes modified with zeolites (Z-CPEs) and unmodified
carbon paste electrodes (CPEs). The redox peak pair can be atributed to the oxidation
and reduction of the copper available in the modified natural zeolite. The electrochemical
parameters for Cu–Z-CPEs are as follows: the anodic peak potential Epa = −235 mV vs.
Ag/AgCl/KClsat; the cathodic peak potential Epc = −5 mV vs. Ag/AgCl/KClsat; the
formal standard potential (calculated as average of anodic and cathodic peak potential)
E0′ = −120 mV vs. Ag/AgCl/KClsat; the Ipa/Ipc ratio = 3.12; surface coverage
Γ = 2.2·10−7 mol cm−2, according to [58].
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Figure 7. Cyclic voltammograms corresponding to the obtained modified electrodes (A); pH depen-
dence of formal standard potential (B) and experimental dependence of (Ep − E0′ ) on the logarithm
of the scan rate (C) corresponding to Cu–Z–CPEs. Experimental conditions: starting potential,—
1000 mV vs. Ag/AgCl/KClsat; scan rate, 10 mV s–-1 (A); 50 mV s–-1 (B); supporting electrolyte,
0.1 M phosphate buffer solution, pH 7 (A,C).
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All further experiments were realized with phosphate buffer as the supporting elec-
trolyte, with different pH values. As was expected, the E0′ values were dependent on the
supporting electrolyte pH in the case of the obtained carbon paste electrodes. The slope of
the linear regression corresponding to the E0′ vs. pH dependence (Figure 7B) was close to
0.059 V/∆pH, which indicates that a transfer of 2e−/2H+ was involved in the redox process
and that the transfer electrons varied with the pH. This pH influence on the voltammetric
response of the newly obtained electrodes will be useful for further investigations on H2O2
electrocatalytic activity.

Cyclic voltammetric measurements were recorded at increased electrode potential
scan rates (Figure S1) to determine the kinetic parameters of the copper electron transfer,
using the method proposed by Laviron [59]. From the influence of the formal standard
potential E0′ on the log of the scan rate (Figure 7C), the rate constant of the heterogeneous
electron transfer ks of 1.74 s−1 and the transfer coeficient α of 0.74 were evaluated for
the obtained modified electrodes (Cu–Z-CPEs). This value of the heterogeneous elec-
tron transfer rate constant proves that copper can be used as an efficient mediator for
electron transfer.

Additionally, the scan rate influence on the peak current was studied by recording the
voltammograms at different potential scan rates. The cyclic voltammograms measurements
performed at different potential scan rates, between 0.01 and 1.8 V s−1, and showed a linear
dependence of anodic and cathodic peak current intensity (Ipa and Ipc) on the potential
scan rate (v). At different supporting electrolyte pHs, the slopes of the log Ip vs. log v
dependence were close to 0.5, confirming the existance of a diffusion control (Table 2).

Table 2. Parameters of the log linear regression corresponding to the peak current dependence on the
potential scan rate for Cu–Z-CPEs. Experimental conditions as in Figure 7.

pH
Slope R/No. of Exp. Points

Oxidation Reduction Oxidation Reduction

3 0.56 ± 0.02 0.62 ± 0.03 0.995/9 0.992/9

5 0.34 ± 0.01 0.51 ± 0.03 0.996/13 0.985/13

7 0.41 ± 0.02 0.60 ± 0.02 0.990/10 0.994/14

9 0.40 ± 0.03 0.57 ± 0.02 0.970/12 0.995/15

The electrocatalytic characterization of H2O2 reduction was first studied using cyclic
voltammetric measurements, to determine the electrocatalytic efficiency.

The cyclic voltammograms recorded in phosphate buffer solution at pH 7 and a scan
rate of 10 mV s−1 for the obtained carbon paste electrodes (Cu-Z-CPEs), in the absence
and in the presence of H2O2 solution at two concentrations (1 mM and 5 mM; Figure 8),
proved the presence of good electrocatalytic activity towards H2O2 reduction, as char-
acterized by: (i) decreasing of the H2O2 reduction overpotential (~200 mV, estimated
by the difference of cathodic peak potentials); (ii) a good electrocatalytic efficiency (ra-
tio of ((Ipeak)[H2O2] = 5 mM − (Ipeak)[H2O2] = 0)/(Ipeak)[H2O2] = 0), at an applied potential of
−400 mV vs. Ag/AgCl/KClsat; 1.95. Overpotential decreases are advantageous, as this
lowers the applied potential for further amperometric measurements to very close to 0 mV
vs. Ag/AgCl/KClsat. The obtained electrodes present good electrocatalytic efficiency and
suggest again that they are improved by the presence of the copper that was introduced
into the zeolite sample [52]. These characteristics prove the the newly prepared electrodes
can be used as efficient amperometric sensors for H2O2 detection.

Once the voltammetric electrocatalytic characterization of the newly obtained modi-
fied electrodes was completed, measurements with rotating disk electrodes were realized
at different supporting electrolyte pH values, in 0.1 M phosphate buffer containing 20 mM
H2O2 at a rotation speed of 800 rpm, to estimate the electroanalytic parameters of the elec-
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trocatalytic reduction of H2O2. Thus, the optimum applied potential was determined from
the dependence of the H2O2 electrocatalytic current on the applied potential (Figure 9A–C).
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Figure 8. Cyclic voltammograms recorded with Cu–Z–CPE electrodes in 0.1 M phosphate buffer
(pH 7.0) and in solution containing two H2O2 concentrations.

As can be seen in Figure 9A–C, the optimum value of applied potential was −50 mV
vs. Ag/AgCl/KClsat for pH 3, −150 mV vs. Ag/AgCl/KClsat for pH 7 and −400 mV vs.
Ag/AgCl/KClsat for pH 9. For pH 3, the optimum value of applied potential was chosen
as the higher value, while for pH 7 and pH 9, the optimum values were chosen on the
plateau of the graph, because after this plateau, the values of the H2O2 electrocatalytic
currents dramatically decreased. All these values were used in further electroanalytical
measurements.

Figure 10 presents the calibration curves obtained from the amperometric measure-
ments recorded in Figure S2, for the new modified electrodes Cu–Z-CPEs in 0.1 M phos-
phate buffer solutions with different pH values (3, 7 and 9), at increased values of H2O2
concentrations (between 10−5 to 10−1 M H2O2), rotation speeds of 800 rpm and using
the values of applied potential determined above: −50 mV vs. Ag/AgCl/KClsat (pH 3),
−150 mV vs. Ag/AgCl/KClsat (pH 7) and −400 mV vs. Ag/AgCl/KClsat (pH 9).

The electroanalytical parameters were obtained from Figures 10 and S2 and are pre-
sented in Table 3. The sensitivity (calculated as the ratio of Imax/KM, mA M−1, according
to Michaelis–Menten treatment [60]) was 0.75 (pH 3) < 0.87 (pH 7) < 27.8 (pH 9); in almost
all cases, the linear domain reached up to 1 mM; the detection limit (calculated as a ratio of
signal/noise of 3) was 10 µM (pH 3 and pH 7) and 31 µM (pH 9); in all cases, the response
time was less than 1 min. Even at pH 9, the sensitivity was high and the applied potential
was very low. The electroanalytical parameters determined at pH 7 are of interests due to
the applied potential being close to 0 mV vs. Ag/AgCl/KClsat and due to the possibility of
the sensor for use in the detection of many analytes in environmental, food and medical
applications in neutral pH media. The detection limit is better compared with other results
already published for H2O2 sensors based on electrodes modified with zeolites [61–63] and
are comparable with other H2O2 sensors based on carbon paste [64–66].
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Figure 9. The influence of the applied potential on the H2O2 electrocatalytic current, recorded
with Cu–Z–CPEs electrodes at different pHs of supporting electrolyte of pH 3.0 (A), pH 7.0 (B) and
pH 9.0 (C).

Table 3. Electroanalytical parameters corresponding to Cu–Z-CPEs. Experimental conditions as in
Figure 10.

pH Eappl (mV) Detection Limit
(µM)

Linear Domain
(M)

S
(mA/M) Chi2 R2

3 −50 10 10−5–5·10−3 0.75 1.8·10−13 0.989

7 −150 10 10−5–3·10−2 0.87 4.1·10−14 0.999

9 −400 31 2·10−5–10−3 27.8 1.0·10−11 0.999

The durability of the H2O2 sensor was studied in different ways, to test their repeata-
bility and reproducibility: (i) The voltammetric response of the modified electrode in the
presence of 5 mM H2O2 over 100 cycles (Figure 11A) was tested, as well as the stability of
the catalytic current of the modified electrode over 7 days (Figure 11B). In both cases, a
decrease of less than 5% of the catalytic current was observed; (ii) Five modified electrodes
were tested at the same H2O2 concentration (5 mM) and a small difference between signals
occurred (5.4%; Figure 11C).



Chemosensors 2024, 12, 23 13 of 17

Chemosensors 2024, 12, x FOR PEER REVIEW 14 of 19 
 

 

Figure 10 presents the calibration curves obtained from the amperometric 

measurements recorded in Figure S2, for the new modified electrodes Cu–Z-CPEs in 0.1 

M phosphate buffer solutions with different pH values (3, 7 and 9), at increased values of 

H2O2 concentrations (between 10−5 to 10−1 M H2O2), rotation speeds of 800 rpm and using 

the values of applied potential determined above: −50 mV vs. Ag/AgCl/KClsat (pH 3), −150 

mV vs. Ag/AgCl/KClsat (pH 7) and −400 mV vs. Ag/AgCl/KClsat (pH 9). 

 

Figure 10. Calibration curves for H2O2 of Cu–Z-CPEs electrodes, at different pHs of phosphate 

buffer solution. 

The electroanalytical parameters were obtained from Figures 10 and S2 and are 

presented in Table 3. The sensitivity (calculated as the ratio of Imax/KM, mA M−1, according 

to Michaelis–Menten treatment [60]) was 0.75 (pH 3) < 0.87 (pH 7) < 27.8 (pH 9); in almost 

all cases, the linear domain reached up to 1 mM; the detection limit (calculated as a ratio 

of signal/noise of 3) was 10 µM (pH 3 and pH 7) and 31 µM (pH 9); in all cases, the 

response time was less than 1 min. Even at pH 9, the sensitivity was high and the applied 

potential was very low. The electroanalytical parameters determined at pH 7 are of 

interests due to the applied potential being close to 0 mV vs. Ag/AgCl/KClsat and due to 

the possibility of the sensor for use in the detection of many analytes in environmental, 

food and medical applications in neutral pH media. The detection limit is better compared 

with other results already published for H2O2 sensors based on electrodes modified with 

zeolites [61–63] and are comparable with other H2O2 sensors based on carbon paste [64–

66]. 

Table 3. Electroanalytical parameters corresponding to Cu–Z-CPEs. Experimental conditions as in 

Figure 10. 

pH Eappl (mV) 
Detection Limit 

(μM) 

Linear 

Domain (M) 

S 

(mA/M) 
Chi2 R2 

3 −50 10 10−5–5·10−3 0.75 1.8·10−13 0.989 

7 −150 10 10−5–3·10−2 0.87 4.1·10−14 0.999 

9 −400 31 2·10−5–10−3 27.8 1.0·10−11 0.999 

Figure 10. Calibration curves for H2O2 of Cu–Z-CPEs electrodes, at different pHs of phosphate
buffer solution.

Chemosensors 2024, 12, x FOR PEER REVIEW 15 of 19 
 

 

The durability of the H2O2 sensor was studied in different ways, to test their 

repeatability and reproducibility: (i) The voltammetric response of the modified electrode 

in the presence of 5 mM H2O2 over 100 cycles (Figure 11A) was tested, as well as the 

stability of the catalytic current of the modified electrode over 7 days (Figure 11B). In both 

cases, a decrease of less than 5% of the catalytic current was observed; (ii) Five modified 

electrodes were tested at the same H2O2 concentration (5 mM) and a small difference 

between signals occurred (5.4%; Figure 11C). 

 

Figure 11. The durability of Cu–Z-CPEs sensor in the presence of 5 mM H2O2: repeatability over100 

cycles (A) and 7 days (B); reproducibility of 5 electrodes (C). 

4. Conclusions 

Cu-exchanged zeolitic volcanic tuff was structurally and morphologically 

characterized using chemical analysis, energy dispersive X-ray spectroscopy, electron 

microscopy, X-ray diffraction spectroscopy and Fourier-transform infrared spectroscopy. 

A copper-exchanged zeolite-modified electrode was prepared by mixing copper–zeolite, 

graphite powder and paraffin oil to obtain new, low-cost amperometric sensors for H2O2 

detection. Using cyclic voltammetry and amperometry techniques, the electrochemical 

reduction of hydrogen peroxide at the modified electrodes was investigated. The 

influence of pH and scan rate on the voltammetric response, characteristic of the modified 

electrodes, was studied and the optimum operating conditions were established. The new 

H2O2 amperometric sensor was electroanalytically characterized by the following 

parameters: a sensitivity of 0.87 mA/M, detection limit of 10 µM and linear domain up to 

0.3 mM for H2O2 detection at pH 7, proving the possibility of its use for the detection of 

many analytes in environmental, food and medical applications. 

Moreover, this natural material, which was used to obtain the H2O2 amperometric 

sensor—Cu-exchanged natural zeolite—is low-cost, decreases energy consumption and 

avoids pollution in many ways, over its whole life cycle. It is good for environmental 

Figure 11. The durability of Cu–Z-CPEs sensor in the presence of 5 mM H2O2: repeatability over100
cycles (A) and 7 days (B); reproducibility of 5 electrodes (C).



Chemosensors 2024, 12, 23 14 of 17

4. Conclusions

Cu-exchanged zeolitic volcanic tuff was structurally and morphologically character-
ized using chemical analysis, energy dispersive X-ray spectroscopy, electron microscopy,
X-ray diffraction spectroscopy and Fourier-transform infrared spectroscopy. A copper-
exchanged zeolite-modified electrode was prepared by mixing copper–zeolite, graphite
powder and paraffin oil to obtain new, low-cost amperometric sensors for H2O2 detection.
Using cyclic voltammetry and amperometry techniques, the electrochemical reduction of
hydrogen peroxide at the modified electrodes was investigated. The influence of pH and
scan rate on the voltammetric response, characteristic of the modified electrodes, was stud-
ied and the optimum operating conditions were established. The new H2O2 amperometric
sensor was electroanalytically characterized by the following parameters: a sensitivity of
0.87 mA/M, detection limit of 10 µM and linear domain up to 0.3 mM for H2O2 detection at
pH 7, proving the possibility of its use for the detection of many analytes in environmental,
food and medical applications.

Moreover, this natural material, which was used to obtain the H2O2 amperometric
sensor—Cu-exchanged natural zeolite—is low-cost, decreases energy consumption and
avoids pollution in many ways, over its whole life cycle. It is good for environmental appli-
cations due to the above-mentioned properties, and also for detecting different pollutants
in various environmental media.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/chemosensors12020023/s1, Figure S1: Cyclic voltammo-
grams corresponding to obtained Cu–Z-CPEs electrodes, recorded at increased scan rates of the
electrode potential (between 5 mV/s and 320 mV/s), in 0.1 M phosphate buffer solution, pH 7, and
Figure S2: The amperometric response of the modified electrodes Cu–Z-CPEs in 0.1 M phosphate
buffer solutions with different pH values pH 7.0 (A), pH 3.0 (B) and pH 9.0 (C), at increased values of
H2O2 concentrations (between 10−5 and 10−1 M H2O2), a rotation speed of 800 rpm and using the
values of applied potential determined above: −50 mV vs. Ag/AgCl/KClsat (pH 3), −150 mV vs.
Ag/AgCl/KClsat (pH 7) and −400 mV vs. Ag/AgCl/KClsat (pH 9).
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