Next Issue
Volume 4, September
Previous Issue
Volume 4, March
 
 

Chemosensors, Volume 4, Issue 2 (June 2016) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1419 KiB  
Review
Aptamer-Based Electrochemical Sensing of Lysozyme
by Alina Vasilescu, Qian Wang, Musen Li, Rabah Boukherroub and Sabine Szunerits
Chemosensors 2016, 4(2), 10; https://doi.org/10.3390/chemosensors4020010 - 14 Jun 2016
Cited by 45 | Viewed by 11485
Abstract
Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, [...] Read more.
Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples. Full article
(This article belongs to the Special Issue Electrochemical Immunosensors and Aptasensors)
Show Figures

Figure 1

172 KiB  
Communication
A Quality Control Assay to Access the HCl Molarity of Radionuclide Solutions
by Jonathan Fitzsimmons
Chemosensors 2016, 4(2), 9; https://doi.org/10.3390/chemosensors4020009 - 04 May 2016
Viewed by 4081
Abstract
Strontium-82 is produced by proton activation of a rubidium chloride target in an accelerator or cyclotron and purified by ion exchange chromatography. The Strontrium-82 is used in Cardigen generators to produce Rubidium-82 for cardiac imaging. Quality control testing of the purified Strontium-82 is [...] Read more.
Strontium-82 is produced by proton activation of a rubidium chloride target in an accelerator or cyclotron and purified by ion exchange chromatography. The Strontrium-82 is used in Cardigen generators to produce Rubidium-82 for cardiac imaging. Quality control testing of the purified Strontium-82 is performed with Inductively Coupled Plasma-Optical Emission spectroscopy (ICP-OES) and gamma spectroscopy. To meet Department of Energy specifications for HCl molarity the purified Strontium-82 solution needs to be tested to determine if the isotope is in the 0.05–0.5 M HCl range. This manuscript reports a simple HCl molarity test to determine if the purified Strontium-82 solution meets specifications. Validation of the assay was performed by evaluating all solutions associate with Strontium-82 processing. Full article
15232 KiB  
Article
A Double Layer Sensing Electrode “BaTi(1-X)RhxO3/Al-Doped TiO2” for NO2 Detection above 600 °C
by Bilge Saruhan, Azhar A. Haidry, Ayhan Yüce, Engin Ciftyürek and Guillermo C. Mondragón Rodríguez
Chemosensors 2016, 4(2), 8; https://doi.org/10.3390/chemosensors4020008 - 29 Apr 2016
Cited by 6 | Viewed by 5299
Abstract
NO2 emission is mostly related to combustion processes, where gas temperatures exceed far beyond 500 °C. The detection of NO2 in combustion and exhaust gases at elevated temperatures requires sensors with high NO2 selectivity. The thermodynamic equilibrium for NO2 [...] Read more.
NO2 emission is mostly related to combustion processes, where gas temperatures exceed far beyond 500 °C. The detection of NO2 in combustion and exhaust gases at elevated temperatures requires sensors with high NO2 selectivity. The thermodynamic equilibrium for NO2/NO ≥ 500 °C lies on the NO side. High temperature stability of TiO2 makes it a promising material for elevated temperature towards CO, H2, and NO2. The doping of TiO2 with Al3+ (Al:TiO2) increases the sensitivity and selectivity of sensors to NO2 and results in a relatively low cross-sensitivity towards CO. The results indicate that NO2 exposure results in a resistance decrease of the sensors with the single Al:TiO2 layers at 600 °C, with a resistance increase at 800 °C. This alteration in the sensor response in the temperature range of 600 °C and 800 °C may be due to the mentioned thermodynamic equilibrium changes between NO and NO2. This work investigates the NO2-sensing behavior of duplex layers consisting of Al:TiO2 and BaTi(1-x)RhxO3 catalysts in the temperature range of 600 °C and 900 °C. Al:TiO2 layers were deposited by reactive magnetron sputtering on interdigitated sensor platforms, while a catalytic layer, which was synthesized by wet chemistry in the form of BaTi(1-x)RhxO3 powders, were screen-printed as thick layers on the Al:TiO2-layers. The use of Rh-incorporated BaTiO3 perovskite (BaTi(1-x)RhxO3) as a catalytic filter stabilizes the sensor response of Al-doped TiO2 layers yielding more reliable sensor signal throughout the temperature range. Full article
(This article belongs to the Special Issue Chemical Vapor Sensing)
Show Figures

Graphical abstract

3249 KiB  
Article
Development of a Novel Cu(II) Complex Modified Electrode and a Portable Electrochemical Analyzer for the Determination of Dissolved Oxygen (DO) in Water
by Salvatore Gianluca Leonardi, Maryam Bonyani, Kaushik Ghosh, Ashish K. Dhara, Luca Lombardo, Nicola Donato and Giovanni Neri
Chemosensors 2016, 4(2), 7; https://doi.org/10.3390/chemosensors4020007 - 21 Apr 2016
Cited by 10 | Viewed by 5873
Abstract
The development of an electrochemical dissolved oxygen (DO) sensor based on a novel Cu(II) complex-modified screen printed carbon electrode is reported. The voltammetric behavior of the modified electrode was investigated at different scan rates and oxygen concentrations in PBS (pH = 7). An [...] Read more.
The development of an electrochemical dissolved oxygen (DO) sensor based on a novel Cu(II) complex-modified screen printed carbon electrode is reported. The voltammetric behavior of the modified electrode was investigated at different scan rates and oxygen concentrations in PBS (pH = 7). An increase of cathodic current (at about −0.4 vs. Ag/AgCl) with the addition of oxygen was observed. The modified Cu(II) complex electrode was demonstrated for the determination of DO in water using chronoamperometry. A small size and low power consumption home-made portable electrochemical analyzer based on custom electronics for sensor interfacing and operating in voltammetry and amperometry modes has been also designed and fabricated. Its performances in the monitoring of DO in water were compared with a commercial one. Full article
Show Figures

Graphical abstract

3080 KiB  
Review
ZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric Chemical Sensors
by Vardan Galstyan, Elisabetta Comini, Andrea Ponzoni, Veronica Sberveglieri and Giorgio Sberveglieri
Chemosensors 2016, 4(2), 6; https://doi.org/10.3390/chemosensors4020006 - 23 Mar 2016
Cited by 36 | Viewed by 7891
Abstract
One-dimensional metal oxide nanostructures such as nanowires, nanorods, nanotubes, and nanobelts gained great attention for applications in sensing devices. ZnO is one of the most studied oxides for sensing applications due to its unique physical and chemical properties. In this paper, we provide [...] Read more.
One-dimensional metal oxide nanostructures such as nanowires, nanorods, nanotubes, and nanobelts gained great attention for applications in sensing devices. ZnO is one of the most studied oxides for sensing applications due to its unique physical and chemical properties. In this paper, we provide a review of the recent research activities focused on the synthesis and sensing properties of pure, doped, and functionalized ZnO quasi-one dimensional nanostructures. We describe the development prospects in the preparation methods and modifications of the surface structure of ZnO, and discuss its sensing mechanism. Next, we analyze the sensing properties of ZnO quasi-one dimensional nanostructures, and summarize perspectives concerning future research on their synthesis and applications in conductometric sensing devices. Full article
(This article belongs to the Special Issue Chemical Vapor Sensing)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop