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Abstract: This work describes the investigation of a label-free immunosensor for the detection of
aflatoxin B1 (AFB1). CD-trodes (electrodes obtained from recordable compact disks) were used as
low-cost and disposable transducers after modification with a self-assembled monolayer (SAM) of
lipoic acid. The anti-aflatoxin B1 antibody was immobilized via EDC/NHS activation, followed by
blocking with bovine serum albumin and immunoassays with AFB1. The optimization of analytical
parameters and the detection were carried out using electrochemical impedance measurements.
Using chemometric tools, the best conditions for the immunosensor development were defined
as: anti-AFB1 antibody at 1:2000 dilution and surface blocking with 0.5% bovine serum albumin,
both incubated for 1 h, and antibody–antigen immunoreaction for 30 min. The impedimetric
immunosensor showed a linear range from 5 × 10−9 to 1 × 10−7 mol·L−1 (1.56–31.2 ng·mL−1),
limit of detection and limit of quantification, respectively, 3.6 × 10−10 and 1.1 × 10−9mol·L−1

(0.11 and 0.34 ng·mL−1). The proposed immunosensor was applied to analyze peanut samples.

Keywords: aflatoxin B1; immunosensor; electrochemical impedance spectroscopy

1. Introduction

Aflatoxin B1 (AFB1) is a toxic metabolite produced by fungi Aspergillus flavus and A. parasiticus that
is characterized by acute toxicity, teratogenicity, mutagenicity, and carcinogenicity [1]. The acute effects
are observed mainly in the liver; they can result in necrosis, hemorrhage, injury, fibrosis, cirrhosis,
and cancer. This toxin infects a wide range of agricultural products [2], especially peanuts, corn, wheat,
rice, nuts, dried fruits, among others.

The detection of aflatoxin in food and feed is usually performed by instrumental methodologies
based on synchronous fluorescence spectrometry [3], high-performance liquid chromatography
with amperometric detection [4], fluorescence detection [5], thin layer chromatography [6],
or immunochromatographic assay [7]. An alternative is offered by the use of immunosensors,
due to their sensibility, stability, and ease of handling. In this case, the antibodies are immobilized
on an electrode and must maintain their biological activity on the transducer [8]. One of the
procedures is based on the formation of a self-assembled monolayer (SAM) on the electrode surface [9],

Chemosensors 2016, 4, 17; doi:10.3390/chemosensors4030017 www.mdpi.com/journal/chemosensors

http://www.mdpi.com/journal/chemosensors
http://www.mdpi.com
http://www.mdpi.com/journal/chemosensors


Chemosensors 2016, 4, 17 2 of 10

which consists of the interaction of a highly-organized organic molecule layer on the surface and
one of the functional groups of the selected organic molecule having the function of providing the
biological material’s immobilization (e.g., enzymes, proteins, nucleic acid, antibody, etc.) via the free
functional group of SAM [10]. Organic monolayers with a sulfur group on the electrode surface are of
great interest, because the sulfur binds strongly to the gold surface and the reactive functional group
is maintained free for the immobilization of biological molecules [11]. Surface Plasmon resonance
devices [12], conductometric [13], fluorometric [14], and amperometric [15,16] biosensors indicated
good performance. Related to the impedimetric immunosensor for AFB1, the literature registered the
immobilization of antibody on Pt, glassy carbon, and gold electrode, as displayed in Table 1.

Table 1. Comparison of the performances of different impedimetric immunosensors for the
determination of aflatoxin B1 (AFB1).

Matrix Dynamic Range LOD 1 Ref.

Pt electrodes modified with polyaniline and polystyrene
sulphonic acid 0–6 mg·L−1 0.1 mg·L−1 [17]

Silica gel–ionic liquid biocompatible film on the glassy
carbon electrode 0.1–10 ng·mL−1 0.01 ng·mL−1 [18]

1,6-hexanedithiol, colloidal Au, and aflatoxin B1—bovine
serum albumin conjugate on a gold electrode 0.08–100 ng·mL−1 0.05 ng·mL−1 [19]

Graphene oxide on Au electrode 0.5–5 ng·mL−1 0.23 ng·mL−1 [20]

Graphene/polypyrrole/pyrrolepropylic acid composite film
on glassy carbon electrode 10 fg·mL−1–10 pg·mL−1 10 fg·mL−1 [21]

Poly(amidoamine) dendrimers of fourth generation
immobilized on gold electrode covered by cystamine 0.03–3.1 ng·mL−1 0.12 ng·mL−1 [22] *

MWCNT 2/ionic liquid composite films on glassy
carbon electrode 0.1–10 ng·mL−1 0.03 ng·mL−1 [23]

Poly(ophenylenediamine) electropolymerized film modified
gold three-dimensional nanoelectrode ensembles 0.04–8.0 ng·mL−1 0.019 ng·mL−1 [24]

Screen-printed interdigitated microelectrodes modified with
3-Dithiobis-(sulfosuccinimidyl-propionate) and Protein G 5–20 ng·mL−1 5 ng·mL−1 [25]

1 LOD = Limit of detection, 2 MWCNT: multi-walled carbon nanotubes. * Original value of dynamic range:
0.1–10 nmol·L−1 and LOD: 0.4 nmol·L−1.

This work reports the development of an impedimetric immunosensor for the determination
of aflatoxin B1, through gold CD-trode (electrode obtained from recordable compact disks)
surface modification with a self-assembled monolayer (SAM) of lipoic acid activated via
EDC (1-ethyl-3-(3-(dimethylamino)-propyl)carbodiimide)/NHS (N-hydroxy succinimide) for the
immobilization of anti-aflatoxin B1 antibody. CD-trodes can be easily obtained by simple treatment
of wasted gold CDs to obtain cheap but efficient electrochemical sensors [26,27]. The optimization
of the experimental parameters involved in the development of the CD-trode sensor was performed
chemometrically, by means of full factorial design. The proposed biosensor was applied to determine
the antigen in peanut samples.

2. Materials and Methods

2.1. Reagents

69%–70% HNO3, 95%–98% H2SO4, methanol, and chloroform were purchased from J. T. Baker
(Phillipsburg, NJ, USA). 1-ethyl-3-(3-(dimethylamino)-propyl)carbodiimide (EDC) was obtained from
Fluka (Buchs, Switzerland). Lipoic acid (C8H14O2S2), N-hydroxy succinimide (NHS), aflatoxin
B1 (AFB1) from Aspergillus flavus, anti-AFB1 antibody from rabbit, bovine serum albumin (BSA),
NaH2PO4·H2O, Na2HPO4, K3Fe(CN)6, K4Fe(CN)6, CuSO4·5H2O, and KCl were purchased from Sigma
(St. Louis, MO, USA). Ultra-pure water (resistivity 18.2 MΩ·cm) was used to prepare the solutions.
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2.2. Apparatus and Electrochemical Cell

The electrochemical measurements were carried out using a potentiostat/galvanostat AUTOLAB
PGSTAT 302 with impedance module FRA 2 (frequency response analyzer) and software version
4.9.005. The experiments were carried out using a one-compartment electrochemical cell with a volume
of 5 mL, and a three-electrode system: gold CD-trode (Ageom = 0.071 cm2 and active area of 0.091 cm2,
estimated from by Randles–Sevik equation [28]), Ag|AgCl|KCl(sat) and platinum wire (Ageom = 4 cm2)
as work, reference, and auxiliary electrodes, respectively.

2.3. Construction of Gold Electrode (AuCD-Trode)

The working electrode was constructed from a recordable compact disc (Mitsui Archive Gold
CD-R 100) containing a gold film with thickness between 50 and 100 nm, using a previously reported
procedure [26]. Briefly, to access the metal layer of the CD-R, concentrated HNO3 was added to the
surface; after 5–10 min, the protective layers were totally removed and the gold surface was washed
thoroughly with distilled water [26]. The CD-R was cut and the working area of the electrode (Ew) was
pre-set with perforated galvanoplastic tape. The electrical contact of the CD-trode was a laminated
copper wire fixed and insulated with polytetrafluoroethylene (PTFE) tape. The characterization of the
AuCD-trode as an electrochemical transducer was done previously [27]. CD-trodes are disposable,
so they were used only once. A scheme of CD-trode is shown in Figure 1.
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2.4. Immunosensor Development

Scheme 1 shows the schemes of the different steps of modification of CD-trode to obtain the
impedimetric immunosensor [29,30].
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The first step in the development of an impedimetric immunosensor (Scheme 1-1) is the addition
of 10 µL of 1 × 10−3 mol·L−1 lipoic acid prepared in ethanol/water solution (1:10) to the gold
CD-trode surface and incubation for 2 h to form a SAM [31]. According to literature, both thiol and
disulfide groups interact with gold [11]. For the immobilization of biological material on the SAM,
it was necessary to activate the carboxyl group of the lipoic acid with 10 µL of 0.4/0.1 mmol·L−1

EDC/NHS prepared in deionized water that was added on the surface of the modified electrode,
and the incubation time was 60 min (Scheme 1-2) [32]. The immobilization of the anti-AFB1 antibody
(Scheme 1-3) was performed by adding 10 µL of antibody solution prepared in 0.01 mol·L−1 phosphate
buffer solution (pH 7.4) with different concentrations and incubation times on the modified electrode.
In order to avoid unspecific interaction, the electrode surface was blocked with 10 µL of 0.5% bovine
serum albumin (BSA) prepared in 0.01 mol·L−1 phosphate buffer solution (pH 7.4) containing tween
20 (PBS-T) for 60 min. Finally, 10 µL of aflatoxin B1, prepared in 0.5% BSA solution, was added on
the immunosensor surface and incubated for 30 min. The incubation steps were performed at 25 ◦C.
After each incubation time at different steps of modification, the electrode was washed by immersion
in ultra-pure water three times for 10 s under stirring.

The analysis of factorial designs results was conducted with statistical and graphical
analysis software MINITAB® Release 15, developed by Minitab Inc., State College, PA, USA.
All experiments were carried out in triplicate and the reproducibility was evaluated statistically
by the MINITAB® software.

After the construction of the immunosensor, a standard solution of AFB1—prepared in
0.01 mol·L−1 phosphate buffer solution at pH 7.4 containing 0.5% BSA—was added to the electrode,
and the affinity reaction was monitored.

2.5. Electrochemical Measurements

In order to clean and homogenize the surface, the CD-trodes were submitted to pretreatments
with 10 voltammetric cycles in 0.5 mol·L−1 sulfuric acid in the potential range between +0.2 and +1.5 V
at 100 mV·s−1.

The impedance spectra were obtained by applying a sine wave of 10 mV (rms) on Eocp from
100 kHz to 100 mHz and recording 10 points/frequency decade. Measurements were performed in
0.1 mol·L−1 phosphate buffer solution pH 7.0 containing 1.0 × 10−3 mol·L−1 Fe(CN)6

3−/4− redox pair.
All electrochemical measurements were done in triplicate at 25 ± 2 ◦C in a Faraday cage. The value of
charge transfer resistance (Rct), calculated from the Nyquist plot, was used as parameter related to the
response of the immunosensor. These values were obtained for each experiment. The real impedance
(Zre) of the frequency in the maximum of the semicircle was taken; it is the solution resistance (RΩ)
plus half of the charge transfer resistance. Therefore, the Rct can be defined by Equation (1) [33].

Rct = 2 Zre − 2 RΩ (1)

2.6. Extraction of AFB1 from Peanut Samples

The immunosensor was applied to AFB1 analysis in peanut samples. The toxin extraction from
the sample was carried out as follows: 50 g of ground raw peanuts were mixed with 270 mL of
methanol and 30 mL of 4% KCl in a blender for 5 min, followed by filtration through a qualitative filter
paper. Then, the filtrate was mixed with 150 mL of 10% CuSO4·5H2O and celite for 5 min, and then
filtered again on filter paper. The filtrate was mixed with water (1:1), and the aflatoxin extracted with
10 mL of chloroform. Another aliquot of chloroform was added to the aqueous solution. The organic
phases were mixed and dried in a water bath at 40 ◦C [34]. The dried aliquots were re-suspended with
1.0 mL methanol and diluted in 0.01 mol·L−1 phosphate buffer solution (pH 7.4, containing 0.5% BSA)
and analyzed.
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3. Results and Discussion

3.1. Chemometric Study of Antibody, BSA, and AFB1 Concentrations and Incubation Time

The first step in the development of the immunosensor concerned the optimization of the
concentration of anti-AFB1 (1:2000 and 1:500, or 0.0017 and 0.0067 µg·µL−1) and its incubation time
(1 and 12 h). When the antibodies were incubated for 1 or 12 h, the results indicated almost the same
value of Rct, and the capacitive circle presented no inductive loop [35]. This means that one hour of
incubation is enough.

The concentration of the anti-AFB1 antibody and incubation time optimization were performed by
full factorial design of type 22. The Pareto plot in Figure 2a shows that the most important parameter
is the antibody dilution (DAb), while the incubation time of the solution (tinc) and interactions between
factors (DAb and tinc) on the modified CD-trode do not have great influence on the impedance
measurements. The influences of the high and low levels of each variable were also determined.
The lines shown in Figure 2b express the trend of the Rct values when changing the parameter from
low to high level. The line with higher slope indicates the most influential parameter of the system;
thus, the dilution presents the greater influence to the system. The 1:2000 dilution of the antibody with
1 h of incubation tended to result in higher impedance value.
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Figure 2. (a) Pareto plot: the influence of parameters on immobilization of Ab-AFB1 on modified
CD-trode with a self-assembled monolayer (SAM). DAb = dilution of anti-AFB1 antibody and
tincub. = incubation time; (b) Trend of Rct to high and low levels of each variable.
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The optimization of bovine serum albumin and aflatoxin B1 concentration and incubation time of
antigen were investigated by means of full factorial design of type 23. In Figure 3a, the Pareto plot
shows that the most important parameter is the AFB1 concentration, followed by incubation time
of the antigen. The BSA concentration and interactions between the factors have little influence on
the response of the system. The plot in Figure 3b indicates that at high AFB1 concentration, Rct is
higher when the incubation time is 30 min, because these were the parameters that tended to higher
values. As the variation of the BSA concentration does not present influence, the 0.5% concentration
was adopted. To evaluate the incubation time of BSA, different times were studied: 30, 40, and 60 min
(data not shown). The Rct values for 30 and 40 min of incubation were quite similar to the Rct of
the previous modification step (Au-SAM-Ab). However, with 60 min of incubation, the Rct value
was higher than the previous step, and the reproducibility of the measurements was better. Thereby,
the incubation time of 60 min was used for the blocking step.
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Figure 4 presents the Nyquist diagram for the various steps of the construction of the optimized
immunosensor: SAM layer, active SAM layer, antibody layer, blocking with BSA, and interaction of
antigen with the immunosensor. The figures indicate that each layer deposition on the immunosensor
surface increases the impedance of the system. This increase is due to the changes of the electrical
characteristics of the gold/electrolyte interface.
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Figure 5. Analytical curve of AFB1 using impedimetric immunosensor (n = 3). 

3.3. Application in Peanut Samples 

Impedimetric immunosensors were applied to three different samples of raw peanuts, provided 
by a food industry that performs quality analysis to verify the eventual contamination of the products 
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3.2. Analytical Curve

After optimization of all steps for the development of the impedimetric immunosensor,
an analytical curve was constructed from 5.0 × 10−9 to 1.0 × 10−7 mol·L−1 (1.56–31.2 ng·mL−1)
as shown in Figure 5. The curve presented a linear range with a correlation coefficient of 0.99858,
and the limits of detection and quantification of 3.6 × 10−10 and 1.1 × 10−9 mol·L−1 (0.11 and
0.34 ng·mL−1), respectively.
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with aflatoxin. According to the supplier industry, two of these samples were contaminated with
AFB1, and in the third one the concentration level was unknown, but below the limit established by
the Brazilian National Agency of Sanitary Surveillance (20 µg of total aflatoxin in 1 kg of peanut).

Table 2 shows the AFB1 concentration for each sample, analyzed by interpolating in the analytical
curve. Samples A and B presented levels around three times above the limit set by Brazilian legislation.
In sample C, a concentration of 25 µg·kg−1 was detected by the sensor, which is slightly above the
legal limit. This contrasts the datum determined previously by the producer, using classical analytical
procedures. This could indicate a better sensitivity of the sensor with respect to standard methods,
however we cannot exclude a possible growth of Aspergillus sp. and subsequent production of aflatoxin
during storage, because of the long time interval elapsed between the two analyses (around 7 months).

Table 2. AFB1 concentration values found in peanuts samples (n = 3).

Sample Concentration × 10−9/mol·L−1 Concentration/µg·kg−1

A 13 ± 1 65 ± 6
B 13.3 ± 0.6 67 ± 3
C 5.0 ± 0.3 25 ± 1

4. Conclusions

On the proposed methodology, the dynamic range is 0.16 to 3 ng·mL−1 and LOD 0.35 ng·mL−1.
In comparison with data reported in previous literature, displayed in Table 1, the performances of the
CD-trode sensor are comparable with those obtained with some of the immunosensors previously
described in the literature [20,22,25], but with the advantage of being based on the use of disposable
and low-cost CD-trodes. These preliminary results are encouraging in order to progress with an
in-depth validation of the sensor, in particular concerning matrix effects and recovery tests.
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