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Abstract: A disposable screen-printed carbon electrode (SPCE) modified with chemically reduced
graphene oxide (rGO) (rGO-SPCE) is described. The rGO-SPCE was characterized by UV-Vis
and electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode displays
excellent electrocatalytic activity towards uric acid (UA), ascorbic acid (AA) and dopamine (DA).
Three resolved voltammetric peaks (at 183 mV for UA, 273 mV for AA and 317 mV for DA,
all vs. Ag/AgCl) were found. Differential pulse voltammetry was used to simultaneously detect UA,
AA and DA in their ternary mixtures. The linear working range extends from 10 to 3000 µM for UA;
0.1 to 2.5 µM, and 5.0 to 2 × 104 µM for AA; and 0.2 to 80.0 µM and 120.0 to 500 µM for DA, and the
limits of detection (S/N = 3) are 0.1, 50.0, and 0.4 µM, respectively. The performance of the sensor
was evaluated by analysing spiked human urine samples, and the recoveries were found to be well
over 98.0% for the three compounds. These results indicate that the rGO-SPCE represents a sensitive
analytical sensing tool for simultaneous analysis of UA, AA and DA.

Keywords: multiplex sensing; graphene-based electrodes; differential pulse voltammetry;
electrochemical impedance spectroscopy; UV-Vis spectroscopy; screen-printed electrodes

1. Introduction

Uric acid (UA) is a principal end product of purine metabolism [1] and abnormal levels in urine
and/or blood are symptomatic of diseases such as Lesch–Nyhan syndrome, gout and hyperuricemia,
and renal and cardiovascular diseases [2]. Ascorbic acid (AA) is a water-soluble vitamin that has
antioxidant properties and can be found in high concentrations in some plant foods [3]. AA is
involved in many biological processes including improving immunity, cancer prevention, treating
common cold, scurvy and mental illness, and free radical scavenging [4]. Dopamine (DA) is an
essential neurotransmitter that forms part of the family of catecholamines. It plays vital roles in the
normal functions of the renal, metabolic, hormonal, cardiovascular and central nervous systems [5,6].
High levels of DA in human bodily fluids have been found to be associated with several neurological
disorders including Huntington’s disease, restless legs syndrome, schizophrenia, attention deficit
hyperactivity disorder and Parkinson’s disease [7,8].

Several analytical methods such as high performance liquid chromatography, chemiluminescence,
UV-Vis spectroscopy, capillary electrophoresis and electroanalytical methods [9–11] have been
developed for the detection of these compounds. Owing to the electroactive nature of UA, AA and
DA, and their coexistence in human bodily fluids such as urine, electrochemical method is considered
most attractive for their simultaneous analysis because they are rapid, low-cost and sensitive.
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However, the main drawbacks associated with the use of traditional electrode materials for their
simultaneous analysis are low reproducibility due to electrode fouling and poor selectivity arising from
overlapping voltammetric peaks [12]. Electrodes modified with nanoparticles [13], ionic liquids [14],
redox mediators [15], polymers and polymer composites [16], metal oxides [17], and carbon black,
carbon nanotubes or fullerene [18] have been useful in solving these problems. However, there are
still some drawbacks with regards to electrode complexity and inactivation, as well as stability of
electrode modifiers/particles; thus, it is important to find suitable electrode materials that permit their
selective determination.

In this study, reduced graphene oxide (rGO) was prepared through mild treatment of graphene
oxide (GO) with sodium borohydride (NaBH4). The rGO dispersion then was casted onto the
working area of an in-house fabricated screen-printed carbon electrode (SPCE) to form rGO-SPCE.
The electrochemical behaviour of UA, AA and DA at rGO-SPCE was thoroughly investigated.
The sensor was subsequently employed for the simultaneous analysis of the compounds in ternary
mixtures in buffer. Details of the sensor fabrication, characterization and application to the analysis of
the compounds are described and discussed.

2. Experimental

2.1. Apparatus and Reagents

Electrochemical experiments were conducted using VSP-300 Multichannel
Potentiostat/Galvanostat/EIS (Bio-Logic Science Instruments, Seyssinet-Pariset, France) with
a standard three-electrode configuration. Impedance measurements in K4[Fe(CN)6] was carried
out at open circuit from frequency range of 200 kHz to 0.1 Hz. Under the optimized conditions,
unless otherwise stated, DPVs were recorded with pulse amplitude of 50 mV, pulse time of 0.05 s,
voltage step time of 0.5 s, voltage step of 5 mV and at 50 mV·s−1 scan rate. UV-Vis spectra were
recorded using Jenway 6715 UV-Vis (Multi-cell changer) spectrophotometer (Bibby Scientific Ltd.,
Stone, UK). An Ag/AgCl (1.0 M KCl), SPCE or rGO-SPCE and a platinum wire were used as
the reference, working and counter electrodes. Ascorbic acid and uric acid were purchased from
Alfa Aesar, Heysham, UK. Graphene oxide (GO), dopamine hydrochloride, methanol, NaOH,
NaBH4 and sodium carbonate (Na2CO3) were purchased from Sigma Aldrich, Irvine, UK. Urine
samples were obtained from the authors and informed consent was obtained.

2.2. Preparation of rGO

The chemical reduction of GO was per the method reported by Chua and Pumera [19] with some
modification. Briefly, to a dispersion of graphene oxide (6.0 mg) in methanol (2.5 mL) was added
Na2CO3 (5.0 mM) to adjust the pH to ~8.5. Sodium borohydride (NaBH4, 28.4 mg) was then added
into the resultant dispersion and stirred at 70 ◦C with refluxing for 5 hr. Upon completion, the mixture
was repeatedly centrifuged (at 400 rpm, 15 min) and washed with methanol and water until a neutral
pH of the filtrate was obtained. The filtrate (reduced graphene oxide, rGO) was then re-suspended in
2.0 mL of distilled water.

2.3. Fabrication of SPCE and rGO-SPCE

The fabrication of the unmodified SPCE transducer was prepared as previously described [20,21].
Briefly, the base unmodified SPCE transducer was printed onto a Valox substrate using DEK
240 Manual Screen Printing Machine, Stainless Steel Screen Mesh and graphite ink (GEM Product
code: C205010697) and cured at 70 ◦C for 90 min. A polymeric dielectric material (GEM Product code:
D2071120P1) was then screen-printed onto the cured SPCE to define the working area. Thereafter,
2.0 µL of rGO suspension in water was dropped onto the working area of the SPCE and allowed to
air-dry in room temperature to form rGO-SPCE (Scheme 1). The rGO-SPCE was rinsed in distilled
water to remove any unbound rGO and dried in N2.
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arising from the presence of oxygen functionalities within sp2 bonded carbon networks [17,22]. 
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282 nm, and the intensity of absorption in the spectra region increased, indicating that the conjugated 

C=C bonds were restored by reduction [23]; thus, giving evidence that the GO has been reduced.  

 

Scheme 1. (A) Screen-printing of carbon electrodes; and (B) chemical reduction of graphene oxide and
modification of SPCE.

3. Results and Discussion

3.1. Characterization of rGO-SPCE

Both graphene oxide (GO) and reduced graphene oxide (rGO) possess unique set of electrical and
optical properties that is different from pristine graphene because of the structural changes arising
from the presence of oxygen functionalities within sp2 bonded carbon networks [17,22]. Analyses of
GO and rGO were performed using UV-Vis spectroscopy (Figure 1A). The GO spectrum exhibits a
characteristic absorption peak at 235 nm corresponding to the π→π* transition of the aromatic C=C
bonds [22]. After chemical reduction with NaHB4, this peak shifts from 254 nm to 282 nm, and the
intensity of absorption in the spectra region increased, indicating that the conjugated C=C bonds were
restored by reduction [23]; thus, giving evidence that the GO has been reduced.
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Figure 1. (A) UV-Vis spectra of GO and rGO suspensions in water. (B) Nyquist plots observed for 

impedance measurements at SPCE and rGO-SPCE in Britton–Robinson (BR) buffer (pH 7.0) 

containing 5.0 mM K4[Fe(CN)6] and 0.1 M KCl. Insert: Randles equivalent circuit used for data fitting, 

Rs, resistance of the electrolyte solution; RCT, electron-transfer resistance; Zw, Warburg impedance; Cdl, 

double layer capacitance. (C) Cyclic voltammograms of 5.0 mM K4[Fe(CN)6] in BR buffer (pH 7.0) 

containing 0.1 M KCl at SPCE and rGO-SPCE, 50.0 mV·s−1 scan rate. 
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impedance spectroscopy (EIS) and cyclic voltammetry. EIS is a versatile and sensitive technique for 

studying charge transfer processes occurring at electrode surfaces [24]. Figure 1B illustrates 

experimental Nyquist spectra recorded in K4[Fe(CN)6] solution using SPCE and rGO-SPCE including 

the equivalent Randles circuit used to extract the impedance circuit fitted data in Table 1. According 

to the Randles circuit, a semi-circle located at the higher frequency region, corresponds to the charge 
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Figure 1. (A) UV-Vis spectra of GO and rGO suspensions in water. (B) Nyquist plots observed
for impedance measurements at SPCE and rGO-SPCE in Britton–Robinson (BR) buffer (pH 7.0)
containing 5.0 mM K4[Fe(CN)6] and 0.1 M KCl. Insert: Randles equivalent circuit used for data fitting,
Rs, resistance of the electrolyte solution; RCT, electron-transfer resistance; Zw, Warburg impedance;
Cdl, double layer capacitance. (C) Cyclic voltammograms of 5.0 mM K4[Fe(CN)6] in BR buffer (pH 7.0)
containing 0.1 M KCl at SPCE and rGO-SPCE, 50.0 mV·s−1 scan rate.

The electrochemical properties of SPCE and rGO-SPCE were examined using electrochemical
impedance spectroscopy (EIS) and cyclic voltammetry. EIS is a versatile and sensitive technique
for studying charge transfer processes occurring at electrode surfaces [24]. Figure 1B illustrates
experimental Nyquist spectra recorded in K4[Fe(CN)6] solution using SPCE and rGO-SPCE including
the equivalent Randles circuit used to extract the impedance circuit fitted data in Table 1. According to
the Randles circuit, a semi-circle located at the higher frequency region, corresponds to the charge
transfer resistance (RCT) of the electrode material. The SPCE showed RCT value of ~16 kΩ while
rGO-SPCE had a reduced RCT value of ~5.0 kΩ. This shows that the charge transfer rate for
[Fe(CN)6]3−/[Fe(CN)6]4− redox process increased upon employing rGO. From the obtained data
(Table 1), it can be concluded that rGO-SPCE have higher electrocatalytic activity in comparison with
the bare SPCE.

Table 1. Impedance circuit fitted parameters for SPCE and rGO-SPCE.

Parameter SPCE rGO-SPCE

Rs (Ω) 2998 2997
Cdl (µF) 1.4986 7.071
RCT (Ω) 16049 5004

Zw (Ω·s−1/2) 2181 1983

Cyclic voltammetry (CV) was also carried out as an independent method to verify the findings
of the EIS. Figure 1C shows CVs of K4[Fe(CN)6] at SPCE and rGO-SPCE. In comparison to what
occurred at SPCE, rGO-SPCE did not only exhibit well-defined redox peaks but also exhibited
a characteristic increase of the anodic and cathodic peaks for [Fe(CN)6]3−/[Fe(CN)6]4− redox
couple. Higher peak currents and a smaller peak-to-peak potential separation (∆Ep) at rGO-SPCE
(Ipa = 18.5 µA, Ipc = 14.8 µA; ∆Ep = ~140.0 mV) when compared with SPCE (Ipa = 2.9 µA, Ipc = 1.1 µA;
∆Ep= ~500 mV) were observed. There were also slight shifts in both the anodic and cathodic peak
potentials to less positive values, giving rise to a smaller peak-to-peak separation (∆Ep = 140.0 mV).
This enhancement in electrocatalytic activity can be attributed to the electrocatalytic effect of rGO.
Thus, the analysed CV data are in agreement with the results obtained from EIS and provides further
evidence of the reduction of GO.

3.2. Cyclic Voltammetric Analysis of UA, AA and DA at SPCE and rGO-SPCE

Typical CVs recorded for a ternary mixture of UA, AA and DA at SPCE and rGO-SPCE in
Britton–Robinson (BR) buffer (pH 7.0) are depicted in Figure 2. In Figure 2A, UA and AA exhibit broad
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irreversible oxidation peaks at 0.135 V and 0.295 V on SPCE, respectively, while DA has an anodic
peak and a broadened cathodic peak at 0.295 V and 0.050 V (∆Ep = ~245 mV), respectively. This is an
indication of a sluggish electron transfer process, which can be attributed to the conductivity of the
SPCE material and/or electrode fouling caused by the deposition of the compounds including their
redox products on the electrode. The oxidation peaks for AA and DA overlaps; thus, the oxidation
peaks associated with the compounds could not be resolved. However, at rGO-SPCE, the oxidation
peaks for UA, AA and DA are resolved at ~0.112 V, ~0.18 V and 0.287 V, respectively. The oxidation peak
for DA (at ~0.287 V) formed a quasi-reversible couple at ~0.101 V. This anodic peak can be attributed to
the oxidation of DA to o-dopaminequinone while the cathodic peak can be attributed to the reduction
of the o-dopaminequinone back to DA as has been previously reported [25]. The smaller ∆Ep value
of 186 mV (when compared with 245 mV at SPCE) for DA suggests that the reversibility of DA at
rGO-SPCE is remarkably improved; thus, enabling the simultaneous analysis of the three compounds.
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Figure 2. Cyclic voltammograms of ternary mixtures of UA (0.5 mM), AA (5.0 mM) and DA (0.5 mM)
in BR buffer (pH 7.0) at: (A) SPCE; and (B) rGO-SPCE. Scan rate, 50 mV·s−1.

3.3. The Effect of Scan Rate on Voltammetric Behavior of UA, AA and DA at rGO-SPCE

The kinetics of the electrode reaction was further investigated by evaluating the effect of scan rate
(v) on the anodic peak currents (Ipa). As shown in Figure 3, increasing scan rate increases the Ipa of UA,
AA and DA linearly with slight positive shifts in the oxidation peak potentials (Epa), suggesting that
adsorption of the compounds on rGO-SPCE does not occur. Plots of Ipa vs. square root of scan rate
(
√

v) (shown as inserts in Figure 3) resulted in the following linear equations: UA, Ipa (µA) = 8.99 v1/2

(mV·s−1) − 30.89, R2 = 0.994; AA, Ipa (µA) = 10.59 v1/2 (mV·s−1) − 39.41, R2 = 0.977; and DA,
Ipa (µA) = 12.38 v1/2 (mV·s−1) − 40.88, R2 = 0.999. These suggest a diffusion-controlled process.
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and (e) 200 mV·s−1. Inserts: Ipa vs.

√
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3.4. The Effect of pH on Voltammetric Behavior of UA, AA and DA at rGO-SPCE

The effect of pH on Ipa and Epa were also examined in the range of 3.0–10.0. As shown in
Figure 4A, when the pH of the solution was increased, Ipa increased gradually and then decayed
with the optimum pH being 7.0. Moreover, considering the fact that physiological pH is around
7.0 [26], BR buffer solution of pH 7.0 was used as the supporting electrolyte for the analyses of
the compounds. Figure 4B illustrates the effect of pH on Epa, which followed the linear regression
equations Epa(V) = 0.51− 0.06 pH, R2 = 0.9998 for UA, Epa(V) = 0.45− 0.04 pH, R2 = 0.9996 for
AA, and Epa(V) = 0.72− 0.06 pH, R2 = 0.9995 for DA. The Epa shifted with every increase of the
pH value of the supporting electrolyte for all the three compounds, suggesting that the reactions at
rGO-SPCE were accompanied by proton transfers [27]. The slope values of 60.0 mV·pH−1 for both
UA and DA suggest that their electrocatalytic reactions involved the transfer of equal number of
protons and electrons [28]. However, the slope value of 40.0 mV·pH−1 for AA is similar to the value
given by the Nernstian equation for reactions involving unequal electron and proton transfers [29];
thus, the overall reaction of AA at rGO-SPCE could be classified as an electrochemical process that is
followed by a chemical reaction [30].
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Figure 4. Effect of pH on the: (A) Ipa; and (B) Epa of UA (0.5 mM), AA (5.0 mM) and DA (0.5 mM)
at rGO-SPCE. (C) Cyclic voltammograms of ternary mixture of UA (0.5 mM), AA (5.0 mM) and DA
(0.5 mM) at SPCE and rGO-SPCE. Supporting electrolyte was BR buffer (pH 7.0), 50 mV·s−1 scan rate.

3.5. CV Analysis of Ternary Mixture of UA, AA and DA at SPCE and rGO-SPCE

The electrochemical behaviour of a ternary mixture of UA, AA and DA at SPCE and rGO-SPCE
was evaluated by CV in order to further understand the electrochemical properties of the electrodes.
At the SPCE, shown in Figure 4C, only two slightly overlapping anodic peaks were obtained at ~0.18
and ~0.287 V; thus, the Epa for UA, AA and DA were indistinguishable, indicating poor selectivity and
sensitivity. In contrast, three well-resolved Epa were observed at 0.183 (for UA), 0.273 (for AA) and
0.317 V (for DA) on rGO-SPCE. The ∆Ep for UA–AA and AA–DA were 90 mV and 44 mV, respectively,
which is large enough to allow for simultaneous analysis of the compounds in their ternary mixtures.

3.6. DPV Analysis of Ternary Mixtures of UA, AA and DA at rGO-SPCE

Differential pulse voltammetry (DPV), a widely utilized analytical method for the enhancement
of electrode specificity and sensitivity [30], was carried out by varying the concentration of one
of the compounds while the concentrations of the other two remained constant. As shown in
Figure 5A–C, the Ipa for the three molecules increased linearly with increasing concentrations,
suggesting a stable and efficient electrocatalytic activity at the rGO-SPCE. For UA detection, 2.5 mM
AA and 50.0 µM DA are mixed in BR buffer (pH 7.0) and the corresponding linear regression
equation is defined as Ipa (µA) = 0.03 [UA](µM) + 23.09, R2 = 0.9998 ([UA] = 10 µM− 3000 µM).
For AA detection, 250.0 µM UA and 50.0 µM DA are mixed in BR buffer (pH 7.0) and the
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corresponding linear regression equation is defined as Ipa (µA) = 12.90 [AA](mM) + 8.55,
R2 = 0.9996 ([AA] = 0.1 mM− 2.5 mM), Ipa (µA) = 2.02 [AA](mM) + 56.51, R = 0.9985
([AA] = 5.0 mM− 20 mM).

For DA detection, 250.0 µM UA and 2.5 mM AA are mixed in BR buffer (pH 7.0) and
the corresponding linear regression equation is defined as Ipa (µA) = 0.97 [DA](µM) +

2.26, R = 0.9984 ([DA] = 0.20 µM− 80.00 µM), Ipa (µA) = 0.13 [DA](mM) + 75.56, R =

0.9975 ([DA] = 120.0 µM− 500 µM). The calculated limits of detection (S/N = 3) for UA, AA and DA
were found to be 0.4 µM, 50.0 µM and 0.1 µM, respectively. These linear ranges and detection limits
are better than some of the results obtained from the analysis of the compounds using similar modified
electrodes (Table 2) and were deemed to be satisfactory for routine analysis of UA, AA and DA.
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Figure 5. DPVs of UA, AA and DA at rGO-SPCE in BR buffer (pH 7.0), 50 mV·s−1 scan rate: (A) UA
concentrations of 10.0, 100.0, 250.0, 750.0, 1000.0, 2500.0 and 3000.0 µM in the presence of 2.5 mM AA
and 50.0 µM DA; (B) AA concentrations of 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 5, 7.5, 10.0, 15.0, and 20.0 mM in the
presence of 250.0 µM UA and 50.0 µM DA; and (C) DA concentrations of 0.2, 20.0, 30.0, 40.0, 50.0, 70.0,
80.0, 120.0, 200.0, 250.0, 400.0 and 500.0 µM in the presence of 250.0 µM UA and 2.5 mM AA. Inserts:
Ip vs. concentration.
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Table 2. Comparison of the analytical performance characteristics of UA, AA and DA electrodes.

Electrode Material Limit of Detection (µM) Linear Range (µM) Reference

UA AA DA UA AA DA

ERGO-GCE 0.5 300.0 0.5 0.5–60.0 500.0–2000.0 0.5–60.0 [31]

GCE 4.7 23.38 2.67 5.0–70.0 25,000.0–300,000.0 3.0–30.0 [32]

Trp-GR 1.24 10.09 0.29 10.0–1000.0
200.0–3400.0,

0.5–110.0 [33]3400.0–12,900.0

PdNPs-GR-CS-GCE 0.17 20.0 0.1 0.5.0–200.0 100.0–400.0
0.50–15.0,

[34]20.00–200.00

AgNPs-rGO-GCE 8.2 9.6 5.4 10.0–800.0 10.0–800.0 10.00–800.00 [35]

MWCNT-GCE 0.42 7.71 0.31 0.55–90.0 15.0–800.0 0.50–100.00 [36]

Nitrogen doped GR 0.045 2.2 0.25 0.1–20.0 5.0–1300.0 0.50–170.00 [29]

poly(Tyr)-MWCNTs-COOH-GCE 0.3 2.0 0.02 1.0–350.0 50–1000.0 0.10–30.00 [37]

Screen printed graphene electrode 0.2 0.95 0.12 0.8–2500.0 4.0–4500.0 0.50–2000.00 [38]

HCNTs-GCE 1.5 0.92 0.8 6.7–65.0 7.5–180.0 2.50–105.00 [39]

IL-GR-GCE 0.323 – 0.679 1.0–600.0 – 1.00–400.00 [40]

rGO-SPCE 0.35 50 0.1 10.0–3000.0
100.0–2500.0, 0.20–80.00, This study

5000.0–20000.0 120.0–500.0
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3.7. Reproducibility and Stability of rGO-SPCE, and Ternary Mixture Analysis

In order to evaluate the reproducibility of rGO-SPCE, a single rGO-SPCE was used (n = 6) to
determine the concentrations of the compounds in a ternary mixture (250.0 µM UA, 2.5 mM AA,
and 50.0 µM DA) by DPV. It was found that the relative standard deviations for the peak current
intensities for UA, AA and DA were 1.05%, 1.51% and 1.25%, respectively. The stability of rGO-SPCE
was also determined in a similar fashion after storage in room temperature for 21 days; the peak
current intensities for UA, AA and DA decayed by less than 2.5%, suggesting that the electrodes
were highly stable over the 21-day period. The rGO-SPCE was also used to analyse ternary mixtures
of the compounds in urine using standard addition method. The analytical performance data are
summarized in Table 3. The recoveries were in the range of 98.07% to 99.97% with a relative standard
deviation (RSD, n = 3) of less than 1.5%. Clearly, the presence of common interferences in the urine
samples did not interfere with the analysis of the compounds; thus, the sensor can be used for routine
simultaneous quantification of the compounds in biological samples.

Table 3. Recovery of UA, AA and DA from ternary mixtures in urine.

Sample Amount Added (µM) Amount Recovered (µM) Mean Recovery (%)

UA - - -

Repeat 1 50 47.9
Repeat 2 50 49.4
Repeat 3 50 49.8

Mean - 49.033 98.07

AA - - -

Repeat 1 500 497.3
Repeat 2 500 499.7
Repeat 3 500 499.5

Mean - 499.833 99.97

DA - -

Repeat 1 50 49.4
Repeat 2 50 48.8
Repeat 3 50 49.9

Mean - 49.367 98.73

4. Conclusions

An in-house fabricated screen-printed carbon electrode, modified with chemically reduced
graphene oxide, has been demonstrated as a useful analytical sensing tool for simultaneous analysis of
uric acid, ascorbic acid and dopamine. The sensor showed stable responses for repeated measurements
and good electrocatalytic capability that enabled the resolution of three voltammetric peaks associated
with the compounds, thus enabling their simultaneous analyses. The sensor could be employed for
routine simultaneous analysis of UA, AA and DA.
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