Supplementary Information—Review

Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide

Maria Moßhammer¹, Michael Kühl^{1,2} and Klaus Koren^{1*}

- ¹ Marine Biological Section, Department of Biology, University of Copenhagen, Denmark <u>maria.mosshammer@bio.ku.dk</u>, <u>mkuhl@bio.ku.dk</u>
- ² Climate Change Cluster, University of Technology Sydney, Australia
- * Correspondence: <u>klaus.koren@bio.ku.dk</u>

Table S1. Hydrogen peroxide concentrations found in natural waters.

Keywords	Found Concentration	Reference
(Open Ocean) Seawater		
Surface waters east of New Zealand. Method: Flow injection analysis (FIA) with chemiluminescent detection. Maximum concentrations were found at ~10 m depth.	Convergence zone: 78.9 nM Subtropical waters: 70.8 nM Subantarctic water: 68.4 nM	[1]
Surface water sampled between Osaka, Japan to Honolulu, Hawaii (May–June 2002). Method: FIA with luminol chemiluminescence.	10–250 nM	[2]
Open ocean seawater collected at 500 m depth (Pacific Ocean, east of New Zealand; 46°38' S 178° 32' E, subtropical convergence zone) (February 2005, 7:45 a.m.) Max. concentrations found at ~10 m depth. Method: FIA with acridinium ester and 0.1 M carbonate buffer, pH 11.3).	Surface water: 8.5–138.5 nM Average at 500 m: 0.779 nM	[3]
Time periods: Mediterranean Sea (August 2015), South Pacific (October 2015), South Atlantic Ocean (November- December 2015) Method: FIA; Co(II) catalyzed oxidation of luminol. All results exhibited lower concentrations beneath the limit of detection. Values shown are only possible H ₂ O ₂ ranges.	Offshore > 1000 m depth: 0.25 ± 0.27 nM (Mediterranean, Balearics-Algeria) 0.90 ± 1.2 nM (S Atlantic, Angola Basin) 2.9 ± 2.2 nM (Mediterranean, Corsica-France) 0.55 ± 1.3 nM (Mediterranean, Sardinia-Sicily)	[4]

Surface waters from Western Seto Inland Sea and the estuary of the Phta-gawa River (7% river input), June 1990 and 1991. Method: FIA with potassium hydrogen phthalate, ethylenediaminetetraacetic acid disodium salt (EDTA) and p-hydroxyphenyl acetic acid (POPHAA) with 2 pupurogallin units peroxidase, type II.	Max. 400 nM (summer, 12:00–2:00 p.m.) 60–140 nM (winter)	[5]
Rain Water		
Sampled October 2003; 10:20 a.m. on the roof of the chemistry building of the University of Otago. Method: FIA with acridinium ester and 0.01 M carbonate buffer (pH 11.3).	6.34 μM	[3]
Sampled between July 2001–January 2006; downtown Sao Paulo City, Brazil. Samples were filtered (0.22µM pore size cellulose acetate membrane) and analyzed within 15 minutes of collection, to avoid decomposition. Method: FIA based on one-electron oxidation of phenol by H ₂ O ₂ catalyzed by peroxidase. The resulting phenoxy radical reacts with 4-aminoantipyridine and H ₂ O ₂ .	0.5–78 μM Average: 14 μM	[6]
Sampling time: March–April 1988 by wet only sampling. Analysis: FIA based on bis-(2,4,6-trichloronphenyl)oxalate (TCPO), perylene as sensitizer, borate buffer (0.08 M) and acetone as solvent.	0.9–6.8 ppmw (Bahia, Brasil) 0.1–2.2 ppmw (Dortmund, Germany; summertime)	[7]
Method: standard addition of scopoletin to a pH 7 buffered sample, addition of a horseradish peroxidase (HRP) / phenol mixture, which catalyzes the oxidation of scopoletin by H2O2.	14–75 μM (Miami, Florida) 21 μM (Bahama Islands)	[8]
peroxidase (HRP) / phenol mixture, which catalyzes the oxidation of scopoletin by H2O2. 21 μM (Baha Sampling at nonurban sites of peroxides in the eastern US. Method: FIA; fluorescence detection of Median valu p-hydroxyphenyl acetic acid formed by the reaction of POHPAA with peroxide at pH 8.5 together Median valu with HRP. The difference in fluorescence before and after addition of catalase is used for H2O2 mon-precipitating determination. non-precipitating	Median values: < 10 μM (rain sample, precipitating cloud water sample and non-precipitating cloud water samples)	[9]
Method: <i>N,N</i> -diethyl- <i>p</i> -phenylenediamine (DPD) is oxidized using a peroxide catalyzed reaction, resulting in a colored radical cation, which can be measured using a photometer.	 1.4–5.3 μM (September 1994, Christchurch, NZ) 7.3 nM (December, 1994, Christchurch, NZ) 1.3 μM (October, 1994, West Melton, NZ) 27.2 μM (November 1994, Lake Hochstetter, NZ) 3.9 μM (December 1994, Ngatimoti / Nelson, NZ) 	[10]

Method: FIA; chemiluminescence reaction where Co(II) works as ion catalyst for the oxidation of alkaline luminol (in a H ₃ BO ₃ buffer at pH 9.5) in the presence of H ₂ O ₂ . The method was applied as standard addition method.	1.08 nM (December, Turkey)	[11]	
Snow Water			
Method: FIA; chemiluminescence reaction where Co(II) works as ion catalyst for the oxidation of alkaline luminol (in a H ₃ BO ₃ buffer at pH 9.5) in the presence of H ₂ O ₂ . The method was applied as standard addition method.	130 μM (March, Turkey)	[11]	
Antarctic station (Georg von Neumayer, 70 ° 37'S/08°22'W) in December 1989–January 1990; Ekström shelf ice, 8 km from ice edge. Snow pits showed H ₂ O ₂ maxima between 70–140 cm depth (summer snow). No seasonal variation in H ₂ O ₂ was observed below 2 m. Method: snow was melted and the chemiluminescence reaction with peroxyoxalate analyzed.	86 ppbw–485 ppbw (precipitating snow) 54–167 ppbw (surface snow, 3 cm depth) Up to ~200 ppbw (snow pits; down to 2 m)	[12]	
Snow waters were collected in January 2000, in Beijing, China. Method: Chemiluminescent reaction of 7-(4,6-dichloro-1,3,5-triazinylamino)-4-methylcoumarin (DTMC) with H ₂ O ₂ ; enhanced by addition of cation surfactants, buffered at pH 11–11.6.	170–560 nM	[13]	
River Water			
Surface water samples from freshwater stream Leith, Dunedin, NZ (November 2003, at 1:45 p.m.). Method: FIA using acridinium ester, 0.01 M carbonate buffer (pH 11.3).	283 nM	[3]	
Surface water sample taken from the Volga River Area, Russia. Method referred to in paper: scopoletin and HRP type II.	1.3–3.2 μM	[14]	
Lake Water			
Samples taken from surface waters of Gölbaşi Lake, Turkey. Method: FIA; chemiluminescence reaction where Co ²⁺ works as ion catalyst for the oxidation of alkaline luminol (in a H ₃ BO ₃ buffer at pH 9.5) in the presence of H ₂ O ₂ . The method was applied as standard addition method.	1.51 mM	[11]	
Lake surface water samples. Method: scopoletin and HRP on a fluorimeter. H ₂ O ₂ was determined using a standard addition method. 40 lakes, sampled twice in July and once in August 2004, within an hour of solar noon, Mackenzie Delta, Western Canadian Arctic.	Peak value 4.0 μM (near solstice) < 1.0 μM (late July–August)	[15]	
Lake water samples (top 2-3 m) were taken from Lake Erie and H ₂ O ₂ concentrations correlated to cyanobacterial bloom dynamics. Sampling time, May– October 2014. Method: Amplex Red on a	47 ± 16 nM to 1570 ± 16 nM (average: 371 ± 17 nM)		

UPLC.			
Geothermal Springs			
Site: High-temperature (68–80 °C), acidic (pH 3–3.5) geothermal springs, Yellowstone National Park.	~1 µM (high dissolved sulfide content)	[17]	
Method: FIA with acridinium ester and 0.01 M carbonate buffer (pH 11.3).	2–3 μM (oxygenated water)	[16]	

Keywords	Found concentration	Reference
Oral Bacteria		
H ₂ O ₂ production was observed when testing three different bacteria; <i>Streptococcus sanguis</i> I and II (sanguis and oralis), and <i>Strep. mitior</i> (mitis biotype I). Method: electrochemically.	2.2–9.8 mM (aerobic growth) 1.1–3.9 mM (anaerobic growth)	[19]
Urine–Freshly Voided		
Urine, freshly voided. Samples were taken from healthy humans. Method: Three different assays	I) 38.5 ± 46.3 μM (range: 11–173 μM),	
were used. I) 2-oxoglutarate decarboxylation, II) ferrous oxidation-xylenol orange (FOX) and III) an	II) 36.5 μM,	[20]
O2-electrode.	III) 33.7 μM,	
	$15 \pm 9.8 \mu\text{M}$ (healthy),	[04]
Method: ferrous oxidation-xylenol orange (FOX).	56.3 \pm 3.9 μ M (cancer patients)	[21]
Exhaled Air		
Method: Assay HRP potassium citrate huffer and 3.3' 5.5' tetramethyl henzidine	Healthy:	[22]
Method: Assay, HKP, potassium citrate buffer and 3,3,5,5 tetramethyl benzidine.	not detectable	[22]
Mathadi Assay HPD notassium situate huffer and 2.2' 5.5' tetramethal honoiding	$0.26 \pm 0.04 \ \mu M$ (healthy)	[23]
werlou. Assay, The , polassian enale builer and 5,5 ,5,5 tenancery rocizione.	$0.87 \pm 0.01 \ \mu M$ (lung disease, bronchiectasis)	[20]
	Common cold: 0.2 μ M (symptomatic) and	
Exhaled air was measured in smokers. Method: Assay, HRP, POPHAA.	0.09 μM (recovered)	[24]
	Healthy Control: 0.08 - 0.1 µM	
	Chronic obstructive pulmonary disease	
	(COPD) patients:	
	2.774 µM (ambient air)	
Test subjects were breathing 15 minutes through mouthpiece with and without inhalation filter.	0.780 μM (without filter)	
Method: Assay, HRP, POPHAA and H2O2 form 2,2'-dihydroxybiphenyl-5,5'-diacetate. Read-out via	0.420 µM (with filter)	[25]
plate reader.	Healthy control:	
	4.282 μM (ambient air)	
	0.748 μM (without filter)	
	0.454 μM (with filter)	

Table S2. Hydrogen peroxide concentrations found in the human body.

Blood Plasma		
Method: HPLC followed by chemiluminescent reaction of isoluminol, H2O2 and microperoxidase.	$< 0.25 \ \mu M$	[26,27]
Method: a radioisotopic technique where peroxide decarboxylates I- ¹⁴ C- alpha-ketoacids is used. The ¹⁴ CO ₂ is detected.	13–57 μM	[28]
Method: electrochemical and spectrophotometric (HRP and H2O2 mediated oxidation of phenol	$3.16 \pm 0.14 \ \mu M$ (hypertensive)	[20]
red).	$2.50 \pm 0.16 \ \mu M$ (normotensive)	[29]
	Initial exercise test:	
	$7.15 \pm 0.74 \ \mu M$ (before test) to	
Whole blood was drawn into heparin containing vials. The plasma was separated via centrifugation.	$9.09 \pm 1.04 \ \mu M$ (3 min after test)	[20]
Method: HRP, phenol and 4-aminoantipyrine in pH 6.9 phosphate buffer.	Exercise test after 3 week endurance training:	[30]
	$6.31 \pm 1.05 \ \mu M$ (before test) to $5.85 \pm 1.08 \ \mu M$	
	(after test)	
	$3.358 \pm 0.145 \ \mu M$ (hypertensive)	
blood was taken after fasting overnight. Plasma was removed via centrifugation. Samples were	$3.000 \pm 0.087 \ \mu M$ (normotensive)	
frozen (test showed no significant difference in peroxide production between fresh and frozen	(Plasma peroxide production: Men > Women;	[01]
plasma). Catalase was inhibited using sodium azide. Method: electrochemical with modified Clark	and White (European descent) > Black	[31]
	(sub-Saharan African descent)	
	Before insulin treatment:	
	82.1 ± 31.4 μM (Type 1 diabetes)	
	61.7 ± 39.1 μM (Type 2 diabetes)	
Method: Assay, plasma-incubation with 4-aminoantipyrine / phenol reagent in the presence of HRP.	21.3 ± 9.0 μM (control)	[32]
	After insulin treatment:	
	54.2 ± 29.3 μM (Type 1 diabetes)	
	44.7 ± 25.2 μM (Type 2 diabetes)	
Test subjects were non-smokers, without a history in diabetes mellitus or hypertension. Method:	66.9 ± 10.9 μM (preeclampsia)	[22]
ferrous oxidation-xylenol orange (FOX).	$50.1 \pm 5.6 \ \mu M$ (normal pregnancy)	ျခချ
Red Blood Cells		

Production of hydrogen peroxide by red blood cell. Catalase was inhibited using 3-amino-1,2,4-triazole (aminotriazole). H ₂ O ₂ production could be indirectly determined via the catalase inhibition.	1.36 ± 0.2 μM/h (generation rate) 0.2 nM (steady state)	[34]
Whole Blood		
Method: a radioisotopic technique where peroxide decarboxylates I- ¹⁴ C- alpha-ketoacids is used. The ¹⁴ CO ₂ is detected.	114–577 μΜ	[28]
Eyes		
	Aqueous humor from cataract patients : 10–660 uM*	
	Marfan's syndrome patients: > 3000 µM*	
Method: *2,6-dichloroindophenol procedure according to [35]. The dye is reduced by ascorbate in a sodium phosphate buffer; and re-oxidized to the blue leuco-2,6-dichloropheno-indophenol dye in the presence of H ₂ O ₂ and peroxidase [36]. Another study, however, concluded that this method is unsuitable for aqueous humor, as it is dependent on the ascorbic acid concentration (ascorbic acid is also present in the aqueous humor) [37].	Control group: 14–31 μ M (mean: 24 ± 7 μ M)* Different secondary sources; non-accessible** Cataract patients: 18 μ M* 33–364 μ M (mean: 189 ± 88)** <10 μ M**	[38]
	Cataract–diabetic patients: 36 μM*	

Keywords	Found Concentrations	Reference
Corals		
	Max. accumulated release: ~1600 nM (feeding	
Coral: Stylophora pistillata. The coral was stirred in a beaker to induce H2O2 release. Method:	batch experiment)	[20]
HRP with POHPAA in pH 8.8 TRIS buffer.	~400 nM–40 µM (estimated in DBL)	[39]
	200 nM (measured 0.2 cm outside DBL)	
Coral: Stylophora pistillata. H2O2 release due to bacterial contact. Method: HRP with POHPAA	.20 uM in DRI	[40]
in pH 8.8 TRIS buffer.	~20 μ M in DBL	[40]
Animal Cells		
	[nmol per mg macrophage protein per 30 min]	
	1.6 ± 0.9	
Peritoneal exudate cells (PEC) were harvested from guinea pigs, established as macrophage	101 ± 39.5 (2 nM PMA)	
monolayer and different stimuli (phorbol myristate acetate (PMA), opsonized	192.6 ± 33.8 (20 nM PMA)	
zymosan, concanavalin A (Con A), wheat germ agglutinin (WGA),	37.5 ± 5.7 (0.5 mg/mL opsonized zymosan)	[41]
N-formyl-methionylleucyl-phenylalanine (FMLP) and A23187) for H2O2 production added.	22.1 ± 4.2 (50 μg/mL, ConA)	
Method: HRP type II in a potassium phosphate buffer at pH 7 and phenol red.	30.0 ± 8.5 (50 μg/mL WGA)	
	22.6 ± 5.1 (1 μM FMLP)	
	10.5 (10 µM A23187)	
Algae		
Sumbiodinium spp. H2O2 release as response to heat stress. Method: Ampley Red® assay HRP	Release rate: 0.25–0.9 pmol/cell to	
symbolic mum spp. 11202 release as response to heat stress. Method. Antiplex Red® assay. 11R1,	1.0–2.64 pmol/cell	[42]
	Increase under stress heat: 25–400 $\%$	
Algae samples were collected at Forsmark, Swedish east coast at the southern end of the Gulf	Pleurosira laevis (Diatom)	
of Bothnia. The algae were sampled at different temperatures in the field and irradiated at 600	1.5 ± 0.4 μmol (T = 17 °C)	[43]
µmol photons m ⁻² s ⁻¹ for 6 h. The concentration given is µmol per g ash free dry weight per	Fucus vesiculosus (Brown algae)	

Table S3. Hydrogen peroxide concentrations in other biological samples.

hour. Method: HRP, phosphate buffer pH 7 and luminol in MOPS buffer pH 7.6.	1.8 ± 0.6 μmol (T = 12 °C)	
	Cladophora glomerata (Green algae)	
	$3.0 \pm 0.3 \ \mu mol \ (T = 17 \ ^{\circ}C)$	
	2.8 ± 0.9 μmol (T = 23 °C)	
	Entermorpha ahlneriana (Green algae)	
	22 ± 18 μmol (T = 17 °C)	
	64 ± 60 μmol (T = 23 °C)	
	Entermorpha flexuosa (Green algae)	
	5.6 ± 3.1 (T= 23 °C)	
	Entermorpha intestinalis (Green algae)	
	$10 \pm 5 \ \mu mol \ (T = 15 \ ^{\circ}C)$	
	26 ± 1 μmol (T = 17 °C)	
Algae: Ulva rigida (Chlorophyta), collected from Taliarte, east coast of Gran Canaria; August	1.2 μmol g FW h ⁻¹ (pH 8.2)	
1993. Measured at an irradiation of 700 μ mol photons m ⁻² s ⁻¹ . Method: HRP, phosphate buffer	< 5 nmol g FW ⁻¹ h ⁻¹ (pH 6.5; non detectable)	[44]
pH 7.0 and luminol in MOPS buffer pH 7.0.	5.0 μmol g FW ⁻¹ h ⁻¹ (pH 9.0)	
Algae: Anacystis nidulans (Blue algae). Method: scopoletin fluorescence assay (scopoletin,		
peroxidase, KMnO ₄). No production found in Anabaetia cylindrica,	$0.4 \ \mu mol \ H_2O_2 \ mg^{-1} \ Chl^{-1} \ min^{-1}$	[45]
Agmtienellum quadrutplicatumti, and Chlorella pyrenoidosa.		
	27.48–81 mmol mg ⁻¹ Chl.h ⁻¹ (20–80 mE m ⁻² s ⁻¹)	
Algae: Oscillatoria boryana (Cyanobacterium). Incubation under 80 µE m ⁻² s ⁻¹ . Measurement	97–108 mmol mg ⁻¹ Chl.h ⁻¹ (160–240 mE m ⁻² s ⁻¹)	[46]
with 4-aminoantioyrine and phenol.	100 mM (enhancer riboflavin; 12 x higher than	
	control)	
Algap: Sumbiodinium (Purrhonbuta) irradiated with 100, 1000 upol photons $m^{-2} c^{-1}$ Method:	Production: up to 2 pmol/cell (24 h, 26 °C)	
HRP, Amplex Red®, sodium phosphate buffer, pH 7.4.	< 0.3 pmol / cell (1 h, 100 PAR)	[47]
	< 4 pmol / cell (1h, 1000 PAR)	
Recombinant Microsomal Enzyme		

Sample: recombinant microsomal enzymes. Method: HRP and Amplex Red®.	[nmol H2O2 per minute, per mg of protein]	
	Liver microsomes control rat: 2.62 ± 0.19	
	Recombinant human NADPH-cytochrome	
	P450 reductase: 0.91 ± 0.22 [48]	
	Supermix (recombinant NADPH-cytochrome	
	P450 reductase plus mixture of recombinant	
	cytochrome P450s): 3.78 ± 0.30	

References

- 1. Rusak, S. A.; Richard, L. E.; Peake, B. M.; Cooper, W. J. Steady state hydrogen peroxide concentrations across the Subtropical Convergence east of New Zealand. 2005, 3–4.
- 2. Yuan, J.; Shiller, A. M. Distribution of hydrogen peroxide in the northwest Pacific Ocean. Geochemistry Geophys. Geosystems 2005, 6, 1–13, doi:10.1029/2004GC000908.
- 3. King, D. W.; Cooper, W. J.; Rusak, S. A.; Peake, B. M.; Kiddle, J. J.; Sullivan, D. W. O.; Melamed, M. L.; Morgan, C. R.; Theberge, S. M. Flow Injection Analysis of H2O2 in Natural Waters Using Acridinium Ester Chemiluminescence: Method Development and Optimization Using a Kinetic Model. *Anal. Chem.* **2007**, *79*, 4169–4176.
- Hopwood, M. J.; Rapp, I.; Schlosser, C.; Achterberg, E. P. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans. *Nat. Publ. Gr.* 2017, 1–10, doi:10.1038/srep43436.
- 5. Fujiwara, K.; Ushiroda, T.; Takeda, K.; Kumamoto, Y.-I.; Tsubota, H. Diurnal and seasonal dirstribution of hydrogen peroxide in seawater of the Seto Inland Sea. *Geochem. J.* **1993**, *27*, 103–115.
- 6. Gonçalves, C.; dos Santos, M. A.; Fornaro, A.; Pedrotti, J. J. Hydrogen Peroxide in the Rainwater of Sao Paulo Megacity: Measurements and Controlling Factors. J. Braz. Chem. Soc. 2010, 21, 331–339.
- 7. Jacob, P.; Tavares, T. M.; Rocha, V. C.; Klockow, D. Atmospheric H2O2 field measurements in a tropical environment: Bahia, Brazil. Atmos. Environ. 1990, 24A, 377–382, doi:10.1016/0960-1686(90)90117-6.
- 8. Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D. H2O2 Levels in Rainwater Collected in South Florida and the Bahama Islands. J. Geophys. Res. 1982, 87, 5015–5017.
- 9. Kelly, T. J.; Daum, P. H.; Schwartz, S. E. Measurements of Peroxides in Cloudwater and Rain. J. Geophys. Res. 1985, 90, 7861–7871.
- 10. Reimer, H. The Daily Changing Pattern of Hydrogen Peroxide in New Zealand. Environ. Toxicol. Chem. 1996, 15, 652–662.
- 11. Tüğsüz, T.; Gök, E.; Ateş, S. Determination of H2O2 Content of Various Water Samples Using a Chemiluminescence Technique. Turkish J. Chem. 2003, 27, 41–47.
- 12. Jacob, P.; Klockow, D. Measurements of hydrogen peroxide in Antarctic ambient air , snow and firn cores. Anal. Chem. 1993, 429–434.
- 13. Ma, Q.; Ma, H.; Wang, Z.; Su, M.; Xiao, H.; Liang, S. Synthesis of a novel chemiluminescent reagent for the determination of hydrogen peroxide in snow waters. *Talanta* **2001**, *53*, 983–990.
- 14. Cooper, W. J.; Zlka, R.; Petasne, R. G.; Plane, J. M. C. Photochemical Formation of H2O2 in Natural Waters Exposed to Sunlight. Environ. Sci. Technol. 1988, 22, 1156–1160.
- 15. Febria, C. M.; Lesack, L. F. W.; Gareis, J. A. L.; Bothwell, M. L. Patterns of hydrogen peroxide among lakes of the Mackenzie Delta, western Canadian Arctic. *Can. J. Fish. Aquat. Sci.* 2006, *63*, 2107–2118, doi:10.1139/F06-106.
- 16. Meslé, M. M.; Beam, J. P.; Jay, Z. J.; Bodle, B.; Bogenschutz, E.; Inskeep, W. P. Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response. *Front. Mar. Sci.* 2017, *4*, 1–12, doi:10.3389/fmars.2017.00130.
- 17. Halliwell, B.; Clement, M. V.; Long, L. H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10–13, doi:10.1016/S0014-5793(00)02197-9.
- 18. Jay, H.; Bernardo, A.; Davies, K. J. A. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 2016, 603, 48–53.
- 19. Ryan, C. S.; Kleinberg, I. Bacteria in Human Mouths Involved in the Production and Utilization of Hydrogen Peroxide. Arch. Oral Biol. 1995, 40, 753–763.
- 20. Long, L. H.; Evans, P. J.; Halliwell, B. Hydrogen Peroxide in Human Urine : Implications for Antioxidant Defense and Redox Regulation. *Biochem. Biophys. Res. Commun.* 1999, 262, 605–609.
- 21. Banerjee, D.; Madhusoodanan, U. K.; Nayak, S.; Jacob, J. Urinary hydrogen peroxide: a probable marker of oxidative stress in malignancy. *Clin. Chim. Acta* 2003, 334, 205–209, doi:10.1016/S0009-8981(03)00236-5.

- 22. Sznajder, I. J.; Fraiman, A.; Hall, J. B.; Sanders, W.; Schmidt, G.; Crawford, G.; Nahum, A.; Factor, P.; Wood, L. D. H. Increased Hydrogen Peroxide in the Expired Breath of Patients with Acute Hypoxemic Respiratory Failure. *Clin. Investig. Crit. care* **1969**, *96*, 606–612.
- 23. Loukides, S.; Horvath, I.; Wodehouse, T.; Cole, P. J.; Barnes, P. J. Elevated Levels of Expired Breath Hydrogen Peroxide in Bronchiectasis. *Am. J. Respir. Crit. Care Med.* **1998**, 158, 991–994.
- 24. Jöbsis, R. Q.; Schellekens, S. L.; Fakkel-Kroesbergen, A.; Raatgeep, R. H. C.; de Jongste, J. C. Hydrogen peroxide in breath condensate during a common cold. *Mediators Inflamm*. **2001**, *10*, 351–354, doi:10.1080/09629350120102398.
- 25. Peters, S.; Kronseder, A.; Karrasch, S.; Neff, P. A.; Haaks, M.; Koczulla, A. R.; Reinhold, P.; Nowak, D.; Jörres, R. A. Hydrogen peroxide in exhaled air: a source of error, a paradox and its resolution. *EJR Open Res.* 2016, *2*, 1–8, doi:10.1183/23120541.00052-2015.
- 26. Frei, B.; Yamamoto, Y.; Niclas, D.; Ames, B. N. Evaluation of an Isoluminol Chemiluminescence Assay for the Detection of Hydroperoxides in Human Blood Plasma. *Anal. Biochem.* **1988**, *175*, 120–130.
- 27. Yamamoto, Y.; Brodsky, M. H.; Baker, J. C.; Ames, B. N. Detection and Characterization of Lipid Hydroperoxides at Picomole Levels by High-Performance Liquid Chromatography. *Anal. Biochem.* **1987**, *160*, 7–13.
- 28. Varma, S. D.; Devamanoharan, P. S. Hydrogen Peroxide in Human Blood. Free Radic. Res. Commun. 1990, 14, 125–131, doi:10.3109/10715769109094124.
- 29. Lacy, F.; Connor, D. T. O.; Schmid-Schönbein, G. W. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. *J. Hypertens*. **1998**, *16*, 291–303.
- 30. Deskur, E.; Dylewicz, P.; Rychlewski, T.; Wilk, M.; Wysocki, H. Exercise-induced increase in hydrogen peroxide plasma levels is diminished by endurance training after myocardial infarction. *Int. J. Cardiol.* **1998**, *67*, 219–224.
- 31. Lacy, F.; Kailasam, M. T.; Connor, D. T. O.; Schmid-scho, G. W.; Parmer, R. J. Plasma Hydrogen Peroxide Production in Human Essential Hypertension: Role of Heredity, Gender and Ethnicity. *Hypertension* 2000, *36*, 878–885, doi:10.1161/01.HYP.36.5.878.
- 32. Wierusz-Wysocka, B.; Wysocki, H.; Byks, H.; Zozulińska, D.; Wykretowicz, A.; Kaźmierczak, M. Metabolic control quality and free radical activity in diabetic patients. *Diabetes Res. Clin. Pract.* **1995**, *27*, 193–197.
- 33. Tsukimori, K.; Yoshitomi, T.; Morokuma, S.; Fukushima, K.; Wake, N. Serum Uric Acid Levels Correlate With Plasma Hydrogen Peroxide and Protein Carbonyl Levels in Preeclampsia. *Am. J. Hypertens.* 2008, *21*, 1343–1346, doi:10.1038/ajh.2008.289.
- 34. Giulivi, C.; Hochstein, P.; Davies, K. J. A. Hydrogen Peroxide Production by Red Blood Cells. Free Radic. Biol. Med. 1994, 16, 123–129.
- 35. Mapson, L. W. Influence of Halides on the Oxidation of Ascorbic Acid. Biochem. J. 1945, 39, 228–236.
- 36. Pirie, A. Glutathione Peroxidase in Lens and a Source of Hydrogen Peroxide in Aqueous Humour. Biochem. J. 1965, 96, 244–253.
- 37. García-Castiñeiras, S.; Velázques, S.; Martínez, P.; Torres, N. Humor Hydrogen Peroxide Dichlorophenol-indophenol. *Exp. Eye Res.* **1992**, *55*, 9–19.
- 38. Spector, A.; Garner, W. H. Hydrogen Peroxide and Human Cataract. Exp. Eye Res. 1981, 33, 673–681.
- 39. Armoza-Zvuloni, R.; Schneider, A.; Sher, D.; Shaked, Y. Rapid Hydrogen Peroxide release from the coral Stylophora pistillata during feeding and in response to chemical and physical stimuli. *Nat. Publ. Gr.* **2016**, *6*, 1–10, doi:10.1038/srep21000.
- 40. Armoza-Zvuloni, R.; Schneider, A.; Shaked, Y. Rapid Hydrogen Peroxide Release during Coral-Bacteria Interactions. Front. Mar. Sci. 2016, 3, 1–10, doi:10.3389/fmars.2016.00124.
- 41. Pick, E.; Keisari, Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 1980, 38, 161–170.
- 42. Goyen, S.; Pernice, M.; Szabó, M.; Warner, M. E.; Ralph, P. J.; Suggett, D. J. A molecular physiology basis for functional diversity of hydrogen peroxide production amongst Symbiodinium spp . (Dinophyceae). *Mar. Biol.* 2017, *164*, 1–12, doi:10.1007/s00227-017-3073-5.

- 43. Abrahamsson, K.; Choo, K.; Pedersén, M.; Johansson, G.; Snoeijs, P. Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae. *Phytochemistry* **2003**, *64*, 725–734, doi:10.1016/S0031-9422(03)00419-9.
- 44. Collén, J.; Jiménez Del Río, M.; García-Reina, G.; Pedersén, M. Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta 1995, 196, 225–230.
- 45. Patterson, P. C. O.; Myers, J. Photosynthetic Production of Hydrogen Peroxide by Anacystis nidulans. Plant Physiol. 1973, 51, 104–109.
- 46. Kalavathi, D. F.; Subramanian, G. Hydrogen Peroxide Photoproduction by A Marine Cyanobacterium Oscillatoria boryana BDU 92181 with Potential Use in Bioremediation. *Bioscinces Biotechnol. Res. Asia* 2013, *10*, 929–935.
- 47. Suggett, D. J.; Warner, M. E.; Smith, D. J.; Davey, P.; Hennige, S.; Baker, N. R. Photosynthesis and Production of Hydrogen Peroxide by Symbiodinium (Pyrrhophyta) Phylotypes with Different Thermal Tolerance. J. Phycol. 2008, 44, 948–956, doi:10.1111/j.1529-8817.2008.00537.x.
- 48. Mishin, V.; Gray, J. P.; Heck, D. E.; Laskin, D. L.; Laskin, J. D. Application of the Amplex red / horseradish peroxidase assay to measure hydrogen peroxide generation by recombinant microsomal enzymes. *Free Radic. Biol. Med.* 2010, *48*, 1485–1491, doi:10.1016/j.freeradbiomed.2010.02.030.