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Abstract: Fluorescent protein-based biosensors are indispensable molecular tools for life science
research. The invention and development of high-fidelity biosensors for a particular molecule or
molecular event often catalyze important scientific breakthroughs. Understanding the structural
and functional organization of brain activities remain a subject for which optical sensors are in
desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for
imaging neuronal activities with a focus on the design principles and optimizations of various sensors.
New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the
protein engineering efforts and experimental applications of these sensors, we can consequently
analyze factors influencing their performance. Finally, we remark on how future developments can
fill technological gaps and lead to new discoveries.
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1. Introduction

The human brain has an average of 86 billion neurons, forming complex neuronal networks
that are essential for behavior, intelligence, learning, and memory [1]. A fundamental goal in
neuroscience has been to dissect neuronal circuits in vivo and to elucidate how identified populations
of neurons contribute to behavioral outputs [2]. In fact, understanding brain function is not only a
challenging scientific quest aiming to disentangle the functional relationship between the electrical,
chemical, and hemodynamics (the dynamics of blood flow) in the brain with the cognitive, emotional,
and behavioral outputs [3], but it’s also a clinically crucial endeavor toward the study, diagnostics,
treatment, and intervention of neurological diseases, such as Alzheimer’s [4], stroke [5], and epilepsy [6].
As brains are structurally compact and functionally susceptible to invasive manipulations, optical
imaging is highly compelling for interrogating their function [7].

The past 30 years have seen rapid development of brain imaging techniques [8]. Information
obtained through brain imaging facilitates both functional interpretation and medical advancements
toward addressing neurological diseases. While each method provides unique merits in studying brain
activities, it also accompanies certain pitfalls that prevent one technique to dominate. For example,
imaging modalities, such as functional magnetic resonance imaging (fMRI) [9], positron emission
tomography [10], and X-ray computed tomography (X-ray CT) [11] have established themselves as
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clinically important tools for neurosurgical planning and diagnosing [12]. However, these techniques
can only provide limited spatiotemporal information about brain function. Complementary to these
techniques are electrophysiology and optical neuroimaging, through which electric and neurochemical
signals in the brain can be detected and further related to neuronal and cortical functions [13].
While electrophysiology, the ‘gold standard’ for investigating neuronal functions [14,15], can directly
measure electrical activity of cells with high sensitivity, the invasive requirement of physical contact
with tissues and the accompanied poor spatial resolution lend its dominant position in neuroscience
to be challenged by the emerging optical neuroimaging techniques [16]. The use of light to study
neuronal signaling has several advantages, including limited invasiveness, tunable wavelength, high
spatial resolution, and sensitive detection [17].

Optical neuroimaging measures neuronal activities by converting neuronal signals, such as
voltage, calcium ions (Ca2+), and neurotransmitters into light signal outputs (Figure 1). It is thus an
indirect approach towards studying neuronal signaling that necessitates the use of reporters (or probes,
sensors, indicators, etc.) [16]. As such, the invention of optical reporters for brain imaging has been a
highly intensive area of research [18]. Historically, calcium- [19] and voltage-sensitive dyes [20] have
played pivotal roles in optically recording brain signals in vitro and in vivo. The use of dyes, however,
is invasive and may result in non-specific staining. Moreover, the spatial and temporal localization of
dyes cannot be easily controlled, making targeted or chronic imaging difficult. As a complementary
and competing technology, genetically encoded fluorescent indicators are becoming increasingly
popular because they (1) can be introduced into cells through transgenic DNA expression; (2) enable
targeted expression with precise spatial and temporal control; (3) facilitate large-scale recording of
neuronal activities in vitro and in vivo; (4) are amenable to protein engineering and optimizations;
(5) are relatively noninvasive; and (6) are suitable for chronic imaging. However, since genetically
encoded fluorescent indicators often require genetic delivery, they are less appropriate for direct,
in vivo applications on human subjects. The past two decades has witnessed the fast development of a
growing list of genetically encoded fluorescence probes, which have found broad applications within
the neuroscience community for analyzing neural circuit functions [21–23]. With an increasing number
of probes being successfully applied for circuit interrogation in vivo, it is now evident that they are
transforming neuroscience in an unprecedented manner [21]. While reviews for Ca2+ and voltage
sensors are available, very few of them covers genetically encoded indicators for various phenotypic
effects of neuronal transmission and evaluate them within a unified framework [24]. To this end,
we summarize the history and recent development in the field of optical sensors for neuronal activities,
with a focus on indicators for Ca2+, voltage, neural transmitters, and pH changes.
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2. Genetically Encoded Ca2+ Indicators (GECI)

Indicators for intracellular Ca2+ dynamics are widely used tools in neuroimaging. Following an
action potential, Ca2+ levels show a transient, sharp, and localized increase within the cytosol, which is
characteristic of promoting signal propagation at axon terminals [25,26]. Thus, detecting intracellular
Ca2+ fluctuations is a proxy for probing neuronal action potentials. Similar Ca2+ transients also occur in
astrocytes, which play an essential role in synaptic plasticity [25,26]. Typically, Ca2+ transients rise within
a few milliseconds and last for hundreds of milliseconds, which are manifested as Ca2+ spikes [27].
GECIs have a rich history of both design and application (Table 1), having been so well optimized
that many serve as the default indicator for preliminary investigations into neuronal signaling [28].
As GECIs have been subjected to extensive protein engineering; their large dynamic range and optimal
response kinetics can facilitate large-scale recordings of neuronal activities in vivo [29,30].

Table 1. A list of genetically encoded Ca2+ indicators.

GECIs Type a Sensing
Module

Reporting
Module

Dynamic
Range b Selected Applications Ref.

Cameleon-1 FRET CaM-M13 BFP-GFP 70% HeLa cells [31]

YC2.1 FRET CaM-M13 ECFP-EYFP 100% HeLa cells; hippocampal neuron [32]

YC3.6 FRET CaM-M13 ECFP-cp173Venus 560% HeLa cells; transgenic mice [33]

YC6.1 FRET CaM, CKKp CFP-YFP 200% HeLa cells; hippocampal neuron [34]

D3cpV FRET CaM-M13 ECFP-cpVenus 510% Hippocampal neurons [35]

YC-Nano FRET CaM-M13 ECFP-cp173Venus 1450% Layer 2/3 pyramidal neurons;
zebrafish embryo [36]

TN-L15 FRET csTnC CFP-Citrine 140% HEK293 cells and primary
hippocampal neurons [37]

TN-XL FRET csTnC ECFP-Citrine
cp174 400% Presynaptic motoneuron terminals

of transgenic fruit flies [38]

TN-XXL FRET csTnC ECFP-Citrine
Cp174 510% Drosophila motor neuron boutons;

mouse visual cortex [39]

3xCFP–TnC–
cpVenus FRET csTnC 3xCFP/cpVenus 1165% PC12 Cells [40]

Twitch-2B FRET tsTnC cpVenusCD and
mCerulean3

>1000% Mouse brain and T lymph nodes [41]

BRAC BRET CaM-M13 Venus, RLuc8 60% HeLa cells and plant leaves [42]

Nano-lantern
(Ca2+) BRET CaM-M13 Venus, split RLuc8 300% HeLa cells and

hippocampal neurons [43]

Camgaroo-1 Single-FP CaM EYFP 700% HeLa cells [44]

Camgaroo-2 Single-FP CaM Citrine 700% HeLa cells [45]

Pericam Single-FP CaM, M13 cpEYFP 800% HeLa cells [46]

GCaMP1.3 Single-FP CaM, M13 cpEGFP 450% HEK-293 cells and
mouse myotubes [47]

GCaMP1.6 Single-FP CaM, M13 cpEGFP 480%
Presynaptic boutons of the

Drosophila larval
neuromuscular junction

[48]

GCaMP2 Single-FP CaM, M13 cpEGFP 390%
Beams of parallel fibers and

granule cells of frontal cerebellar
slices from transgenic mice

[49]

GCaMP3 Single-FP CaM, M13 cpEGFP 1230% Flies, worms and mice [50]

GCaMP4.1 Single-FP CaM, M13 cpEGFP ND. Xenopus laevis [51]

GCaMP-HS Single-FP CaM, M13 cpEGFP 410% Spinal motor neurons in
transgenic zebrafish [52]

GCaMP5 Single-FP CaM, M13 cpEGFP >940%
Cultured neurons and astrocytes,

mouse retina; flies, worms,
zebrafish and mice

[53]
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Table 1. Cont.

GECIs Type a Sensing
Module

Reporting
Module

Dynamic
Range b Selected Applications Ref.

Fast-GCaMP Single-FP CaM, M13 cpEGFP >650%
Drosophila auditory neurons;

superior cervical ganglion and
neocortical pyramidal neurons

[54]

GCaMP6 Single-FP CaM, M13 cpEGFP >3600% Cultured neurons; zebrafish, flies
and mice [55]

G-GECO1 Single-FP CaM, M13 cpEGFP 2500% HeLa cells; rat
hippocampal neurons [56]

R-GECO1 Single-FP CaM, M13 cpmApple 1600% HeLa cells; rat
hippocampal neurons [56]

B-GECO1 Single-FP CaM, M13 cpEBFP 700% HeLa cells [56]

GEX-GECO1 Single-FP CaM, M13 cpEGFP 2600% HeLa cells [56]

GEM-GECO1 Single-FP CaM, M13 cpEGFP 11,000% HeLa cells; transgenic C. elegans [56]

CAR-GECO1 Single-FP CaM, M13 cpmPulm 2700% HeLa cells; mouse neocortical
slice culture [57]

R-GECO1.2 Single-FP CaM, M13 cpmPulm 3300% HeLa cells and INS-1 cells [57]

O-GECO1 Single-FP CaM, M13 cpmOrange 14,600% HeLa cells [57]

R-CaMP1.07 Single-FP CaM, M13 cpmApple 2870% HeLa cells and hippocampal
pyramidal neurons [58]

Y-GECO1 Single-FP CaM, M13 cpmPapaya0.4 20,000% HeLa cells and rat
hippocampal neurons [59]

REX-GECO1 Single-FP CaM, M13 cpmApple 10,000% Organotypic hippocampal slice
cultures; albino tadpoles [60]

GR-GECO Single-FP CaM, M13 cpmMapple145 450% HeLa cells and rat
hippocampal neurons [61]

LAR-GECO Single-FP CaM, M13 cp146mApple 1000% HeLa, HEK293, U2OS cells and rat
hippocampal neurons [62]

BCaMP1c Single-FP CaM, M13 cpBFP 200% ND [63]

CyCaMP1a Single-FP CaM, M13 cpCFP 260% ND [63]

YCaMP1b Single-FP CaM, M13 cpYFP 920% HEK293 cells [63]

RCaMP1h Single-FP CaM, M13 cp159mRuby 1050% HEK293 cells, neurons; worms, fly
larvae, and zebrafish [63]

RA-CaM-B-
M13-GA FPX CaM, M13 RA, B, GA ND HeLa cells [64]

a FRET (Förster Resonance Energy Transfer) and single-FP (Fluorescent protein) types indicate ratiometric and
intensometric response, respectively; b Dynamic range here refers to the ratio of optical response in the fully
activated indicator to the measured signal in the off state. Unless otherwise specified in the main text, the reported
value refers to a positive relationship between Ca2+ and fluorescence intensity or ratio.

2.1. GECIs Based on FRET

Soon after the crystallization and high resolution structural determination of Aequorea victoria
GFP [65], genetically encoded fluorescent probes based on Fluorescence (Förster) Resonance Energy
Transfer (FRET) emerged as attractive alternatives to organic fluorophores for studying intracellular
signaling molecules, most notably with Ca2+ [66] and cAMP [67]. In 1997, the Tsein lab reported
the first proof-of-concept GECI, called cameleon-1 [31], which consists of a tandem fusion of BFP,
Xenopus calmodulin (CaM) [68–70], CaM-binding peptide of myosin light-chain kinase-M13 [71], and
GFP. Ca2+ binding to cameleon-1 triggers a conformational switch of CaM-M13 from a dumbell-like,
extended form to a compact, globular form, causing a decrease in the distance and/or altering of the
dipole orientation of the flanking FP in order to increase the FRET efficiency. Different signal peptides
fused to cameleon-1 allows researchers to visualize free, localized Ca2+ dynamics in the cytosol, nucleus,
and ER in HeLa cells [31]. Subsequent iterative optimizations can re-purpose and improve characteristic
features of these GECIs. To improve the overall dynamic range and reduce pH sensitivity of cameleons,
Miyawaki et al. developed a series of Yellow Cameleons (YCs) by replacing the original BFP–GFP pair
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with an ECFP–EYFP pair, resulting in a YC2.1 variant with a dynamic response of 100%, which was
used to image Ca2+ in hippocampal neurons [32].

The structural modularity of FRET-based GECIs has facilitated further independent attempts
toward improving YCs as an efficient indicator, such as via substitution of donor and acceptor FPs
with enhanced photophysical properties as they became available, reorganization of the CaM-M13
sensing module, evolution of the CaM-Ca2+ binding site, and modulation of the linker length and/or
composition between CaM-M13 and the flanking FPs [35]. For example, substitution of EYFP in YC2.1
with Citrine (YC2.3 and YC3.3) [45] or Venus (YC2.12) [72] FP produced GECIs with improved protein
folding and maturation at 37 ◦C, that are indifferent to chloride ions, and that are more resistant to pH
fluctuations at physiological conditions. Insertion of CaM binding peptide of CaM-dependent kinase
kinase (CKKp) [73] into the linker region that connects the two EF-hands of CaM resulted in YC6.1,
a GECI that increased the dynamic range of YC2.1 to reach 200% [34]. Despite the aforementioned
improvements, these GECIs still suffer from a poor signal-to-noise ratio (SNR), especially when targeted
to organelles or submicroscopic environments. To engineer high SNR, FRET-based GECIs, Nagai and
co-workers employed a circularly permuted YFP (cpYFP) as the FRET acceptor [33]. Since cpYFPs have
new N- and C-termini in close proximity to the chromophore [44], their use as FRET acceptors would
result in different FRET performances, compared to their wild-type counterparts, due to an alteration
of the relative orientation and dipole of the donor and acceptor chromophores. Accordingly, after
sampling circularly permutated Venus (cpVenus) at different permutation sites and substituting them in
YCs, they found that cp173Venus absorbs a greater amount of energy from excited CFP donor, thereby
producing YC3.6 with Ca2+-dependent FRET ratio change of nearly 600%. Its large dynamic range
enabled imaging of stimulated, fast-Ca2+ dynamics of hippocampal brain slices from YC3.6-genetically
encoded transgenic mice [33]. YC3.6 has since become one of the most frequently used GECIs.

Of equal importance to an indicator’s dynamic range is its Ca2+ binding affinity, which dictates
GECI sensitivity in a given biological context [74]. To this end, Palmer et al. engineered improved
cameleons (D2cpV, D3cpV, and D4cpV) based on computationally redesigned calmodulin-peptide pairs
with Ca2+ sensitivities tuned to more than a 100-fold range (0.6–160 µM) [35]. In 2010, Horikawa and
colleagues developed ultrasensitive GECIs, termed yellow cameleon-Nano (YC-Nano, Kd = 15–140 nM),
by adjusting the length of the linker peptide between CaM and M13 (Figure 2A) [36]. Together with its
large signal change (14.5-fold) in the presence of Ca2+, YC-Nano enabled imaging of spontaneous motor
activities in living zebrafish embryos [36]. To date, YC-Nano remains popular for detecting subtle Ca2+

transients and basal-level neuronal activity in multicellular networks. For example, transgenic mice
expressing YC-Nano15 or YC-Nano50 allowed ultrasensitive imaging of exocytotic events associated
intracellular Ca2+ dynamics of pancreatic acinar cells [75], and subtle, transient, and local activity in the
fine processes of astrocytes (Ca2+ twinkle) [76], respectively.

An apparent drawback to these YC-type GECIs resides is their use of CaM and M13 peptide as the
Ca2+ sensing module, which can potentially interfere with cellular biochemical machineries [77]. CaM is
a ubiquitous and tightly regulated signal protein that interacts with a multitude of CaM-binding
proteins [78] to activate and modulate kinases, phosphatases, and ion channels [79]. Therefore,
expression of CaM-containing GECIs may inadvertently perturb normal cellular functions to an
unpredictable extent. Moreover, unwanted binding of M13 to endogenous CaM can compromise sensor
functions. Indeed, earlier attempts of using cameleons in transgenic invertebrates have encountered
various problems, such as attenuated indicator performance in vivo and suboptimal targeting
efficiencies [80–82]. To create minimally perturbing, and more “bio-orthogonal” GECIs, Griesbeck and
colleagues explored the use of troponin C (TnC) [83], a skeletal and cardiac muscle-specific Ca2+-binding
protein [84,85], to construct new types of GECIs. Inserting truncated or full-length TnC variants between
CFP and Citrine leads to several TN-type GECIs, among which TN-L15 shows a 140% dynamic response
and was targeted to the plasma membrane of HEK293 cells and primary hippocampal neurons [37].
Further engineering of the Mg2+- and Ca2+-binding sites within the C-terminal lobe of TnC, and use of
alternative donor/acceptor pair (ECFP/Citrine cp174), improved the ion selectivity, dynamic range,
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and response kinetics of TN-L15, resulting in TN-XL with a 400% ratiometric change upon Ca2+ binding.
With a fast off-rate and large dynamic range, TN-XL enables fast, stable, and reproducible imaging of
presynaptic motor neuron terminals of transgenic fruit flies [38]. Subsequently, domain rearrangement
(i.e., deleting the lower-affinity N-terminal and concatenating the remaining C-terminal lobe of TnC)
and mutagenesis inside EF hands III and IV, gave rise to a more sensitive GECI, designated TN-XXL [39],
which can be used for chronic, in vivo, two-photon imaging of mouse visual cortex. By replacing the
ECFP/cpCitrine pair with a 3xCFP/cpVenus pair, Liu et al. further improved the dynamic range
of TN-XXL by nearly 11-fold [40]. More recently, the Griesbeck lab reported another TnC-based
GECI, called “Twitch,” which was developed by using the minimized C-terminal domain of Opsanus
tau troponin C (tsTnC), which has fewer Ca2+-binding sites, higher Ca2+-binding affinity, and lower
potential buffering of endogenously Ca2+ [41]. Interestingly, the authors optimized the FRET responses
of the Twitch indicators with a two-step, large functional screen: first in bacterial colonies and then in
rat hippocampal neuronal cultures. The performance of the resulting indicators, such as Twitch-3 and
Twitch-2B, rivals that of the synthetic dye, Oregon Green BAPTA1-AM [86,87]. They demonstrated the
usefulness of the Twitch indicators by recording visually evoked calcium signals in mouse cortical layer
II/III neurons and imaging T lymphocyte activation [41].
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Figure 2. Schematic representation of genetically encoded Ca2+ indicators. (A) YC-Nano is a
FRET-based Ca2+ Indicator. CaM and M13 are sandwiched between ECFP and cp173Venus. Upon Ca2+

binding, conformational change induces an increase in FRET efficiency; (B) R-GECO1 is a red
fluorescent GCaMP type Ca2+ Indicator based on a single red fluorescent protein. It consists of
cpmApple, M13 fused to the N-terminal and CaM fused to the C-terminal. Upon Ca2+ binding,
the conformational change of the CaM-M13 complex leads to local chromophore environment change,
accompanying a large increase of the red fluorescence intensity of the sensor.

2.2. GECIs Based on BRET

While FRET-based GECIs have well distinguished themselves as powerful tools for neuronal
imaging, the idea of deploying BRET (bioluminescent resonance energy transfer) for GECI design was
a rare but viable one. In 2010, Saito et al. reported an auto-luminescent Ca2+ sensor, BRAC [42], which
is comprised of a Ca2+-sensing module (CaM-M13) sandwiched between a fluorescent protein acceptor
(Venus) and a luciferase donor (RLuc8) [88,89]. Ca2+ binding induced a conformational change within
CaM-M13, followed by a 60% change in BRET efficiency [42]. They subsequently improved the BRET
efficiency of the indicator and developed Nano-lantern (Ca2+ indicator) by inserting CaM-M13 in a
N-terminally truncated R-Luc8 of an enhanced Nano-lantern BRET pair. Nano-lantern has a 300%
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BRET dynamic range and was successfully used in concert with channelrhodopsin2 (ChR2) [90–92]
in dissociated rat hippocampal neurons to conduct optogenetic activation and functional imaging
experiments. By swapping the donor in existing FRET- or BRET-based biosensors with a recently
developed, highly bright luciferase, NanoLuc [93], new chemiluminescent BRET biosensors were
derived. CalfluxVTN is a genetically encoded NanoLuc based-chemiluminescent Ca2+ biosensor
modified from Twitch3 that can be used to couple optogenetic stimulation with Ca2+ sensing [94].
Moreover, enhanced Nano-lanterns (eNLs) and an eNL-based Ca2+ sensor with a 500% dynamic range
have been recently reported [95]. BRET-based GECIs have the advantage of excitation-free, lower
phototoxicity, and deeper tissue imaging capacity, but suffer from low photon output and the need of
delivering bioluminescent substrates to points of interest. The recent development of a brighter and
red-shifted teLuc luciferase [96] and the progress in engineering high efficiency BRET pairs in general
is expected to partially alleviate this problem [43,94–96].

2.3. Single FP-Based GECIs

Historically, GECIs based on single-FPs flourish, having more popularity than FRET-based
GECIs. Although different in many aspects of their working principles and photophysical properties,
GECIs based on single-FPs and FRET share common grounds in their developmental history, from
proof-of-principle ideas, to reiterative optimizations, to universal adoptions. In 1999, Tsien and
colleagues reported an interesting finding, showing that major structural rearrangements of GFP are
tolerable, including circular permutation and domain insertion [44]. This finding paved the foundation
for designing new biosensors using circularly permutated fluorescent proteins (cpFPs), affording
the first single-FP based GECI, termed “Camgaroo1”, by insertion of CaM at Y145 of EYFP [44].
EYFP substitution for Citrine in camgaroo1 with Citrine lead to camgaroo2, which has improved
expression at 37 ◦C, higher photostability, and reduced sensitivity to pH and chloride ions [45].
Despite proof-of-concept demonstrations, camgaroo-type GECIs failed to prove practical for Ca2+

imaging in live cells, primarily due to their unfavorable Ca2+ binding affinities (apparent Kd for Ca2+

is ~7 µM). However, the subsequent adoption of cpFPs [44,97] in GECI designs led to indicators with
significantly better performances. In 2001, two Japanese groups independently reported single-FP based
GECIs, designated G-CaMP [47] and pericam [46], which are comprised of CaM and M13 fused to the N-
and C-termini of a cpFP, respectively. These GECIs not only exhibit large dynamic ranges, but also have
Ca2+ affinities (0.2–2 µM) within physiological ranges (50–5000 nM) [26], and are capable of imaging Ca2+

dynamics in subcellular compartments and mouse myotubes [46,47]. Incorporation of known beneficial
mutations for GFP gave rise to several G-CaMPs, including G-CaMP1.6 [48] and G-CaMP2 [49],
with improved folding and maturation but marginal change to the dynamic range. Transgenic organisms
expressing G-CaMP1.6 or G-CaMP2 were used to monitor neuronal activities of presynaptic boutons of
the Drosophila larval neuromuscular junction [48], and mice cerebellar parallel fibers [49], respectively.
In both cases, however, significant attenuation of SNR in vivo was observed [48,49], highlighting the
need for improved G-CaMPs. In a study of cell polarization during Xenopus gastrulation, Shindo et al.
briefly mentioned GCaMP4.1 but did not detail how it was developed [51]. Muto et al. tested
substitution of “superfolder GFP” [98] mutations into cpEGFP of GCaMP2 and developed GCaMP-HS
(GCaMP-hyper sensitive) [52], which is capable of imaging spatiotemporal activation of the spinal motor
neurons in zebrafish. Attempts to further optimize these single-FP based GECIs, not surprisingly, proved
difficult, owing to the intricacies and unpredictability of CaM-M13 triggered environment changes
around the cpFP chromophore. To aid rational design of improved G-CaMPs, two research groups
independently determined the X-ray crystal structure of G-CaMP2 and elucidated its Ca2+-dependent
fluorescence transformation mechanism: Ca2+ binding to CaM stabilizes a deprotonated chromophore
in its otherwise protonated unbound state [50,99]. Soon afterwards, Tian and coworkers used
a combination of G-CaMP2 structure-guided mutagenesis and semi-rational library screening to
develop G-CaMP3 [50], a new G-CaMP with increased baseline fluorescence, increased dynamic
range, and higher affinity for Ca2+. GCaMP3 outperforms all previous GECIs, including GCaMP2,
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D3cpVenus, and TN-XXL in pyramidal cell dendrites, and was successfully used to image neuronal
activities in worms, flies, and mice [50]. As a state-of-art GECI at that time, GCaMP3 soon become the
default indicator for various imaging applications, including imaging neuronal activity in the motor
cortex [50], barrel cortex [100], and hippocampus [101] of mice; chronic imaging of learning-related
circuit changes in mice in vivo [102]; imaging light-evoked responses in neuronal populations of
zebrafish tectum [103]; Drosophila [104] and mouse retina [105]; and probing dendritic excitation in
mouse cortical layer V dendrites in vivo [106]. Meanwhile, further improvements of GCaMP3 continued.
Through structure-guided, targeted mutagenesis, linker modulation, and high-throughput screening,
Looger’s laboratory created a family of “GCaMP5” sensors with a wide range of Ca2+ affinities, dynamic
range, baseline fluorescence, and on-off kinetics [53]. GCaMP5s have been systematically characterized
in cultured neurons and astrocytes, and in animal models, including Caenorhabditis elegans, Drosophila,
zebrafish, and mice, where single action potential (AP)-evoked signals are clearly detectable [53].

While the brightness, Ca2+ affinity, and dynamic ranges of GCaMPs are approaching those
of synthetic Ca2+ indicator dyes, such as OGB1-AM (Oregon Green Bapta-1-AM) [106,107],
their sensitivities and kinetics are still a far cry. GCaMPs typically have half time for rise (τon) and decay
(τoff, the time from peak fluorescence to 50% of the peak fluorescence was defined as the half time
decay) of τon = 20 ms–1.4 s and τoff = 0.4–5 s, respectively, which is much slower than physiological
Ca2+ flux signaling (rise within 1 ms and fall within 10–100 ms) [108], disfavoring their use to resolve
spike times and firing rate variations over synthetic dyes (τon < 1 ms and τoff = 7 ms for OGB-1) [54].
Almost concomitantly, two groups reported their attempts, wherein they focused mutagenesis on CaM
and the cpGFP-CaM interface to address this issue. Sun et al. developed Fast-GCaMPs, which shows
up to a 20-fold accelerated off-responses and Kd values spanning from 0.16 to 6 µM, and can track
natural song in Drosophila auditory neurons as well as the rapid responses in mammalian neurons [54].
Chen et al. reported a family of ultrasensitive protein calcium sensors (GCaMP6) and showed that
GCaMP6 is the first GECI to outperform OGB-1 in vivo [55]. Notably, these GCaMP6 sensors (GCaMP6s,
6m, and 6f for slow, medium, and fast kinetics, respectively) were directly screened from GCaMP
variants expressed in dissociated rat hippocampal neurons, underscoring the importance of direct
sensor screening in physiologically relevant settings. To date, GCaMP6 remains one of the most
advanced GECIs for use in vivo.

Just as GCaMP indicators had been gaining satisfactory acceptance, Campbell’s research group
enthusiastically stepped into another untouched territory, engineering GCaMP spectral variants.
Despite a decade of availability, the hue of single FP-based GECIs has, until 2011, been limited to
monochromatic green. A red version of GCaMP indicator would be of particular interest in that it
enables deeper tissue imaging, reduced phototoxicity, multicolor Ca2+ imaging with other GCaMP
indicators, and multiparameter imaging with existing indicators derived from other species. In a
landmark study in 2011, Zhao et al. developed a blue, improved green, and red ratiometric excitation
and emission Ca2+ indicators with large dynamic ranges (Figure 2B) [56]. These indicators were
developed from a high-throughput, colony-based screening system in which indicator variants are
secreted to the periplasmic space of E. coli. Manipulation of Ca2+ concentrations in the periplasm
by spraying Ca2+ or EGTA solutions to LB agar plates altered the Ca2+ on–off state, and thus the
fluorescence of the indicators, which was then quantified by an imaging system [56]. To distinguish
this new palette of indicators from the prior GCaMP series, a new term was coined for them,
GECO (genetically encoded calcium indicators for optimal imaging). Multicolor imaging of Ca2+

was successfully achieved in HeLa cells transfected with nucleus-localized R-GECO1, cytoplasmic
G-GECO1, and mitochondria-localized GEM-GECO1 [56]. In addition, they performed multiparameter
imaging of Ca2+ and ATP by using R-GECO1 and ATeam1.03 [109]. Subsequently improved GECOs,
such as R-CaMP1.07 [58] and R-GECO1.2 [57], GECOs with Ca2+ affinities suitable for mitochondria
and endoplasmic reticulum (i.e., LAR-GECO1 [62]), and GECOs of other spectral variants, such as
O-GECO1 [57], CAR-GECO1 [57], and Y-GECO1 [59], have since followed. More recently, a GECO with
a large Stokes shift with suitability for two-photon imaging [110], namely REX-GECO1, was developed
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and used in organotypic hippocampal slice cultures and the visual system of albino tadpoles [60].
GR-GECOs are green-to-red photo-convertible GECOs that can be used as an optical “highlighter”
for Ca2+ within a population of specified cells [61]. This diverse lineup of GECOs should find broad
applications in neuronal imaging [22,111]. Independently, Akerboom et al. rationally designed and
engineered G-CaMP color variants, of which the blue (BCaMP1c), cyan (CyCaMP1a), and yellow
(YCaMP1h) indicators were developed by grafting GFP mutations that produced blue [112], cyan [113]
and yellow [65] FPs, whereas the red (RCaMP1h) indicator was developed by using a cp version of
mRuby [114] within the GCaMP scaffold [63]. Interestingly, RCaMP1h, when used in combination with
optogenetic actuators [90–92,115–118], such as blue light-activatable channelrhodopsin-2 (ChR2) [90–92],
was found to be superior than R-GECO1, which undergoes reversible photoactivation upon blue and
green light illumination [63]. Coupling optogenetic manipulation with functional Ca2+ imaging using
the ChR2/RCaMP1h pair enables the investigation of a signal input-output relationship within defined
neuronal populations, both intra- and inter-cellularly (such as with neurons and astrocytes) [63].

Advancements in FP technology itself have also inspired new GECI designs. A recent
example of a green–red ratiometric Ca2+ indicator based on FP exchange (FPX) technology underlies
such new possibilities [64]. The tripartite, single-polypeptide Ca2+ biosensor, with the structure
RA-CaM-B-M13-GA, employs dimerization-dependent green [119] and red [119] FPs (GA, RA),
which share a common dimerization partner (B). Ca2+ binding shifts the equilibrium between RA-B
and GA-B, resulting in a ratiometric red-to-green signal change [64]. The apparent advantage of FPX
technology lies in its simple configuration from which new sensors can be quickly derived before
extensive optimizations. The shortcomings, however, are that sensors derived from FPX technology are
not suitable for quantitative imaging [64].

3. Genetically Encoded Voltage Indicators (GEVIs)

While tracking Ca2+ dynamics represents a robust way for detecting downstream signaling
events following membrane depolarization, transmembrane voltage measurements provide more
direct information on neural activity [120]. During the course of an action potential, the membrane
potential undergoes a rapid change that results in a single signal spike or subthreshold oscillation [121].
Transmembrane voltage fluctuations can lead to subsequent downstream Ca2+ signaling or synaptic
transmission within a single neuron, and the underlying information can also be relayed across
long distances. Moreover, subthreshold membrane potential fluctuations cannot be detected by
GECIs because they do not lead to any change in Ca2+ concentrations. Therefore, voltage indicators
are intrinsically attractive tools for observing neuronal activities [122]. However, the lack of
well-established voltage-sensing platforms together with the relatively faster temporal voltage
fluctuations makes the design and application of voltage indicators far more daunting compared
to Ca2+ indicators. Nevertheless, the progress in the development of engineering genetically encoded
voltage indicators (GEVIs) has been exciting (Table 2) [123], and as we shall see, many voltage indicators
of various classes have already found practical utility in vivo [124,125]. Several important aspects of
GEVIs including sensor development, sensing mechanism, and in vivo applications are also reviewed
elsewhere [24,123,126–129].
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Table 2. A List of genetically encoded voltage indicators.

GEVIs Sensing Module Reporter Module Dynamic
Range (%) a τon, fast (ms) b τoff, fast (ms) c Selected Applications Ref.

FlaSh Shaker K+ channel GFP 5.1 85 ± 10 160 ± 12 Xenopus laevis oocytes [130]

SPARC Rat µI skeletal muscle
voltage-gated Na+ channel GFP 0.5 <0.8 N.A. Xenopus laevis oocytes [131]

VSFP1 Kv potassium channel CFP, YFP 1.8 ± 0.1 0.7 N.A. HEK cells [132]

VSFP2.1 CiVSD Cerulean, Citrine 8.6 15 75 PC12 cells [133]

VSFP2.3 CiVSD Cerulean, Citrine 15.2 ± 0.2 3.0 ± 0.4 91.6 ± 4.2 PC12 cells [134]

VSFP2.42 CiVSD mCitrine, mKate2 12.46 ± 1.0 N.A. N.A. PC12 cells [135]

CiVSD-Kv3.1 chimera (C5) Ci-VSP-Kv3.1 VSD chimeras mCerulean, mCitrine 14.8 ± 0.1 2.1 13.4 PC12 cells [136]

VSFP-CR CiVSD Clover, mRuby2 12.7 5.4 90 Hippocampal neurons [137]

VSF3.1 CiVSD Cerulean 1.9 1.8 ± 0.3 N.A. PC12 cells [134]

VSFP3.1_mOrange2 CiVSD mOrange2 2.9 3.8 ± 0.3 N.A. PC12 cells and hippocampal neurons [138]

VSFP-Butterfly1.2 CiVSD mCitrine, mKate2 15.0 ± 0.7 1.0 ± 0.7 89.9 ± 5.2 Cortical neurons, barrel cortex and
hippocampal slices [139]

VSFP-Butterfly CY Ci-VSP-Kv3.1 VSD chimeras mCerulean, mCitrine 2.1 ± 0.2 14.6 ± 0.5 14.7 ± 0.2 HEK293 and PC12 cells; cortical neurons
of living mice [140]

VSFP-Butterfly-YR Ci-VSP-Kv3.1 VSD chimeras mCitrine, mKate2 2.3 ± 0.2 25.1 ± 0.9 12.7 ± 0.1 HEK293 and PC12 cells [140]

Mermaid CiVSD mUKG, mKOκ 40 5–20 5–20 Rat cardiomyocytes and cortical neurons [141]

Mermaid2 CiVSD CFP, YFP 48.5 0.92 10.3 Hippocampal neurons and living mice [142]

ArcLight Q239 CiVSD Super ecliptic pHluorin A227D 35 9 17 HEK293 cells and hippocampal neurons [143]

Chicken ArcLight-A173 Chicken VSD Super ecliptic pHluorin A227D 9 4 9 HEK293 cells and cortical neurons [144]

Bongwoori CiVSD A154D/R217Q/R229I Super ecliptic pHluorin A227D ~16 8 7 HEK293 cells and hippocampal neurons [145]

FlicR1 CiVSD cpmApple 6.6 3.0 2.8 HEK293 cells and hippocampal neurons
and brain slices [146]

Marina ArcLight A389 A390 V442 31 d 29.2 15.6 HEK 293 cells and cortical neuronal cells [147]

ASAP1 GgVSD cpsfGFP-OPT ~18–29 2.1 2.0 HEK293A cells and
hippocampal neurons [148]

ASAP2s ASAP1 R415Q 38.7 5.2 24 HEK293A cells, cardiomyocytes,
Drosophila and organotypic slice cultures [149]

ASAP2f ASAP1 (A147S ∆A148) ~14–20 2.8 2.4 Drosophila visual system [150]

PROPS Proteorhodopsin 150 4.7 N.A. Escherichia coli [151]

Arch D95N Arch-D95N 60 <1 <1 Rat hippocampal neurons [152]
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Table 2. Cont.

GEVIs Sensing Module Reporter Module Dynamic
Range (%) a τon, fast (ms) b τoff, fast (ms) c Selected Applications Ref.

ArchEEQ Arch-D95Q/D106E 60 ~5–15 N.A. Rat hippocampal neurons [153]

ArchEEN Arch-D95N/D106E 20 ~5–15 N.A. Rat hippocampal neurons [153]

QuasAr1 Arch-P60S/T80S/D95H/D106H/F161V 32 0.05 0.07 Rat hippocampal neurons [154]

QuasAr2 Arch-P60S/T80S/D95Q/D106H/F161V 90 1.2 1.0
Rat hippocampal neurons;

hiPSC-derived neurons; organotypic
brain slice

[154]

QuarsAr2-mOrange QuarsAr2, mOrange 10 3.9 4.3 HEK293 cells and rat
hippocampal neurons [154]

QuarsAr2-mCitrine QuarsAr2, mCitrine 13.1 3.1 4.8 HEK293 cells and rat
hippocampal neurons [154]

MacQ-mCitrine L. maculans rhodopsin (Mac) D139Q, mCitrine 20 2.8 5.4
Cultured neurons; neocortical tissue

slices; dendrites of Purkinje neurons in
live mice

[155]

Archer1 Arch-D95E/T99C 85 N.A. N.A. Rat hippocampal neurons and sensory
neurons in behaving C. elegans [156]

Archer2 Arch-D95E/T99C/A225M 60 N.A. N.A. Rat hippocampal neurons [156]

Ace-mNeon Acetabularia acetabulum rhodopsinl (Ace), mNeonGreen 8.5–12 0.36–1.1 0.42–1.3 Neurons, awake mice and flies [157]
a Dynamic range (%) here refers to the absolute value of fluorescence change (∆F) normalized by the initial fluorescence (F0), expressed as % ∆F/F0, following 100 mV depolarization
or repolarization steps. Values are steady-state or peak changes, as determined in the original reports. One has to be cautious when comparing these numbers, because experimental
conditions could be different; b,c The value here refers to one of the representative values measured in one cell type under a certain experimental condition specified in the original work,
and may differ in other publications repeating the original work; d Unlike other similar GEVIs (e.g., ArcLight, ASAP1, ASAP2s, ASAP2f, and Ace-mNeon) that have a “negative” response
(i.e., decrease in fluorescence upon neuronal activation), Marina was engineered for an inverted response (i.e., increase in fluorescence upon neuronal activation).
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3.1. GEVIs Based on Voltage Sensitive Domains (VSDs)

Naturally found in some ion channels or phosphatases, voltage sensitive domains (VSDs)
are membrane-bound components that bear voltage-sensing capabilities [158,159]. Typically, they
contain four structural transmembrane helices (S1–S4) that modulate the gate of ion channels or
control phosphatase activities. A defining feature that has been repeatedly harnessed by GEVI
engineers is that the positively charged fourth helix (S4), or certain loop regions of VSDs, undergo
substantial conformational changes upon membrane hyperpolarization or depolarization [123,160].
Not surprisingly, coupling the conformational change of VSDs to fluorescence perturbations, either
in the form of intensity change of a single FP or FRET efficiency change between two FPs, has been
the principle guiding strategy in early GEVI designs. In 1997, Siegel et al. reported the first GEVI,
FlaSh, which is composed of GFP inserted into a non-conducting mutant of Shaker K+ channel,
and demonstrated that FlaSh GFP fluorescence can faithfully report membrane potential changes in
Xenopus laevis oocytes [130]. Several improved GEVIs have since followed [136]. GFP replacement
with other FP variants and/or rational incorporation of mutations known to alter gating kinetics and
voltage dependence of the Shaker K+ channel, yielded FlaSh variants with improved folding and
distinct spectra, kinetics, and voltage dependence [161]. Use of a reversibly non-conducting form of
the rat µI skeletal muscle voltage-gated sodium channel led to SPARC, which sports a faster response
kinetics [131]. Tandem fusion of CFP-YFP to the C-terminal of S4 of a KV potassium channel produced
a FRET-type GEVI, VSFP1 [132]. Yet, none of these first generation GEVIs gained widespread utility,
predominately due to their poor mammalian expression and membrane trafficking [162].

This membrane-targeting problem [163] was largely solved in the second generation GEVIs by
using the VSD from the voltage-sensitive phosphatase of the sea squirt, Ciona intestinalis (CiVSD) [164].
CiVSD has both sequence and functional homology to the VSD of Kv channels, and it exhibits very
fast gating currents (~1 ms) in mammalian cells; but unlike the multimeric Kv channels, it can exist
as an exclusive monomer [134]. It was postulated that deployment of CiVSD in these GEVIs reduced
co-assemble with native channel subunits, and thus increased membrane localization capability and
response kinetics [165,166]. The first of such CiVSD-based GEVIs is VSFP2.1, which preserves the overall
FRET configuration of VSFP1 but displays clear membrane localization and response to physiological
neuronal membrane signals in PC12 cells [133]. And much like FRET-based GECIs, the modular design
of VSFP2.1 (CiVSD-mCerulean-mCitrine) provided room for further improvements. For example,
truncation of the five-amino-acids linker between CiVSD and mCerulean-mCitrine of VSFP2.1 resulted
in VSFP2.3 [134], which has larger response amplitude. Replacement of mCerulean-mCitrine with
alternative FRET pairs, such as mCitrine-mKate2 [167], mUKG-mKOκ [141], Clover-mRuby2 [137] led
to VSFP2.42 [135], Mermaid [141], and VSFP-CR [137], respectively. Meanwhile, Knöpfel’s laboratory
also pioneered the design of VSFP-butterfly [139] which have their FRET pairs inserted between the
CiVSD instead of normally being tandemly fused. In cultured neurons, VSFP-butterfly showed reliable
membrane targeting, high sensitivity to subthreshold electrical activity, fast kinetics for single-cell
synaptic responses, and a high SNR [139]. VSFP-butterfly derivatives, including VSFP-butterfly1.2
(Figure 3A) [139] and Mermaid2 [142], are also among the first GEVIs to be used in vivo. Despite this
progress, VSFP2s still suffered from slow repolarization kinetics. To address this issue, Mishina et al.
developed chimeric VSDs (Ci-VSP-Kv3.1 VSD chimeras) by transplanting homologous motifs from
the tetrameric voltage-activated potassium channel, Kv3.1, to the monomeric CiVSD [136]. Applying
these chimeric VSDs to VSFP2.3 and VSFP-Butterfly1.2 led to the CiVSD-Kv3.1 chimera (C5) [136],
and VSFP-butterfly CY(YR) [140] or Mermaid2 [142], respectively. Fortunately, these GEVIs maintained
the dynamic range of their parental constructs while having much faster repolarization kinetics (13.4
ms for CiVSD-Kv3.1 chimera (C5) compared to 91.6 ms for VSFP2.3) [136].
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is a FRET-based voltage sensor consists of mCtirine, CiVSD and mKate. Membrane depolarization 
induces a conformational change of CiVSD, which alters the FRET efficiency between the donor and 
acceptor; (B) ASAP1 is a single FP based voltage sensor made by inserting cpGFP in the S3–S4 linker 
of GgVSD. The conformational change of GgVSD can be transduced to cpGFP, leading to voltage 
dependent green fluorescence change; (C) ArcLight consists of Ci-VSD and super ecliptic pHluorin 
(A227D). Compared to other FP, this mutant FP has a higher sensitivity to the conformational 
change of CiVSD; (D) MacQ-mCitrine is a hybrid voltage reporter consisting a rhodopsin (MacQ) as 
FRET acceptor and a yellow fluorescent protein (mCitrine) as FRET donor. Membrane 
depolarization protonates the Schiff base of the bound retinal (orange star) cofactor in rhodopsin, 
shifting the cofactor absorption spectrum and enhancing FRET efficiency from mCitrine to the 
weakly fluorescent retinal cofactor.  

Several attempts to fuse a single FP directly to the C-terminus of CiVSD only yielded GEVIs 
[138] with small dynamic ranges (<3%) such as VSFP3.1 [134] and VSFP3.1_mOrange2 [138]). A rare 
and exceptional example is ArcLight (Figure 3C) [143], a GEVI with a surprisingly large dynamic 
response (18.1%) over a physiological voltage range (−70 mV to +30 mV). The large response 
amplitude of ArcLight and of its linker variants, such as ArcLight A242 and ArcLight Q239 (~35%) 
[143], are believed to have originated from an unintended point mutation A227D within the super 
ecliptic pHluorin [168], although the detailed mechanism is still insufficiently understood [169]. In 
cultured hippocampal neurons, ArcLight variants allow reliable detection of single APs and 
subthreshold electrical events [143]. More recently, Cao et al. demonstrated that ArcLight enables 
precise optical measurements of membrane potentials from intact neuronal circuits of whole 
Drosophila brain [170], presaging a bright future of in vivo optical electrophysiology with GEVIs. 
Combinational mutagenesis of CiVSD, or swapping of CiVSD with VSDs from other species in 
ArcLight, gave rise to GECIs with faster kinetics but attenuated response amplitudes, such as in 
Bongwoori [145] and chicken ArcLight [144], respectively. Direct evolution of key residues in the FP 
domain of ArcLight produced Marina, a GEVI that exhibits a ΔF/ΔV with a positive slope 
relationship [147].  

One shared caveat to the abovementioned GEVIs is their relatively slow response kinetics 
(typically > 10 ms) when considering the time-scale of action potentials (~1 ms [171]), thereby 
compromising the ability of these GEVIs to effectively detect subthreshold potentials and rapid 
trains of APs. To address this issue, the Lin group recently developed a fast and highly responsive 
probe (2 ms on-off kinetics, 18–29% ΔF/F), ASAP1 (Figure 3B) [148], whereby they inserted a cpGFP 

Figure 3. Schematic representation of genetically encoded voltage indicators. (A) VSFP-butterfly1.2
is a FRET-based voltage sensor consists of mCtirine, CiVSD and mKate. Membrane depolarization
induces a conformational change of CiVSD, which alters the FRET efficiency between the donor and
acceptor; (B) ASAP1 is a single FP based voltage sensor made by inserting cpGFP in the S3–S4 linker
of GgVSD. The conformational change of GgVSD can be transduced to cpGFP, leading to voltage
dependent green fluorescence change; (C) ArcLight consists of Ci-VSD and super ecliptic pHluorin
(A227D). Compared to other FP, this mutant FP has a higher sensitivity to the conformational change of
CiVSD; (D) MacQ-mCitrine is a hybrid voltage reporter consisting a rhodopsin (MacQ) as FRET acceptor
and a yellow fluorescent protein (mCitrine) as FRET donor. Membrane depolarization protonates the
Schiff base of the bound retinal (orange star) cofactor in rhodopsin, shifting the cofactor absorption
spectrum and enhancing FRET efficiency from mCitrine to the weakly fluorescent retinal cofactor.

Several attempts to fuse a single FP directly to the C-terminus of CiVSD only yielded GEVIs [138]
with small dynamic ranges (<3%) such as VSFP3.1 [134] and VSFP3.1_mOrange2 [138]). A rare and
exceptional example is ArcLight (Figure 3C) [143], a GEVI with a surprisingly large dynamic response
(18.1%) over a physiological voltage range (−70 mV to +30 mV). The large response amplitude
of ArcLight and of its linker variants, such as ArcLight A242 and ArcLight Q239 (~35%) [143],
are believed to have originated from an unintended point mutation A227D within the super ecliptic
pHluorin [168], although the detailed mechanism is still insufficiently understood [169]. In cultured
hippocampal neurons, ArcLight variants allow reliable detection of single APs and subthreshold
electrical events [143]. More recently, Cao et al. demonstrated that ArcLight enables precise optical
measurements of membrane potentials from intact neuronal circuits of whole Drosophila brain [170],
presaging a bright future of in vivo optical electrophysiology with GEVIs. Combinational mutagenesis
of CiVSD, or swapping of CiVSD with VSDs from other species in ArcLight, gave rise to GECIs
with faster kinetics but attenuated response amplitudes, such as in Bongwoori [145] and chicken
ArcLight [144], respectively. Direct evolution of key residues in the FP domain of ArcLight produced
Marina, a GEVI that exhibits a ∆F/∆V with a positive slope relationship [147].

One shared caveat to the abovementioned GEVIs is their relatively slow response kinetics
(typically > 10 ms) when considering the time-scale of action potentials (~1 ms [171]), thereby
compromising the ability of these GEVIs to effectively detect subthreshold potentials and rapid
trains of APs. To address this issue, the Lin group recently developed a fast and highly responsive
probe (2 ms on-off kinetics, 18–29% ∆F/F), ASAP1 (Figure 3B) [148], whereby they inserted a cpGFP
into the S3–S4 loop of chicken VSD (GgVSD). Efficient transduction of VSD conformational changes to
the chromophore environment of cpGFP is thought to be responsible for the accelerated kinetics, as was
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also similarly observed in VSD-cpGFP tandem fusion constructs [172,173]. Owing to its fast kinetics
and large dynamic range, ASAP1 faithfully detected single APs and subthreshold potential changes at
kHz frame rates [148]. Recently, improved variants of ASAP1 with higher sensitivity and more rapid
kinetics including ASAP2s [149] and ASAP2f [150] has been developed and applied with two-photon
imaging, revealing unique insights into neural processing in subcellular domains and neuronal tissues.
Using a similar strategy, Abdelfattah and co-workers developed a red shifted GEVI (FlicR1) that can
be used in conjunction with a blue-shifted channelrhodopsin for all-optical electrophysiology [146].

3.2. GEVIs Based on Microbial Rhodopsins

Another emerging class of GEVIs, whose development was pioneered by Cohen and coworkers,
leverages the use of microbial rhodopsins as both the voltage sensing and reporting element [174].
Rhodopsins are typical membrane-bound G-protein coupled receptors (GPCRs) that function as
channels, ion pumps, or light sensors [91,175]. Mechanistic studies of microbial- and bacterio-rhodopsins
identified retinal and a retinal-lysine Schiff-base linkage in the protein core as key components
in the photocycle that confers light sensitivity [175,176]. In 2011, Cohen and colleagues found
that changes in membrane potential could induce a detectable absorbance shift in the retinal
chromophore of green-absorbing proteorhodopsin [151], opening up the possibility of using rhodopsins
as voltage sensors and detectors. In their initial report, they used a proteorhodopsin mutant
(D97N) lacking its proton-pumping capability, designated PROPS, to detect electrical spiking in
Escherichia coli [151]. However, the probe failed to localize to the plasma membrane of mammalian
cells [152]. Fortunately, other rhodopsins, prominently Archaerhodopsin 3 (Arch), a light-driven
proton-pump from Halorubrum sodomense [117], do not suffer similar localization issues. In cultured
hippocampal neurons, Arch robustly detected single electrically evoked AP with an optical SNR >10
and shows a sub-millisecond response time [152]. A non-pumping mutant of Arch (Arch-D95N) can
significantly reduce the photocurrent generated by light irradiation and has a high degree of sensitivity
(50% greater than Arch) to resolve single APs, albeit with a slower response (30–36 ms) [152].

A serious drawback that soon became apparent with rhodoposin-based GEVIs was their
intrinsic low brightness (quantum yield of Arch is only 0.0009) [152]. Rational mutagenesis and
directed evolution methods targeting residues that modulate the Schiff base charge have identified
Arch mutants showing higher brightness and sensitivity, such as Arch-EEQ, Arch-EEN [153],
and Arch-7 [177], although these Arch mutants are still two to three orders of magnitude dimmer
than commonly used FP fluorophores (QY of EGFP is 0.6). Nevertheless, mechanistic insights into
the voltage-sensitive fluorescence of Arch and other rhodopsins [175,176,178], combined with novel
screening platforms [154], still hold much promise for the discovery of improved rhodopsin-based
GEVIs. The recent engineering of QuarsArs [154], which are Arch variants with improved brightness
(QuarsAr1 is 15-fold brighter than Arch), sensitivity (90% ∆F/F per 100 mV for QuarsAr2), and
kinetics (0.05 ms and 1.2 ms for QuarsAr1 and QuarsAr2, respectively), exemplifies such endeavors.
Interestingly, combined use of QuarsAr with a spectrally compatible optogenetic actuator, CheRiff, in a
coexpression vector enables all-optical electrophysiology (Optopatch) in mammalian neurons—totally
abolishing the need for conventional electrodes [154]. More recently, Flytzanis et al. engineered
two Arch variants with enhanced radiance (Archers) and demonstrated their use in probing voltage
dynamics in behaving C. elegans [156]. Notably, Archer1 has wavelength-specific dual functionality, as
a voltage sensor under red light and as an inhibitory actuator under green light [156]. The development
of Optopatch and Archer1 presages an exciting era of all-optical neurophysiology [154].

Alternative strategies to enhance the brightness of rhodopsin-derived GEVIs focused on FP-opsin
fusions, whereby voltage induced absorbance changes of the opsin quench the emission of its brighter
FP partner via electrochromic FRET (eFRET) [154]. As fluorescence change is usually detected in the FP
channel, much less laser intensity is needed. Although FP-opsin fusions generally have slower response
kinetics compared to standalone opsins, as observed in QuarsAr2-Citrine [154] and MacQ-mCitrine
(Figure 3D) [155], the combined benefits of high voltage sensitivity of opsins and high brightness of FPs
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still enable these GEVIs to reliably detect single APs and sub-threshold voltage dynamics [155], thereby
outperforming VSFPs, such as ArcLight. Furthermore, swapping FP spectral variants and optimizing
the intervening FP-opsin linker are promising strategies toward further enhancing the performance of
FP-opsin eFRET sensors [154]. Combined use of a fast response rhodopsin (Acetabularia acetabulum
rhodopsin, Ace) and a bright FP (mNeonGreen) gave rise to Ace-mNeon, an ultra-fast GEVI that enable
high-fidelity imaging of fast spike trains in live mice and flies [157].

4. Genetically Encoded Fluorescent Indicators of Synaptic Activity

Synaptic transmission is a signature event for neuronal information processing downstream
of neuronal firing as it plays essential roles in information processing and memory formation [179].
During this process, APs approaching the synaptic bouton prompt presynaptic vesicles to exocytose
and release neurotransmitters into the synaptic cleft, allowing neurons to communicate with each
other via electrochemical signaling [180]. The development of indicators for synaptic activity lags far
behind indicators for calcium and of membrane voltage [181]. Indicators of this class include those
purposed for detecting neurotransmitter concentrations (such as glutamate) and pH changes during
synaptic vesicle recycling (Table 3).

Table 3. A List of genetically encoded indicators for synaptic activity.

Indicators Type Sensing
Module

Reporting
Module

Dynamic
Range Selected Applications Ref.

FLIPE FRET GltI ECFP, Venus <5% Rat hippocampal neurons
and PC12 cells [182]

GluSnFR FRET GltI ECFP, Citrine 7.1% Hippocampal neurons [183]

SuperGluSnFR FRET GltI ECFP, Citrine 44% Hippocampal neurons [184]

iGluSnFR Single-FP GltI cpEGFP 450% Cultured neurons; retina,
worms, zebrafish and mice [185]

SynaptopHluorin Single-FP pHluorin VAMP2-
pHluorin 8–20% Hippocampal neurons;

RBL-2H3 cells [168]

sypHy Single-FP pHluorin synaptophysin-
pHluorin N.A. Hippocampal neurons [186]

vGpH Single-FP pHluorin vGlut1-pHluorin N.A. Hippocampal boutons [187]

VGLUT1-
mOrange2 Single-FP mOrange2 VGLUT1-

mOrange2 16% Hippocampal boutons [188]

sypHTomato Single-FP pHTomato Synaptophysin-
pHTomato 5–25% CA3-CA1

hippocampal neurons [189]

4.1. Genetically Encoded Glutamate Indicators

Glutamate is a major excitatory neurotransmitter in the brain [190]. Postsynaptic glutamate release
and extrasynaptic glutamate signaling (‘spillover’) give rise to many important neuronal processes,
including synaptic crosstalk, learning, and memory [191,192]. In 2005, Okumuto et al. reported
the first fluorescent indicator protein for glutamate (FLIPE) by bracketing the bacterial periplasmic
glutamate binding protein ybeJ (also known as “GltI”) [193] with CFP and Venus [182]. Glutamate
binding triggers a conformational change within GltI, leading to a detectable FRET efficiency change.
Tsien and colleagues later adopted a similar design and created a glutamate-sensing fluorescent
reporter (GluSnFR) [183]. Both indicators showed glutamate-dependent FRET ratio changes in vitro,
but their limited response amplitudes was insufficient for quantitation applications in neurons.
Linker and binding affinity optimizations of GluSnFR gave rise to an enhanced probe, Super GluSnFR
(44% ∆F/F), that was successfully used to quantitatively image synaptic glutamate spillover and
reuptake in cultured hippocampal neurons with centisecond temporal and dendritic spine-sized spatial
resolution [184]. In addition, an intensity-based, glutamate-sensing, fluorescent reporter (iGluSnFR)
derived from cpEGFP insertion into GltI, was engineered with SNR and kinetics appropriate for in vivo
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imaging (Figure 4A) [185]. With a large dynamic range (4.5 ∆F/F) and fast response kinetics, iGluSnFR
enables visualization of glutamate neurotransmission in intact neurological systems, including somata,
dendrites, and dendritic spines in mouse retina, worms, zebrafish, and mice [185].
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Figure 4. Schematic representation of genetically encoded indicators for synaptic activity.
(A) iGluSnFR is a genetically encoded single-FP-based glutamate indicator which contains a cpGFP
inserted into the bacterial periplasmic glutamate binding domain (GlutI). Glutamate binding induced
conformation change of Gltl results in deprotonation and fluorescence enhancement of cpGFP;
(B) sypHTomato is a genetically encoded fluorescent reporter for synaptic vesicle recycling. It consists
of a pH-sensitive red fluorescent protein (pHTomato) fused to the C-terminus of the vesicular protein
domain Synaptophysin that localizes the probe to vesicle membrane. During membrane fusion, FP is
switched from the low pH environment of vesicle to the neutral extracellular space, which leads to
pH-dependent fluorescence changes. Subsequent vesicle recycling events reset the pH cycle.

4.2. Genetically Encoded pH Indicators for Synaptic Vesicle Recycling

During the neurotransmitter-containing vesicles fusion to the presynaptic membrane upon
AP propagation, the lumen of the vesicle, which is normally maintained at an acidic pH ~5.6, is
exposed to the extracellular space (pH ~7.4). Subsequent vesicle recycling resets the acidity of the
vesicle pH [194,195]. Thus, tracking the vesicle pH changes associated with vesicle exocytosis and
recycling events represent a plausible way to report on synaptic transmission. pH-sensitive variants
of GFP are well suited to such applications. The first genetically encoded pH indicator tailored
for this application is SynaptopHluorin, in which a pH sensitive GFP (pHluorin) was fused to the
C-terminus of synaptobrevin/VAMP2 (vesicular associated membrane protein-2) [168]. The indicator
was successfully localized to the inner surface of synaptic vesicles and faithfully reported local
pH changes associated with transmissions at individual synaptic boutons. To explore the in vivo
application of synaptopHluorin as a neurotransmitter indicator, Ng et al. targeted the probe to all three
classes of neurons in the antennal lobe of Drosophila and performed functional imaging of olfactory
circuits in response to natural odors [196]; Bozza et al. expressed the probe in mice mature olfactory
sensory neurons, allowing them to monitor odorant-evoked activation of the sensory neurons in
glomeruli of the olfactory bulb, and to reveal the spatial patterns of odorant-activated glomeruli [197].
Alternative targeting domains, such as synaptophysin [186] and vesicular glutamate transporter
(vGlt1) [187], were used to better target pHluorin to the synaptic vesicle. Red-shifted variants of
synaptopHluorin, including VGLUT1-mOrange2 [188] and sypHTomato (Figure 4B) [189], were also
developed by switching pHluorin to pH-sensitive, red-shifted FP mutants. These color variants are
spectrally compatible with GCaMP and permit concurrent measurements of calcium dynamics and
synaptic vesicle recycling [188,189].
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5. Future Perspectives

As with electrophysiology, genetically encoded fluorescent probes offer a powerful approach
to interrogate neuronal activities. While a plethora of fluorescent probes have been successfully
developed and deployed to analyze neuronal-specific parameters, such as calcium, membrane
voltage, neurotransmitter, and synaptic vesicle recycling, the currently available sensor toolbox,
experimental methodologies, and optical modalities fall short of achieving the ultimate goal of
proficiently investigating systems neuroscience, i.e., understanding how populations of nerve and glial
cells form circuits underlying behaviors in awaken animals. The progress made in the past two decades
with fluorescent probe development provides a strong foundation for future innovations aiming to
realize the full potential of these optical probes for which research opportunities and challenges coexist
and await further exploration.

First of all, the toolbox of genetically encoded fluorescent probes need to be further expanded to
supplement currently widely used calcium and voltage indicators. Neuronal firing involves a cascade
of signaling activities from which rich information are encoded and transmitted. While calcium and
voltage play pivotal role in this process, other species, such as neurotransmitters, neuropeptides,
and neuromodulators are also of paramount importance, but for which very few probes are
available. In particular, indicators for many neurotransmitters, such as glutamate, γ-aminobutyric acid
(GABA), histamine, serotonin, zinc ion [198] and dopamine remain attractive but hard-to-make [199].
Since voltage, calcium, and neurotransmitter changes represent functionally relevant, yet nonlinear,
aspects of synaptic transmission [200], reporters for each class are of distinct value to study neuronal
circuits. The development and in vivo application of the glutamate indicator iGluSnFR [185] have
already showcased its indisputable potential in this area. In addition to creating new indicators for
distinct species, further optimization of existing indicators will facilitate the recording of neuronal
actives with higher SNRs and higher fidelity over the spatiotemporal scales most relevant to
neurophysiological conditions. Importantly, both single-FP and FRET-based indicators have their own
merits and limitations, and thus, should be selected with caution for specific applications. Single-FP
based intensiometric biosensors typically have larger SNR than FRET-based biosensors, but are often
sensitive to probe concentration and pH changes; ratiometric probes often suffer from high background
signals due to the intrinsic inefficiency of the FRET process. Moreover, turn-off responses are less
favorable than turn-on responses as photobleaching may complicate data interpretation. Furthermore,
exploration of new sensing mechanisms such as FPX may provide ample opportunities for further
innovation. In addition, indicators with red-shifted spectra (ideally near-infrared) are desirable for
in vivo applications because they can potentially alleviate the light scattering and tissue penetration
issues [201] encountered by commonly used green fluorescence indicators. Conceivably, red-shifted
indicators can be used simultaneously with the reiteratively optimized GCaMP calcium indicators
or blue light-activated channelrhodopsins [202,203] to record and manipulate neuronal signals in
multiplexing imaging experiments, as these indicators are spectrally orthogonal to each other. Parallel
to the development of new indicators, the very nature of these fast and interconnected neuronal
activities naturally calls for continuous optimizations of the brightness, photostability, response
kinetics, and dynamic ranges of existing indicators, some of which have already found proof-of-concept
demonstrations in vivo. In particular, the dynamic range and SNR of current GEVIs are far from
optimal and necessitate major engineering efforts before their wide spread adoption.

The continuing advancement in the bioluminescence technology is also sparking a revolution
in the development of bioluminescent sensors for brain imaging. On the one hand, caged luciferins
are powerful tools to detect small and low abundant species such as ATP [204], copper-(I) [205],
nitric oxide [206], and highly reactive oxygen species (hROS) [207]. In response to specific analytes,
these caged luciferins were converted to better substrates for luciferases, resulting in enhanced
bioluminescence signals. On the other hand, by swapping the donor FPs in existing FRET-based
biosensors with luciferases, new chemiluminescent BRET biosensors were developed. In particular,
the replacement of CFP in FRET sensors with NanoLuc resulted in BRET sensors with good sensitivity
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and response magnitude. For example, BTeam [208] modified from ATeam, LOTUS-V [209] modified
from Mermaid2, and BLZinCh [210] modified from eZinCh-2 are NanoLuc-based BRET biosensors for
ATP, membrane voltage, and Zn2+, respectively. We expect that the recently developed teLuc-cyOFP1
BRET pair may be utilized to further enhance these BRET-based biosensors [96]. As most FRET-based
biosensors are modular, this approach could in principle be applicable to the development of BRET
biosensors for various biomolecules or functions. Moreover, one may directly insert sensory domains
into luciferases, such as NanoLuc and teLuc, to derive intensiometric, bioluminescent biosensors.
Together, these efforts will create a versatile optical toolbox for deciphering the logics of neural activity
in live, non-sedated animals.

Of similar importance to probe development is the advancement in optical instrumentation
and imaging data processing. Recent progresses in multiphoton imaging [211–213], digital light
sheet microscopy [214], aberration-corrected multifocus microscopy [215], and spatial light modulator
microscopy [216] hold much potential for evolutionary modalities for brain imaging [217]. Accordingly,
imaging acquisition and data processing methods [8,22] need to be updated to accommodate larger
and faster scales of information extraction from experiments.

Finally, optimization of the transduction methods to deliver these probes to specific cell or tissue
types will be crucial to achieve spatial resolution in brain regions of interest. These include careful
choice of promoters and vectors in viral packaging, and on-demand optimization of other transgenic
techniques, such as in utero electroporation and stable transgenesis. Novel genome editing techniques,
such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 [218] may also play
pivotal roles in standardizing and streamlining the generation of transgenic rodent lines expressing
various probes.
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