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Abstract: Honey-rich composition in biologically active compounds makes honey a food products
highly appreciated due to the nutritional and healthy properties. Food-manufacturing is very
prone to different types of adulterations and fraudulent labelling making it urgent to establish
accurate, fast and cost-effective analytical techniques for honey assessment. In addition to the
classical techniques (e.g., physicochemical analysis, microscopy, chromatography, immunoassay,
DNA metabarcoding, spectroscopy), electrochemical based-sensor devices have arisen as reliable
and green techniques for food analysis including honey evaluation, allowing in-situ and
on-line assessment, being a user-friendly procedure not requiring high technical expertise.
In this work, the use of electronic tongues, also known as taste sensor devices, for honey
authenticity and assessment is reviewed. Also, the versatility of electronic tongues to qualitative
(e.g., botanical and/or geographical origin assessment as well as detection of adulteration) and
quantitative (e.g., assessment of adulterants levels, determination of flavonoids levels or antibiotics
and insecticides residues, flavonoids) honey analysis is shown. The review is mainly focused on
the research outputs reported during the last decade aiming to demonstrate the potentialities of
potentiometric and voltammetric multi-sensor devices, pointing out their main advantages and
present and future challenges for becoming a practical quality analytical tool at industrial and
commercial levels.

Keywords: electronic tongue; potentiometry; voltammetry; lab-made devices; chemometrics;
honey analysis; botanical origin assessment; geographical origin evaluation; adulteration evaluation;
contaminants detection

1. Introduction

Honey is a natural sweet substance consisting of floral extracts and bee secretions, derived from
pollen and nectar and produced by several species of bees [1]. Both polyfloral and monofloral honeys
can be found, although the latter is usually preferred by consumers due to their rarity, unique flavors
and medicinal properties, being in some cases very expensive [2]. Indeed, several biological properties
and therapeutic effects of honey consumption are known [3,4]. Thus, considering the physicochemical
and medicinal known properties, their potential use by the pharmaceutical and cosmetic industries
has significantly increased. Honey has been used to prevent, and treat patients with, oral mucositis
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resulting from radio/chemotherapy [5,6], to reduce esophagitis induced by chemoradiation therapy
during the treatment of lung cancer [7], to treat skin ulcer [8,9] and to treat acute irritating cough [10].
Also, due to the recognized antibacterial activity of honey [11–14] its potential application in wound
healing and tissue engineering has been studied [15,16], as for example for the treatment of burns
and skin disorders [12,17]. Indeed, over the centuries, honey has been an essential ingredient in
traditional medicines around the world [1]. On the other hand, the possibility of using honey as
a natural sucrose-alternative sweetener in the food industry has been evaluated [18]. Thus, to fulfill
the worldwide honey demand and considering the decline of the bee-keeping industry in many parts of
the world [1], honey commercialization is prone to several fraudulent practices including adulteration
or commercializing of mislabeled low quality honey as higher price honeys.

Several analytical techniques, some of them coupled with traditional melissopalynology analysis,
together with chemometric tools have been developed and implemented for honey analysis, namely for:

(i) Verifying honey authenticity, through the identification of botanical, entomological and/or
geographical origin [2,19–33].

(ii) Evaluating honey physicochemical parameters as well as antioxidant and antimicrobial activities
and therapeutic properties [4,11,13–15,22,23,25,28,34–53].

(iii) Detecting insecticides, pesticides, veterinary drug or multi-class antibiotic residues in
honey [54–57].

(iv) Detecting honey adulterations [24,30,58–64].

Researchers usually aim to develop highly sensitive and accurate techniques such as
chromatographic methods (e.g., thin-layer chromatography; gas chromatography; high-performance
liquid chromatography coupled to electrochemical detection, anion-exchange or tandem mass
spectrometry; immunochromatography) and spectroscopy/spectrometry techniques (e.g., front phase
fluorometric spectroscopy, near- or mid-infrared spectroscopy, nuclear magnetic resonance
spectroscopy, Raman spectroscopy, quadrupole time-of-flight mass spectrometry, inductively coupled
plasma atomic emission spectroscopy also referred as inductively coupled plasma optical emission
spectrometry), as recently reviewed [30,64,65]. Other less common techniques have also been used
for honey analysis, namely, DNA metabarcoding [2,65] or hyperspectral imaging analysis [60].
However, the majority of the analytical techniques reported for honey analysis (e.g., physicochemical
characterization, biological and therapeutic activities evaluation) or, the detection of adulterations
(e.g., dilution of high-value honey with water, the addition of high-sugar corn syrups or sugar-based
adulterants, as well as the filtration of low-value honey to remove its source pollen and spiked with
pollen from the ‘desired’ high-value honey), are usually time-consuming, destructive and expensive
techniques, hardly applied in-situ and on-line, being far away from the economic possibilities and
technical skills available at the majority of the small and medium bee-keeping industries.

The acknowledgement of this fact has recently attracted attention of the scientific research
community, which are developing, building and testing fast, low-cost and user-friendly techniques such
as electrochemical sensor devices for honey analysis, which require minimum sample pre-treatment
steps and that may be miniaturized allowing their practical in-situ application. Thus, in the last
decade electronic noses (E-noses) and electronic tongues (E-tongues) have been proposed for the
classification of honeys according to botanical or geographical origins as well as to detect possible honey
adulterations or the presence of atypical chemical compounds that have been intentionally incorporated
in honey or derive from bee-keeping practices such as the use of non-legal antibiotics to treat different
bees’ diseases. The fast progress in key fields, which include artificial intelligence, digital electronic
sensors design, material sciences, microcircuit design, software innovations, and electronic systems
integration, has stimulated the development of electronic sensor technologies applicable to many
diverse areas of human activity [66]. E-tongues are electrochemical-based analytical devices comprising
single or multi non-specific cross-sensitivity, non-specific and poorly selective sensor arrays coupled
to chemometric tools, aiming the establishment of predictive multivariate statistical models that can
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relate the sensors signals to their analytical meaning [67–70]. Qualitative and quantitative multivariate
models are developed based on the meaningful chemical fingerprint contained in the recorded
electrochemical complex data profiles, which are identified after the removal of redundant data through
the application of different variable selection statistical techniques (e.g., heuristic or meta-heuristic
algorithms). Also, the E-tongue sensors allow the simultaneous determination of several species,
with risks related to interferences, drifts and/or non-linearity, minimized or overcome by the use of
advanced chemometric tools [71,72]. In some situations, the sensors with different measuring principles
(e.g., potentiometry, voltammetry among others) have been applied, requiring the use of sensor data
fusion techniques, taking advantage of their specific analytical characteristics, and thus, improving the
dataset quality and permitting to develop more robust prediction or decision models [68].

The present work intends to summarize the work published during the last decade regarding
the use of E-tongue devices for honey assessment. In fact, the versatility of E-tongues and their broad
range of applicability for food analysis have been clearly described in the literature. A number
of books, book chapters and review papers have been devoted to this important issue [73–78].
Also, their potential use for biomedical applications has been recently reviewed [79]. Thus, in this
review a detailed survey and discussion is carried out focusing the problematic and challenge of
applying E-tongues for honey evaluation; a food product highly appreciated by consumers due to the
physicochemical, nutritional, biological and therapeutic known properties. First, a brief overview of the
most common electrochemical techniques is made, aiming to introduce the less known reader to some
theoretical basic knowledge concerning electrochemical principles, allowing a better understanding
of the E-tongue potentialities as a practical tool within the food analysis field. Since the application
of multi-sensor devices results in large datasets, the most used chemometric tools for extracting the
valuable information contained in the electrochemical profiles recorded are briefly referred together
with the usefulness of applying variable selection algorithms to avoid the use of redundant variables,
minimizing the risk of overfitting and consequent overoptimistic estimation results and poor predictive
performances. Also, model validation issues are addressed. Later, works reporting the use of E-tongues
for honey analysis are introduced and discussed, identifying possible drawbacks and advantages,
aiming to demonstrate the usefulness of these sensor-based approaches. Finally, future trends,
perspectives and challenges are briefly discussed.

2. Electrochemical Sensor Devices for Honey Evaluation: Overview and Usual Chemometric Tools

In the literature, several research works reported the development and application of E-tongues
based on different electrochemical techniques (e.g., potentiometry, voltammetry, impedance, etc.)
as well as hybrid E-tongues, which are systems that merge different techniques by applying data
fusion approaches with different abstraction levels (i.e., the way how data originated from several
analytical techniques or different sources, can be merged, and form a consistent concatenated single
data matrix). In which concerns honey analysis, both potentiometric and voltammetric E-tongues have
been proposed and applied for both qualitative and quantitative analysis and will be the focus of the
present review. At this point, it would be helpful to contextualize the E-tongue meaning. As pointed out
by Kirsanov and co-workers [80], the nowadays widely used E-tongue terminology was introduced in
the late 90’s as an alternative to the more limited “taste sensor” term. In a broader sense, E-tongues are
systems composed of one or more arrays of chemical sensors, namely electrochemical, coupled with
appropriate multivariate data processing techniques. The basic concepts and principles regarding the
two most common electrochemical techniques associated (i.e., potentiometry and voltammetry) to the
E-tongues have been recently addressed in detail [79,81].

Similar to other analytical techniques that generate a huge amount of data per sample
analysis (e.g., spectroscopy-based techniques), the full application of E-tongues-based strategies
requires multivariate data analysis for pattern recognition, classification and quantification purposes.
A potentiometric E-tongue comprising multi-sensors (i.e., N sensors) may generate for each sample
(M samples) one potentiometric signal per sensor and sensor array (K arrays), resulting in a final
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matrix of (M × KN) data. In Figure 1 a scheme is represented aiming to illustrate, as an example,
the complexity of the potentiometric data matrix that can be generated by using and E-tongue device
with multi-sensors.Chemosensors 2018, 6, x  4 of 25 
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Figure 1. Database of signal profiles generated by a potentiometric E-tongue device comprising K
sensor arrays each with N sensors, during the analysis of M samples.

For voltammetric E-tongues, a vector with K voltammetric measures per working electrode may
be obtained either for cyclic or square-wave voltammetry. Figure 2 aims to exemplify the possible
complexity when using a multi-working electrodes (multi-WEs) voltammetric E-tongue and the need
of using variable selection algorithms to extract the most valuable information of the data gathered by
the electrochemical device.

For both approaches, taking into account the magnitude and the complexity of the data matrices
generated, the use of feature extraction strategies is required. Among them, heuristic or meta-heuristic
variable selection algorithms are usually applied, aiming to reduce the number of variables that will be
included in the final regression/predictive qualitative or quantitative statistical models and therefore,
noise effects or overcoming issues.

Thus, usually E-tongue systems are combined with linear and non-linear qualitative and
quantitative chemometric techniques, which allow verifying the capability and versatility of these
electrochemical devices. Among linear pattern recognition approaches, the most common are the
Principal Component Analysis (PCA), the K-Nearest Neighbor (KNN) and Linear Discriminant
Analysis (LDA). For quantitative assessment, Multiple Linear Regression (MLR), Principal Component
Regression (PCR) and Partial Least-Squares (PLS) models are often used. On the other hand, concerning
qualitative and/or quantitative non-linear strategies, Artificial Neural Networks (ANNs) are the most
applied, which include Probabilistic Neural Networks (PNNs) with Radial Basis Functions (RBF) or
Feed-Forward Networks with Backpropagation (BP) learning method, Fuzzy Adaptive Resonance
Theory Multidimensional Maps (ARTMAP) Neural Networks or Support Vector Machines (SVMs) are
quite applied [68].
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For supervised statistical classification techniques as well as for multivariate regression models,
feature extraction is a key stage, allowing selecting the best set of input variables that will enable
to achieve correct a posteriori classification of the data in their a priori groups or the quantitative
prediction of a parameter of interest. Feature extraction tools allow identifying the meaningful variables
from a set of complex data, avoiding redundancies and overcoming collinearity issues, enabling the
establishment of robust mathematical models with good generalization capabilities. Among these tools,
heuristic (e.g., forward, backward and stepwise techniques) and meta-heuristic (e.g., genetic algorithms,
simulated annealing, etc.) variable selection algorithms are commonly applied. Moreover, to verify
the predictive performance of the multivariate statistical models, in general, cross-validation variants
(e.g., leave-one-out, repeated K-folds, among others) are usually used. When the dataset size allows,
data split techniques (e.g., random, Kennard–Stones algorithm, etc.) are also implemented allowing
establishing independent training and testing data subsets, being the latter used to evaluate the real
predictive performance of the multivariate qualitative and/or quantitative models established using
the former dataset.
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3. Electrochemical Sensor Devices for Honey Assessment

The broad range of applicability of E-tongue devices for food analysis has been recently reviewed
by different authors [66,71,73–78,82–86]. At this point, a deeper overview is envisaged regarding
the potential use of E-tongues for honey assessment, namely potentiometric and/or voltammetric
based strategies.

3.1. Potentiometric Electronic Tongues

In the last decade several E-tongue potentiometric approaches have been described for honey
evaluation, either based on E-tongue commercial devices (Table 1) or on home-made E-tongue
multi-sensor arrays (Table 2).
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Table 1. Honey evaluation using commercial potentiometric E-tongue based devices.

E-Tongue Sensors Type of Application Chemometric Approach and Performance Ref.

α-AstreeTM:
ChemFET sensor technology with 7 cross-selective liquid
sensors(sensitive to ionic, neutral and chemical compounds
responsible for taste) coupled with an Ag/AgCl reference electrode

Honey classification according to floral origin
(Acacia, Astragali, Data, Coptis, Vitex, Motherwort, Radix
Changll and Buckwheat)

- PCA
- DFA
- BP-ANN (correct honey classification of 98.43% according to the
floral origin)

[87]

α-AstreeTM:
ChemFET sensor technology with 7 cross-selective liquid
sensors(sensitive to ionic, neutral and chemical compounds
responsible for taste) coupled with an Ag/AgCl reference electrode

Honey classification according to floral origin
(Acacia, Astragali, Data, Coptis, Vitex, Motherwort,
Radix Changll and Buckwheat)
Honey classification according to geographical origin

- PCA
- CA (correct honey classification: 90% according to the floral origin
and 92% according to geographical origin)
- ANN (correct honey classification: 93.75% according to the floral
origin and 95% according to geographical origin, for test group)

[88]

Chalcogenide-based device:
Ion-selective sensors (iron, cadmium, copper, mercury, titanium,
sulfur and chromium ions) plus a Ag/AgCl reference electrode

Monofloral honey classification
Identification of honey adulteration

- PCA
- LDA (correct classification rate of 96.7%, for LOO-CV)
- PNN (90.74% of corrected classifications for test group)

[89]

Chalcogenide-based device (commercial device):
Ion-selective sensors (iron, cadmium, copper, mercury, titanium,
sulfur and chromium ions) plus a Ag/AgCl reference electrode

Honeys classification (different floral origins,
including leaf, durian, maluka, coconut, starfruit, wax
apple and tualang; or, of tualang honey from
different producers)

LDA with feature extraction or selection methods:
LDA plus backward selection: 86.54% of correct classification using
signals from 3 sensors
LDA plus forward selection: 94.23% of correct classification using
signals from 2 sensors
LDA plus PCA: 57.70% of correct classification using data from 4
principal components

[90]

α-AstreeTM:
ChemFET sensor technology with 7 potentiometric chemical sensors
based on chemically modified field effect transistor technology, with
sensors coated with materials sensitive to the basic tastes, coupled
with an Ag/AgCl reference electrode

Classification of honey samples according to their
botanical (Acacia, Data, Motherwort and Buckwheat) and
geographic (4 regions) origins

Pattern recognition techniques with feature extraction (12 variable
features),
- PCA and DFA: honey samples correctly grouped in 2-D principal
components according to the floral origin or geographical origin
Quantitative analysis:
- PCR, PLSR and LS-SVM models (floral and geographical origins
were coded, varying from 1 to 4): prediction R2 equal to 0.7360,
0.9021 and 0.9447, respectively

[91]

α-AstreeTM:
ChemFET sensor technology with 7 cross-selective liquid
sensors(sensitive to ionic, neutral and chemical compounds
responsible for taste) coupled with an Ag/AgCl reference electrode

Honey classification according to botanical origin
(acacia, chestnut and honeydew)
Honey analysis (physicochemical properties: electrical
conductivity, acidity, water content, invert and total
sugar contents)

Pattern recognition techniques:
- PCA
- CCA
- ANN (downsizing of the model required to avoid overfitting:
100% of correct honey classification according to botanical origin,
for the test group)
Quantitative analysis:
- ANN (models established for physicochemical parameters: 0.982
≤ R-value ≤ 0.999, for the test group)

[92]
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Table 1. Cont.

E-Tongue Sensors Type of Application Chemometric Approach and Performance Ref.

α-AstreeTM:
ChemFET sensor technology with 7 cross-selective liquid
sensors(sensitive to ionic, neutral and chemical compounds
responsible for taste) coupled with an Ag/AgCl reference electrode

Honey botanical origin classification (acacia, jujube and
vitex varieties from different geographical origins)
Identification of raw honey adulteration
(honey adulterated with different percentages of corn or
rice syrups)

Sensor data pretreatment: SNV, autoscale, smoothing
and derivatives
PCA
PLSDA classification models:
- botanical origin: 91.53% of correct classification for test group
- adulteration identification: 100% of correct classification for
test group
SVMDA classification models:
- botanical origin: 100% of correct classification for test group

[93]

α-AstreeTM:
ChemFET sensor technology with 7 cross-selective liquid
sensors(sensitive to ionic, neutral and chemical compounds
responsible for taste) coupled with an Ag/AgCl reference electrode

Classification of different Sicilian honey varieties:
chestnut, eucalyptus, sulla and orange blossom from
7 different provenances

PCA:
- effective discrimination of the different honeys according to their
botanical origin using the potentiometric data
DFA:
- overall 70.8% of correct classifications for cross-validation

[94]

ANN: artificial neural networks; BP-ANN: back propagation artificial neural networks; CA: cluster analysis; CCA: canonical correlation analysis; DFA: discriminant function analysis;
KNN: k-nearest neighbor; LDA: linear discriminant analysis; LOO-CV: leave-one-out cross-validation procedure; LS-SVM: least squares-support vector machines models; PCA: principal
component analysis; PLS: partial least squares models; PLSDA: partial least squares discriminant analysis models; PNN: probabilistic neural network; R-value: correlation coefficient;
R2: determination coefficient; SA: simulated annealing variable selection algorithm; SNV: standard normal variate; SVM: support vector machine; SVMDA models: support vector machine
discriminant analysis.

Table 2. Honey evaluation using lab-made potentiometric E-tongue based devices.

E-Tongue Sensors Type of Application Chemometric Approach and Performance Ref.

All-solid-state sensors device:
20 polymeric membranes (additive + plasticizer +
PVC) applied on solid conducting silver-epoxy
supports plus a Ag/AgCl reference electrode

Honey classification according to floral origin (Erica, Echium
and Lavandula)

- PCA
- LDA coupled with heuristic variable selection algorithms (stepwise,
backward and forward) allowed 72% of correct classifications, for
LOO-CV procedure

[95]

Multi-electrode device (metallic electrodes):
Pure metals (Au, Ag and Cu) and metal compound
electrodes (Cu2O, Ag2O, AgCl, Ag2CO3 and Ag2SO4)
plus a Ag/AgCl reference electrode.

Honey classification according to floral origin (citrus, rosemary,
polyfloral and honeydew—forest origin)
Honey physical treatment (raw, liquefied and pasteurized honeys)

- PCA
- ANN (Fuzzy-ARTMAP network; correct honey classification: 83.3%
according to the floral origin and 58.3% according to physical treatment)

[96]
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Table 2. Cont.

E-Tongue Sensors Type of Application Chemometric Approach and Performance Ref.

Multi-electrode device:
Pure metals (e.g., gold, silver and copper) and
metallic compounds (e.g., AgO2, CuO2, AgCl and
Ag2CO3) plus a Ag/AgCl reference electrode.

Honey botanical origin classification (citrus, rosemary, polyfloral
and honeydew)
Honey physical treatment (raw, liquefied and pasteurized honeys)

Pattern recognition techniques:
- PCA
- Fuzzy-ARTMAP neural networks (correct classification rates, for
LOO-CV, of 94% and 42% for botanical origin and physical
treatment, respectively)
Quantitative analysis:
- PLS (satisfactory performance for mmPfund color scale, color coordinate
L* and diastase activity; R2 ≥ 0.926)

[97]

Multi-electrode device (metallic electrodes):
Pure metals (e.g., gold, silver and copper) and
metallic compounds (e.g., AgO2, CuO2, AgCl and
Ag2CO3) plus a Ag/AgCl reference electrode.

Honey floral origin classification (citrus, rosemary, polyfloral
and forest)
Honey physical treatment (raw, liquefied and pasteurized honeys)

Fuzzy ARTMAP neural networks
SFAM networks coupled or not to heuristic variable selection algorithms
(stepwise, backward and forward)
Better recognition performance for floral origin compared to
physical treatment
Maximum recognition rate of 75% for a test group

[98]

Multi-sensor arrays:
20 lipid membrane sensors and respective replicas
(combinations of different lipid additives and
plasticizers with PVC)

Honey classification according to color (white, amber and dark)
Honey classification according to botanical origin (Castanea sp.,
Echium sp., Erica sp., Lavandula sp., Prunus sp. and Rubus sp.)

LDA coupled with feature selection (meta-heuristic SA variable
selection algorithm):
- color classification: 91% of corrected classified honey samples for
LOO-CV
- floral origin classification: 100% of correctly classified samples for
LOO-CV after color split

[99]

Multi-sensor arrays:
20 lipid membrane sensors and respective replicas
(combinations of different lipid additives and
plasticizers with PVC)

Honey pollen profile assessment (i.e., quantification of pollen
percentage in honey samples): monofloral honey of Castanea sp.,
Echium sp., Erica sp., Eucalyptus sp., Lavandula sp., Prunus sp.,
Rubus sp. and Trifolium sp.; and polyfloral honeys

MLR models coupled with feature selection (meta-heuristic SA variable
selection algorithm):
- pollen percentage quantification: MLR-SA models with mean R2 values
(±SD) between 0.91 ± 0.15 and 0.996 ± 0.010, for repeated K-fold-CV, after
color split (keeping more than 10% of data for prediction purposes)

[100]

Sensor array:
Eight metallic electrodes including noble metals (gold,
platinum, iridium and rhodium) and non-noble
metals (copper, silver, nickel and cobalt)

Honey classification: orange blossom, rosemary, thyme, sunflower,
winter savory and honeydew honey.
Honey physicochemical evaluation: water activity, conductivity,
moisture, color and antioxidant activity.

Pattern recognition techniques:
- PCA
- Fuzzy ARTMAP artificial neural networks:
- 100% honey type classification success for the test group
Quantitative MLR models:
- Predicted R-value of 0.9666 and 0.8959 for antioxidant activity and
electrical conductivity, respectively

[101]

ANN: artificial neural networks; CA: cluster analysis; CCA: canonical correlation analysis; DFA: discriminant function analysis; Fuzzy-ARTMAP: fuzzy adaptive resonance theory
multidimensional maps; K-fold-CV: repeated K folds cross-validation procedure; LDA: linear discriminant analysis; LOO-CV: leave-one-out cross-validation procedure; MLR model:
multiple linear regression model; PCA: principal component analysis; PLS models: partial least squares models; R2: determination coefficient; R-value: correlation coefficient; SA: simulated
annealing variable selection algorithm; SD: standard deviation; SFAM: simplified fuzzy adaptive resonance theory map.
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The success of this emerging electronic sensor technology is mainly related to the ability of
merging different key fields like artificial intelligence, digital electronic sensors design, material sciences
and electronic systems integration [66], allowing to develop fast and cost-effective complementary
analytical devices which on-line and in-situ applications may be foreseen. Nevertheless, it should be
remarked that few E-tongue devices are being commercialized, being in general different home-made
solutions developed by each research team. The low number of commercial E-tongues may be partially
attributed to the significant time effort and resources spent during calibration and recalibration of a new
system as well as to the difficulty in establishing generalized models valid over various systems [102].
Indeed, commercial and home-made devices incorporate different chemical sensors, such as pure metals
and metallic compounds, ion-selective sensors, cross-selective liquid sensors or lipid membranes.

The potentiometric E-tongues, coupled with different chemometric tools (e.g., PCA, LDA, ANN, etc.),
have been mainly applied for qualitative honey analysis, namely as practical and successful tools for
honey classification according to color, botanical or geographical origins, as well as, for honey adulteration
identification [87–90,92–99,101]. Although in a few cases, some works also reported the satisfactory
quantitative performance of potentiometric E-tongue devices (using, MLR, PLS and ANN models) for
the determination of honey physicochemical levels or honey pollen profile assessment [92,97,100,101],
confirming the broad versatility and potential of potentiometric E-tongues for honey evaluation. Some of
these studies, also pointed out the advantages of using variable selection algorithms with multi-sensor
potentiometric E-tongues, which allow minimizing noise effects arising from the use redundant sensor
signal data [90,92,98–100].

3.2. Voltammetric Electronic Tongues

Similarly to the potentiometric E-tongues several voltammetric devices have been successfully
applied for qualitative and quantitative honey analysis, using self-assembled or lab-made (with modified
WEs with biofilms or nanoparticles) devices. These works usually reported the use of conventional
three-electrode systems (one single WE coupled with one reference electrode (RE) and one counter
electrode (CE)) or multi-WE devices (combined with one RE and one CE). In general, the WE include
noble metals (e.g., platinum, gold, palladium), non-noble metals (e.g., copper, glassy carbon, nickel)
and/or reactive noble metal (e.g., silver). Also, the RE is either a Ag/AgCl electrode (saturated with
KCl or NaCl) or a saturated calomel electrode (SCE). The CE, is usually a platinum wire or electrode.
From a qualitative (i.e., classification/discrimination) point of view, the majority of the literature works
addressed the possibility of classifying honey samples according to the botanical or geographical origins
as well as to identify honey adulterations or the adulteration level [81,91,103–113]. A substantial
number of works reported the satisfactory quantitative performance of voltammetric E-tongues used
to predict chemical and biochemical honey composition as well as the levels of adulterants and/or
contaminants [91,104,106,113–125]. As can be easily inferred from Table 3 (commercial devices) and Tables 4
and 5 (self-assembled lab-made conventional or multi-sensors devices), the use of voltammetric E-tongues
for honey analysis is a more recent practice (from 2011) compared to the potentiometric approaches
(from 2008) being largely used together with different multivariate statistical techniques (e.g., multiple linear
regression models (MLRM), PLS, ANN, among others) as successful quantitative analytical tools. Only one
work reported the use of a commercial conventional three-component device [114]. In contrast all the other
studies, reported, as previously stated, the development and/or use of lab-made devices comprising a single
WE [81,105–111,115–125] or more WEs [91,103,104,112,113], some of them modified incorporated porous
films or nanoparticles [99–101,115,117–125]. Within these applications, different voltammetric techniques
have been applied namely cyclic voltammetry (CV, the most common), square-wave voltammetry (SWV)
and square-wave cathodic stripping voltammetry (SWCSV), differential pulse voltammetry (DPV) and
multifrequency large amplitude pulse voltammetry (MLAPV) as well as linear sweep voltammetry (LSV).
Overall, all the above-mentioned works demonstrate the versatility and feasibility of applying voltammetric
E-tongues as alternative/complementary analytical tool for honey analysis, allowing in some cases in-situ
assays due to the potential portable nature of these electronic device [105].
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Table 3. Honey evaluation using commercial voltammetric E-tongue based device.

E-Tongue Sensors Technique Type of Application Chemometric Approach and Performance Ref.

CHI660D electrochemical analyzer:
- one WE (glassy carbon)
- one RE (saturated calomel electrode,
saturated with KCl solution)
- one CE (platinum wire)

CV Detection of honey adulteration with
rice syrups

Pattern recognition techniques with feature extraction
(12 variable features),
- PCA: pure and adulterated honey samples were completely
distinguished using the two first PCs
- PCA-LDA and LDA: recognition rates of 100% for both
calibration and prediction sets
Quantitative analysis,
- MLR model with 12 PCs: Rprediction = 0.898
- PCR model with 3 PCs Rprediction = 0.881
- PLS with 4 PCS: Rprediction = 0.898

[114]

CE: counter electrode; CV: cyclic voltammetry; LDA: linear discriminant analysis; MLR model: multiple linear regression model; PCA: principal component analysis; PCR: principal
components regression; PCs: principal components; PLS: partial least squares model; R2: determination coefficient; RE: reference electrode; R-value: correlation coefficient;
WE: working electrode.

Table 4. Honey analysis using self-assembled lab-made conventional three-electrodes voltammetric devices.

E-Tongue Sensors Technique Type of Application Chemometric Approach and Performance Ref.

- one WE: platinum electrode
- one RE: Ag/AgCl saturated KCl
- one CE: platinum electrode

CV Discrimination of monofloral honeys:
Eucalyptus, Til, Leechu and Khalisa PCA used as a pattern recognition classifier: successful recognition of floral origin [107]

- one WE: platinum electrode
- one RE: Ag/AgCl saturated KCl
- one CE: platinum electrode

CV

Identification of floral honey origin: Eucalyptus
(Eucalyptus globulus)
Til (Sesamum indicum)
Leechu (Litchi chinensis)
Khalisa (regional name)

- PCA (with relative scale2 method): Til and Eucalyptus honeys grouped into two
distinct clusters while honey samples from Kholisa and Leechi overlapped
- LDA (with autoscale method): 100% of corrected classified samples (original
grouped samples)
- BP-MLP neural network (with range scale method): 93.42% of correct
classifications for a validation dataset
- RBF neural network (with baseline subtraction method): 82.50% of correct
classifications for a validation dataset

[108]

- one WE: NiO/Nps modified carbon
paste electrode
- one RE: Ag/AgCl saturated KCl
- one CE: platinum wire

CV
Floral characterization of honey (Eucalyptus, Til,
Lecchi, Pumpkin, Mustard and polyfloral) with the
same geographical origin

PCA: honey samples correctly grouped according to the floral origin in 2-D
dimensional planes, being polyfloral honey samples, a mixture of eucalyptus and
mustard honeys, grouped closely to mustard and eucalyptus honey groups

[109]
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Table 4. Cont.

E-Tongue Sensors Technique Type of Application Chemometric Approach and Performance Ref.

- one WE: gold electrode
- one RE: saturated calomel electrode
- one CE: platinum electrode

DPV
LSV
CV

SWV

Detection of honey adulteration with sugar syrups
Quantification of adulteration percentage

Pattern recognition methods:
- PCA: allows distinguishing honey samples according to the adulteration
percentage (from 0% up to 70%)
- RBF: 83.33% of honey samples correctly classified according to adulteration level
(from 0% to 70%)
- FKNN: 88.89% of honey samples correctly classified according to adulteration level
(from 0% to 70%)
- Fuzzy ARTMAP: 94.40% of honey samples correctly classified according to
adulteration level (from 0% to 70%)
Quantitative analysis:
- PLS: honey adulteration percentage satisfactorily predicted (R-value = 0.8442)

[106]

Portable device with integrated
chemometrics tools:
- one WE: gold disk electrode
- one RE: Ag/AgCl electrode
- one CE: gold disk electrode

CV
Classification of honey samples according to their
botanical (quince, orange, and coffee) and geographic 3
regions) origins

PCA (four-components model based on 408 variables, with decomposed signals):
successfully applied to fingerprint honey samples according to their botanical and
geographic origins.

[105]

- one WE: silver electrode
- one RE: Ag/AgCl electrode
- one CE: platinum electrode

CV

Differentiation of monofloral honeys according to
botanical origin (Castanea sp., Echium sp., Rubus sp.,
Lavandula sp., Prunus sp., Erica sp., Trifolium sp.)
Monofloral honey differentiation according to color
scale

Qualitative approach:
- honey samples from the same color group, anodic peak currents and anodic areas
differ with floral origin of honeys
- similar oxidation potentials and overall voltammetric profiles observed for
Lavandula sp. honeys, regardless honey color
- anodic peak current and anodic curve area of Lavandula sp. honeys increase with
darkness increasing of Lavandula sp. honeys (mmPfund values versus anodic peak
current intensity, R = 0.9680)

[81]

- one WE: glassy carbon electrode disk
- one RE: KCl saturated calomel
electrode
- one CE: platinum foil

CV
SWV

Determination of antiseptic agents (eugenol, carvacrol
and thymol) in honey samples

Multivariate calibration tools developed based on SWV data, with baseline
correction and signal alignment:
- PLS: poor predictive capability (validation set: 0.19 ≤ R2 ≤ 0.76 with relative errors
of prediction greater than 30%)
- ANN (feed-forward network with Levenberg-Marquardt back propagation
training):
- validation set: 0.968 ≤ R2 ≤ 0.997 with relative errors of prediction of 5–7% and
limits of detection between 0.010 and 0.240 mg L−1

[116]

- one WE: modified platinum thin-film
microelectrode with
o-phenylenediamine
- one RE: platinum electrode
- one CE: platinum electrode

CV
SWV

Determination of antibiotics in honey:
chloramphenicol (CAP)

CAP dynamic range: from 0.9 to 10 nM (R = 0.992)
CAP detection limit: 0.39 nM
CAP recovery assays: from 89 to 107.3%

[117]
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Table 4. Cont.

E-Tongue Sensors Technique Type of Application Chemometric Approach and Performance Ref.

- one WE: modified glassy carbon
electrode using an isoreticular carbon
porous metal-organic framework
- one RE: saturated calomel electrode
- one CE: platinum wire

SWV Determination of antibiotics in honey:
chloramphenicol (CAP)

CAP dynamic range: from 10 nM to 1 µM (R2 ≥0.991)
CAP detection limit: 2.9 nM
CAP (0.1 to 1.5 µM) recovery assays: from 96 to 110%

[121]

- one WE: bare glassy carbon electrode
or modified electrode
(MIL-101(Cr)/XC-72/GCE sensor)
- one RE: saturated calomel electrode
- one CE: platinum wire

CV
DPV

Determination of antibiotics in honey:
chloramphenicol (CAP)

CAP dynamic range: from 10 nM to 20 µM (R = 0.985)
CAP detection limit: 1.5 nM
CAP (0.2 to 1.0 µM) recovery assays: from 95 to 101%

[118]

- one WE: functionalized carbon black
nanospheres hybrid with MoS2
nanocluster
- one RE: Ag/AgCl saturated KCl
- one CE: platinum wire

CV
DPV

Determination of antibiotics in honey:
chloramphenicol (CAP)

CAP dynamic range: from 0.015 to 1370 µM (R2 = 0.989)
CAP detection limit: 0.002 µM
CAP (25 and 50 µM) recovery assays: from 93.0 to 96.2%
CAP sensitivity: 3400 µAµM−1cm−2

[120]

- one WE: glassy carbon electrode
modified (or not) with ordered
mesoporous carbon@polydopamine
and β-cyclodextrin
- one RE: saturated calomel electrode
- one CE: platinum wire

CV
SWV

Determination of antibiotics in honey:
chloramphenicol (CAP)

CAP dynamic range: from 0.5 µM to 0.5 mM (R2 = 0.9992)
CAP detection limit: 0.2 µM
CAP recovery assays (5 to 50 µM): 80.0 to 93.0%.

[122]

- one WE: glassy carbon electrode
modified with electro-polymerized
poly(pyrrole-3-carboxy acid) and
electrochemically reduced graphene
oxide
- one RE: saturated calomel electrode
- one CE: platinum electrode

CV
DPV

Determination of antibiotics in honey: streptomycin
(STR)

STR dynamic range: 2 nM to 1 µM (R > 0.99)
STR detection limit: 0.5 nM
STR (25 nM to 1 µM) recovery assays: 96 to 104%

[123]

- one WE: antimony film coating a
glassy carbon electrode
- one RE: Ag/AgCl saturated NaCl
- one CE: platinum wire

CV
SWCSV

Determination of antibiotics (tetracyclines) in honey
samples

Quantitative analysis using a LR model based on SWCSV:
- linear range: 0.40–3.00 µM
- sensitivity: 1.46 µA µM−1

- detection limit: 0.15 µM
- recoveries: from 91.81% to 109.69%

[115]

- one WE: ZrO2NPs with modified
carbon paste electrode and paraffin oil
- one RE: Ag/AgCl saturated KCl
- one CE: platinum wire

CV
Floral characterization of honey with different floral
origins (Eucalyptus, Til, Pumpkin and Mustard) from
different apiaries of the same geographical region

PCA (data preprocessed: scaled): honey samples correctly grouped according to the
floral origin in 2-D dimensional planes [110]

- one WE: carbon paste electrode
modified with zinc oxide nanoparticles
- one RE: Ag/AgCl saturated KCL
- one CE: platinum wire

CV
Discrimination of the floral origin of honey:
Eucalyptus globulus, Cucurbita maxima, Litchi chinensis,
Brassica juncea, Sesamum indicum

Pattern recognition techniques:
- PCA: allowed the discrimination among the different floral types
- ANN (BP-MLP and RBF): classification model with more than 90% accuracy (86 to
97% of correct classification according to each honey floral type)

[111]
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Table 4. Cont.

E-Tongue Sensors Technique Type of Application Chemometric Approach and Performance Ref.

- one WE: carbon paste electrode
modified with magnetic Fe3O4@NiO
core/shell nanoparticles
- one RE: Ag/AgCl electrode
- one CE: platinum rod

CV
DPV

Determination of Quercetin (Q, flavonoid) and
Tryptophan (Trp, essential aminoacid) in honey
samples

Q dynamic range: 0.08–60 µM (R2 = 0.9845)
Trp dynamic range: 0.1–120 µM (R2 = 0.9893)
Q detection limit: 2.18 nM
Trp detection limit: 14.23 nM

[124]

- one WE: modified nanohybrid glassy
carbon electrode with highly porous
polypyrrole (MIP/MIL-101
(Cr)/MoS2/GCE sensor)
- one RE: saturated calomel electrode
- one CE: platinum foil

CV
DPV

Determination of Quercetin (Q, flavonoid) in honey
samples

Q dynamic range: 0.1 to 700 µM (R2 = 0.999)
Q detection limit: 0.06 µM in phosphate buffer solution (PBS, pH = 3.5)
Q recovery assays (1.1 to 1.5 µM): 97.3 to 101.3%

[119]

- one WE: glassy carbon electrode
modified with ß-cyclodextrin and
graphene oxide
- one RE: Ag/AgCl electrode
- one CE: platinum wire

CV
SWV

Determination of neonicotinoids (insecticides):
imidacloprid (IMP), clothianidin (CLT) and
thiamethoxam (TMX)

IMP dynamic range: 0 to 165 µM
CLT dynamic range: 7.5 to 80 µM
TMX dynamic range: 10 to 70 µM
IMP detection limit: 8.92 µM
CLT detection limit: 4.72 µM
TMX detection limit: 7.45 µM
Recovery assays (added 20 µM): 108.75, 107.75 and 116% for IMP, CLT and
TMX, respectively.

[125]

ANN: artificial neural networks; BP-MLP: back-propagation multi-layer perceptron algorithm; CE: counter electrode; CV: cyclic voltammetry; DPV: differential pulse voltammetry; FKNN:
fuzzy k-nearest neighbor algorithm; Fuzzy ARTMAP: Fuzzy adaptive resonance theory multidimensional map; LDA: linear discriminant analysis; LR: linear regression; LSV: linear sweep
voltammetry; Nps: nanoparticles; PCA: principal component analysis; PLS: partial least squares; R2: determination coefficient; RBF: radial basis function; RE: reference electrode; R-value:
correlation coefficient; SWCSV: square wave cathodic stripping voltammetry; SWV: square wave voltammetry; WE: working electrode.

Table 5. Honey analysis using self-assembled lab-made multi-working electrodes voltammetric E-tongues.

E-Tongue Sensors Technique Type of Application Chemometric Approach and Performance Ref.

- six WEs: gold, silver, platinum, palladium,
tungsten, and titanium
- one RE: Ag/AgCl saturated KCl
- one CE: platinum electrode

MLAPV
Classification of honey samples, from the same
geographical area, according to their botanical (Acacia,
Astragali, Buckwheat, Coptis, Data, Motherwort and Vitex)

Pattern recognition techniques with feature extraction:
- PCA, DFA and CA: the three methods based on the two databases have
similar discrimination performances and the difference between the two
databases has no effect to the separation ability

[112]

- six WEs: gold, silver, platinum, palladium,
tungsten and titanium
- one RE: Ag/AgCl saturated KCl
- one CE: platinum electrode

MLAPV
Classification of honey samples according to their
botanical (Acacia, Data, Motherwort and Buckwheat) and
geographic (4 regions) origins

Pattern recognition techniques with feature extraction (12 variable
features):
- PCA and DFA: honey samples correctly grouped in 2-D principal
components according to the floral origin or geographical origin
Quantitative analysis:
- PCR, PLSR and LS-SVM models (floral and geographical origins were
coded, varying from 1 to 4): prediction R2 equal to 0.8924, 0.9887 and
0.9985, respectively

[91]
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Table 5. Cont.

E-Tongue Sensors Technique Type of Application Chemometric Approach and Performance Ref.

- seven WEs: noble metals (platinum, gold,
palladium), non-noble metals (copper, glassy
carbon, nickel) and reactive noble metal (silver)
- one RE: Ag/AgCl electrode
- one CE: platinum electrode

CV

Classification of honeys according to geographical (9
countries) and botanical (Lime green, Thyme, Rosemary,
Natural blueberry, Saracen, Carob, Jujube, Mountain,
Eucalyptus, Spurge, Orange and Polyfloral) origins
Detection of honeys’ adulteration with sugar syrups

Pattern recognition techniques with feature extraction:
- PCA: allowed to correctly discriminate honeys according to
geographical or botanical origins, as well as to recognize all adulteration
levels.
- SVM: 100% success rate in the recognition of honeys of different
geographical origins as well as of different botanical origins, for LOO-CV,
as well as for the identification of adulterated honey
- HCA: no errors or misclassifications of honey samples according to
geographical or botanical origins as well as to distinguish between
different classes of adulterated honey

[103]

- seven WEs: noble metals (platinum, gold,
palladium), non-noble metals (copper, glassy
carbon, nickel) and reactive noble metal (silver)
- one RE: Ag/AgCl electrode
- one CE: platinum electrode

CV

Classification of polyfloral honeys according to
geographical origin (2 countries: Morocco and France)
and type
Quantitative prediction of biochemical and
physicochemical profiles of honey samples (protein
content, color intensity, phenols content, lactonic
acidity, free acidity, total acidity, HMF
(hydroxymethylfurfural) content, reducing sugars,
total sugar, sucrose content)

Pattern recognition techniques with feature extraction (3 variable
features):
- PCA: successful discrimination of honeys according to geographical or
botanical origins.
- SVM: 100% success rate in the recognition of honeys of different
geographical origins as well as of different botanical origins, for LOO-CV.
- HCA: no errors or misclassifications of honey samples according to
geographical or botanical origins.
Quantitative analysis:
- PLS:
0.821 ≤ R2 ≤ 0.998
0.015 ≤ NRMSE ≤ 0.184
2.306 ≤ RPD ≤ 7.658

[104]

- four WEs: iridium, rhodium, platinum, gold
- one RE: saturated calomel electrode
- one CE: stainless steel circular piece

PV

Detection of honey adulteration with sugar syrups:
monofloral honeys (heather, orange blossom and
sunflower), syrup (rice, barley and corn), and
adulterated honey (2.5, 5, 10, 20 and 40% of syrup)

Pattern recognition techniques:
- PCA: voltammetric data allowed distinguishing pure honey, syrup, and
different levels of adulterants
Quantitative analysis:
- PLS analysis: allowed to predict the level of the adulterants in each
honey (sunflower honey adulterated with barley, corn or brown rice
syrup: 0.949 ≤ R2 ≤ 0.997; orange blossom honey adulterated with
barley, corn or brown rice syrup: 0.879 ≤ R2 ≤ 0.993; and, heather honey
adulterated with barley, corn or brown rice syrup: 0.763 ≤ R2 ≤ 0.997)

[113]

CA: clusters analysis; CE: counter electrode; CV: cyclic voltammetry; DFA: discriminant actor analysis; HCA: hierarchical cluster analysis; LOO-CV: leave-one-out cross-validation
procedure; LS-SVM: least squared-support vector machines; MLAPV: multifrequency large amplitude pulse voltammetry; NRMSE: normalized root-mean-square error; PCA: principal
component analysis; PCR: principal component regression; PLS: partial least squares; PLSR: partial least squares regression; PV: pulse voltammetry; R2: determination coefficient;
RE: reference electrode; RPD: ratio of performance to deviation (ratio of the standard error in prediction to the standard deviation of the samples); SVM: support vector machines;
WE: working electrode.
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4. Advantages, Limitations and Drawbacks of the Two Most Common Electronic Tongues Variants

As pointed out (Tables 1–5), E-tongues have suffered an increasing application in honey screening
analysis, which broad number of qualitative and quantitative applications, reported in the literature,
are summarized in Figures 3 and 4, respectively.
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These electrochemical devices have emerged as an innovative sensing technology, supported by
the development of different scientific areas such as artificial intelligence, digital electronic sensors
design, material sciences, microcircuit design, software innovations, and electronic systems integration.
Also, the increase interest relies on several known advantages of electrochemical devices over other
conventional analytical methods. Besides being fast, flexible, cost-effective, sensitive, accurate and
user-friendly techniques, the use of E-tongues does not require specialized staff neither complex
sample pre-treatments. In fact, some potentiometric multi-sensor arrays may be directly immersed
into the honey sample, allowing a direct measurement and, in other cases (depending on the sample’s
viscosity); it is only necessary to previously dissolve a known mass of honey into a pre-defined
volume of distilled water, leading to the change of the membrane potentials in response to the
different sample chemical compositions [94,95,99,100]. In some cases, prior to the potentiometric
analysis the E-tongue sensors may need to be conditioned and calibrated using, in general, an aqueous
acid solution [94]. Regarding the voltammetric devices, the honey analysis requires its previous
dissolution using an electrolyte solution (e.g., KCl or phosphate buffer saline solution, PBS) [120,124]
or in some specific cases, extraction/centrifugation steps [119]. As pointed out by several researchers,
both methodologies would require some special washing procedures, between the measurements
or after a set of assays, in order to remove all sample leftovers from the sensors surface membranes,
ensuring stable and repeatable signal profiles [103,113], although the voltammetric devices may also
require the electrodes surfaces to be polished. Depending on the type of sample, sensor membranes
may be negatively or positively charged and so, an acid or basic washing solutions are usually
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used, respectively, although in some cases only a washing step with ultrapure water is reported.
Voltammetric analysis may further require a deoxygenation step by purging the sample solution with
an inert gas like nitrogen, turning out into a more complex sample pretreatment compared to the
potentiometric analysis [123]. In general, as reported in the literature, both E-tongues show long-term
electrochemical response stability and repeatability over time and after storage, being potentiometric
devices be more prune to signal drift issues, which may be minimized or overcome by the washing
procedures or by the subsequent use of statistical treatments for signal drifts corrections [126–131].
Moreover, the majority of the assays can be carried out at room temperature. Furthermore, the E-tongue
profiles together with chemometric tools allow assessing honey physicochemical and biochemical
parameters using the electrochemical fingerprints recorded in a single experimental run, which avoids
the need of applying several different analytical techniques. Additionally, E-tongues may be easily
miniaturized, handled and cleaned, have low power consumption as well as an intrinsic portable
characteristic enabling in-situ and continuous analysis, even in harsh industrial environments.
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Nevertheless, several authors still have concerns regarding the lack of specific odor and taste
sensors or the difficulty validating the multivariate models established due to the lack of establishing
large databases [74]. To address these concerns, new sensors with improved selectivity, including
nanosensors and biosensors, have been the focus of several research groups. Also, efforts are being
carried out aiming to establish international databases that would allow assembling a large number of
well characterized samples to carry out an appropriate training and validation [74]. The occurrence
of signal drifts and/or noise effects when the electrochemical analysis is carried out during a long
period of time is also a problem that has precluded a broad adoption of E-tongues as routine analytical
tools [126]. Indeed, E-tongue’s calibration lifetime is typically limited due to the changes of sensor
materials related to several physical and chemical phenomena like adsorption of sample components,
temperature deviations, surface chemical reactions, among others [126]. Also, it is known that even if
two electrochemical devices are sensitive towards the same family of chemical compounds, the different
devices can hardly operate in the framework of a single unified calibration model, which would
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enable interpreting simultaneously the responses of both systems [102]. Several strategies have been
recently developed aiming to overcome these drawbacks. Recently, it has been experimentally verified
the feasibility of calibration transfer between voltammetric and potentiometric multi-sensor arrays,
which showed the possibility of transforming potentiometric data into voltammetric format, and vice
versa, allowing modeling a system response using multivariate regression models built with data
from another type of multi-sensor system [102]. Mathematical sensor drift correction procedures have
been successfully used to overcome problems related to sensor readings’ drift that can invalidate
corresponding multivariate calibrations [126–131]. These mathematical procedures minimize the
need of E-tongue frequent recalibrations and thus allow maximizing the related investment of time
and experimental effort, being of utmost importance for unique and expensive samples. In fact,
these works pointed out that it is possible to extend the calibration lifetime in multi-sensor analysis of
real complex samples by mathematical drift correction, instead of trying to take into account these
issues within the framework of each regression model. Furthermore, as pointed out by Panchuk and
co-workers [126], the particular standardization method should be used taking into account the sensor
array structure and the analytical task. If a strong correlation in sensor responses towards target
parameter is expected, the use of multivariate standardization methods is recommended. If the sensors
comprised in the E-tongue show dissimilar signal profiles, univariate single sensor standardization
could be the right choice.

The previous discussion clearly points out the difficulty in choosing one E-tongue approach over
the other, for honey analysis. Indeed, both potentiometric and voltammetric devices show emerging
advantages, posing some limitations and disadvantages. Still, it could be concluded that potentiometric
E-tongues may deliver a broader chemical fingerprint of a specific honey sample, since they may detect
the presence of any chemical compound that may impose a potential shift of the sensors’ membranes
due to, for example, electrostatic or hydrophobic interactions [132], not being limited to the analysis
of redox chemical compounds. Also, in general, potentiometric devices require less complex sample
pre-treatments compared to the voltammetric ones. On the contrary, potentiometric sensor arrays are
mainly used for qualitative evaluations, allowing the richness information of the voltammograms
a deeper analysis including both qualitative and quantitative perspectives. Moreover, signal drifts are
usually more relevant in potentiometric analysis requiring subsequent complex statistical analysis.
Thus, the although the capabilities and advantages of E-tongues for honey analysis is evident and
straightforward for the majority of the researchers within the electrochemistry field, it is not an easy
task to prioritize the best strategy, which will mostly depend on the researcher familiarity with this
subject as well as of the equipment availability.

Finally, the overall analytical (qualitative and quantitative) satisfactory performance of E-tongue
systems together with the possibility of overcoming issues such as signal’s drifts, may envisage
a broader routine application in day-to-day laboratory and industrial practices.

5. Conclusions

In conclusion, this review examined and demonstrated the theoretical and practical feasibility
and versatility of both potentiometric and voltammetric E-tongues for botanical and geographical
origin identification and contaminant detection as well as pollen profile assessment and chemical
composition determination. The vast number of research works available in the literature clearly
pointed out that these devices are very promising tools for honey analysis, profiting of their portability,
miniaturization and possible compatible with smartphone technology, in-situ and on-line operation as
well as of the user-friendly and green potentialities. Furthermore, these devices may be very effective
tools especially in combination with appropriate chemometric techniques, with the use of improved
feature extraction techniques for electronic sensor response analysis, which is a key issue.

Nevertheless, more research is required to develop and take full advantage of E-tongue
instruments, bringing them to the full potential of capabilities for industrial applications,
overcoming typical concerns of the real world; namely, contributing to shortening the distance
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between the optimism of the researchers and the skepticism of the industry and retailers. At present,
the main challenge relies in reaching the market, which is obvious considering the scarcity of
commercially available E-tongue devices. Indeed, the key challenge would be to build E-tongues
with repeatable electrical or electrochemical properties, negligible ageing and temperature effects,
as well as the irreversible binding of substances on the materials used as sensing units in some
applications., requiring sensor units’ replacement and thus, leading to time-consuming re-calibration
steps. These drawbacks have prevented the wide use of E-tongues in the market. So, in the future,
strategies must comprise the design of arrays formed by new sensing (nano)materials with improved
selectivity and sensitivity.
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Adulteration using Hyperspectral Imaging. IFAC-PapersOnLine 2016, 49, 311–314. [CrossRef]

61. Shendy, A.H.; Al-Ghobashy, M.A.; Mohammed, M.N.; Alla, S.A.G.; Lotfy, H.M. Simultaneous determination
of 200 pesticide residues in honey using gas chromatography–tandem mass spectrometry in conjunction
with stream lined quantification approach. J. Chromatogr. A 2016, 1427, 142–160. [CrossRef] [PubMed]

62. Shendy, A.H.; Al-Ghobashy, M.A.; Alla, S.A.G.; Lotfy, H.M. Development and validation of a modified
QuEChERS protocol coupled to LC–MS/MS for simultaneous determination of multi-class antibiotic residues
in honey. Food Chem. 2016, 190, 982–989. [CrossRef] [PubMed]

63. Tette, P.A.S.; Guidi, L.R.; Glória, M.B.A.; Fernandes, C. Pesticides in honey: A review on chromatographic
analytical methods. Talanta 2016, 149, 124–141. [CrossRef] [PubMed]

64. Wu, L.; Du, B.; Heyden, Y.V.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent advancements in detecting
sugar-based adulterants in honey—A challenge. Trends Anal. Chem. 2017, 86, 25–38. [CrossRef]

65. Naila, A.; Flint, S.H.; Sulaiman, A.Z.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of
honey and detection of adulterants. Food Control 2018, 90, 152–165. [CrossRef]

66. Wilson, A.D.; Baietto, M. Advances in Electronic-Nose Technologies Developed for Biomedical Applications.
Sensors 2011, 11, 1105–1176. [CrossRef] [PubMed]

67. Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, C. Nonspecific sensor arrays
(“electronic tongue”) for chemical analysis of liquids: (IUPAC technical report). Pure Appl. Chem.
2005, 77, 1965–1983. [CrossRef]

68. Gutiérrez, J.M.; Haddi, Z.; Amari, A.; Bouchikhi, B.; Mimendia, A.; Cetó, X.; del Valle, M. Hybrid
electronic tongue based on multisensory data fusion for discrimination of beers. Sens. Actuator B Chem.
2013, 177, 989–996. [CrossRef]

69. Cetó, X.; Gutiérrez-Capitán, M.; Calvo, D.; del Valle, M. Beer classification by means of a potentiometric
electronic tongue. Food Chem. 2013, 141, 2533–2540. [CrossRef]

70. Holmberg, M.; Eriksson, M.; Krantz-Rülcker, C.; Artursson, T.; Winquist, F.; Lloyd-Spetz, A.; Lundström, I.
2nd Workshop of the Second Network on Artificial Olfactory Sensing (NOSE II). Sens. Actuator B Chem.
2004, 101, 213–223. [CrossRef]

http://dx.doi.org/10.1016/j.foodres.2016.03.012
http://dx.doi.org/10.1016/j.foodchem.2016.09.204
http://www.ncbi.nlm.nih.gov/pubmed/27855921
http://dx.doi.org/10.1111/j.1365-2621.2010.02243.x
http://dx.doi.org/10.1016/j.foodchem.2016.11.026
http://www.ncbi.nlm.nih.gov/pubmed/27979092
http://dx.doi.org/10.1016/j.foodcont.2016.02.051
http://dx.doi.org/10.1016/j.foodchem.2016.05.036
http://www.ncbi.nlm.nih.gov/pubmed/27283616
http://dx.doi.org/10.1016/j.talanta.2016.04.045
http://www.ncbi.nlm.nih.gov/pubmed/27216676
http://dx.doi.org/10.1016/j.foodchem.2015.08.092
http://www.ncbi.nlm.nih.gov/pubmed/26471630
http://dx.doi.org/10.1016/j.foodchem.2016.08.105
http://www.ncbi.nlm.nih.gov/pubmed/27719903
http://dx.doi.org/10.1016/j.ifacol.2016.10.057
http://dx.doi.org/10.1016/j.chroma.2015.11.068
http://www.ncbi.nlm.nih.gov/pubmed/26687165
http://dx.doi.org/10.1016/j.foodchem.2015.06.048
http://www.ncbi.nlm.nih.gov/pubmed/26213065
http://dx.doi.org/10.1016/j.talanta.2015.11.045
http://www.ncbi.nlm.nih.gov/pubmed/26717823
http://dx.doi.org/10.1016/j.trac.2016.10.013
http://dx.doi.org/10.1016/j.foodcont.2018.02.027
http://dx.doi.org/10.3390/s110101105
http://www.ncbi.nlm.nih.gov/pubmed/22346620
http://dx.doi.org/10.1351/pac200577111965
http://dx.doi.org/10.1016/j.snb.2012.11.110
http://dx.doi.org/10.1016/j.foodchem.2013.05.091
http://dx.doi.org/10.1016/j.snb.2004.02.054


Chemosensors 2018, 6, 0028 22 of 25

71. Riul, A., Jr.; Dantas, C.A.R.; Miyazaki, C.M.; Oliveira, O.N., Jr. Recent advances in electronic tongues. Analyst
2010, 135, 2481–2495. [CrossRef] [PubMed]

72. Mimendia, A.; Gutiérrez, J.M.; Leija, L.; Hernández, P.R.; Favari, L.; Muñoz, R.; del Valle, M. A review of the
use of the potentiometric electronic tongue in the monitoring of environmental systems. Environ. Model. Softw.
2010, 25, 1023–1030. [CrossRef]

73. Rodríguez-Méndez, M.L. Electronic Noses and Tongues in Food Science, 1st ed.; Academic Press: London, UK,
2016; 332p, ISBN 9780128002438.

74. Rodríguez-Méndez, M.L.; De Saja, J.A.; González-Antón, R.; García-Hernández, C.; Medina-Plaza, C.;
García-Cabezón, C.; Martín-Pedrosa, F. Electronic Noses and Tongues in Wine Industry. Front. Bioeng.
Biotechnol. 2016, 4, 81. [CrossRef] [PubMed]

75. Peris, M.; Escuder-Gilabert, L. Electronic noses and tongues to assess food authenticity and adulteration.
Trends Food Sci. Technol. 2016, 58, 40–54. [CrossRef]
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