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Abstract: Herein, the collective effects of spin polarization in a degenerate electron gas of an arbitrary
space dimension are discussed. We consider these low-dimensional systems in light of potential
wells (rectangular or cylindrical), and as a two- or one-dimensional oscillator system with the second
(and third) spatial dimension proportional to the oscillator’s length. The concept of “intermediate”
sizes ν = 6, 5, 4 corresponding to the quasi-low dimensions ν* = 0, 1, 2, contrary to “pure” space
dimensions ν = 1, 2 is introduced. A general effect of the space dimension upon the spontaneous
polarization in electron Fermi gas is detected.

Keywords: quasi-two; quasi-one; quasi-zero dimension Fermi system; intermediate dimension of
phase space; polarized state; critical parameter; a general criterion for the spontaneous polarization

1. Introduction

During the last decade, the ground state of a low-dimensional electron system has been the object
of intensive study [1–3]. The possibility of spontaneous magnetism is a subject of theoretical discussions
using different approaches based on a concept of a quasi-1D, or quasi-2D system. Commonly, we call
the system dynamic one- or two-dimensional if the electron motion is free only in one (or two) spatial
dimensions and their motion in the second and third (or only third) dimensions corresponds to
the discrete energy states. Practically, samples with quantum scale (films and wire) [4–6] have size
approximately equal to 50–100 atomic units (a.u.). The experimentally obtained quasi-one-dimensional
system on the (114) surface of the bismuth semimetal has a size of about 60–100 a.u. [6] in which
magnetic properties of the electron gas are maintained. Systems where metal–insulator transition is
experimentally observed in the metal–oxide semiconductor, as well as in the two-dimensional gas
of current carriers in the Si–Ge and GaAs–GaAlAs heterojunctions [6,7] have the same ranges (size
about 60–100 a.u.) in the “third” space dimension. The experimental dependences of the conductivity
of the two-dimensional gas in the applied magnetic field near the metal–insulator transition indicate
the presence of spontaneous polarization in the determined ranges of parameters. Some physical
systems are typically two-dimensional versions of electron gas. These are electrons confined to the
interface of metal–oxide-semiconductor sandwiches [2]. They are more adequately describable by
the electron gas model. There are many surprises here, so, as was shown by the experiment in [1],
the dispersion of the plasmons go to zero for long wave-length in contrast to the three-dimensional
situation. Using the correct Gell–Mann–Brueckner approach the author of [2] calculated the correlation
energy by summing all cyclic diagrams and taking into account exchange contributions up to the
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second order for both magnetically polarized electrons with interaction and for the high-density
paramagnetic state. It was found that ferromagnetic is lower in energy compared to the paramagnetic
state for dimensionless parameter rs > 2, 3. The results obtained here are valid only for strictly
2D-electron gas. As underlined in [2], in a real system with non-zero width, the results remain
qualitatively valid, but require a quantitively detailed consideration. The total energy takes into
account the negative maximal exchange contribution in the case of complete (100%) polarization of
spin, as compared in [3,4,8–14] with the energy of degenerate electron gas in the case of complete
depolarization. Such a comparison leads to the conjecture that a state with spontaneous polarization of
electrons in a quasi-two-dimensional semiconductor is formed only when the exchange energy exceeds
the kinetic energy, which is possible only when the electron concentration in a quasi-two-dimensional
system is σ~7.6 × 1010–5 × 1011 1/cm2 (see experimental work [12]). The value of concentration
conforms with the experiments in [6,7,15,16], where the observation of spontaneous polarization
in metal-oxygen-semiconductor (MOS) silicon structures for σc = 8 × 1010 cm–2 was reported.
High mobility-doped semiconductor heterostructures [17] provide a model system for the study
of low-energy excitations of the two-dimensional interacting electron system. Well-defined excitations
of the Fermi disk have been investigated at very low temperatures by intraband spectroscopy. Since the
energy of these excitations is comparable to the Fermi energy (a few meV), electronic resonant Raman
scattering (ERRS) [18] in the visible range is one of the most powerful methods for such a purpose.
Raman spectroscopy is able to probe excitations of the unpolarized two-dimensional electron gas with
non-zero momentum on a plane where many-body interactions manifest themselves [19,20]. In the
integer quantum Hall regime, spin waves, inter-Landau-level magnetoplasmons, and spin-flip waves
have been evidenced [21,22]. For a more detailed experimental review see [23], which also presents
theoretical aspects of spin-polarized two-dimensional electron gas achieved in doped semimagnetic
quantum wells. A high mobility spin-polarized two-dimensional electron gas has been obtained in
dilute magnetic semiconductor heterostructures such as Cd1−xMnxTe/Cd1−yMgyTe n-type modulation
doped quantum wells [24]. It has been investigated by electron Raman spectroscopy [25–28]. The giant
Zeeman effect [27] occurring in these systems allows for the creation of a highly polarized 2D electron
gas in which the spin quantization occurs without direct modification of the orbital motion. Effects of
magnetic ordering associated with the Coulomb exchange interaction of free electrons in a 2D Fermi
system are considered in [4,29], which has shown that the paramagnetic response is substantially
enhanced by Fermi liquid effects. The phase transition to a state with spontaneous polarization of
spins has been described. This should occur when Heisenberg parameter J is not smaller than εF/3.06
(approximately one-third of the Fermi energy) and not larger than half the Fermi energy. Spin-polarized
2D gas of electrons in Cd1−xMnxTe has been realized for typical values σ2 = 2.5 × 1011 cm−2,
where polarization degree α as was detected in [24] as close to 100%.

The space dimension is a very important factor. It determines the number of single-electron states
belonging to the same energy surface in the phase space. The main parameters of the electron system
(such as Fermi energy EF, as well as exchange interaction energy A, and the mean energy µBH of
magnetic dipole interaction with the external magnetic field) are determined namely by numbers of
(in the phase space) states. These main parameters sometimes have the same order, dependent on the
space dimension, which gives rise to interesting magnetic phenomena.

The above-mentioned model of the low-dimension system, or so-called quasi-two-(one)-dimensional
clusters (films and wire) [8,9,30,31], which describes an electron system as a potential well (rectangular
or cylindrical) is not adequate for the systems in the abovementioned experiments. In order to provide
the discrete energy specter with state distances ∆E ∼ h2

2ma2 ∼ EF, the size a of a well should be the same
order as the mean distance between the two electrons in the system, which means that a typical size of well
should be a ∼ aB = 1 a.u. Contrary to this, the real depth of two-dimension samples, as mentioned above,
is a ∼ 60÷ 100 a.u. [6,7,28,29].

Reliable descriptions of a spin ordering and of magnetic properties of the trapped atoms are
presented for the quasi-one- or quasi-two-dimensional Bose and Fermi condensate. Such descriptions
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are also useful for the disordered cluster electron systems. We consider these systems not as potential
wells (rectangular or cylindrical), but as a two- or one- dimensional oscillator system. In these

cases the second (and third) spatial dimensions are proportional to the aosc =
√

h
2mω ∼ 50 a.u.

oscillator’s length. In this model, the oscillator’s length corresponds to the real width of the sample
in the experiment, whereas the frequency ω is a mean value, determined by the size of the sample.
Such an electron-trapping model allows us to manipulate with the space dimension by changing the
external field frequencyω in the case of cluster systems or by varying the depth aosc of nanowire or
nanofilms used for nanosensors. One of the possible applications of the low-dimensional electron
Fermi system is the so-called spin transistor [32]. The spin transistor is a magnetically-sensitive device
made out of magnetic materials. It is currently a hot area of research and is an advanced version of
the conventional electronic transistor. For functioning of this device, first the spins have to be injected
from the source into a non-magnetic layer and then transmitted to the collector. These non-magnetic
layers are also called semimetals because of their very large spin diffusion lengths. The operation
of the spin transistor relies on the ability of electrons to store the information on spin polarization.
The band structure of the ferromagnetic emitter is such that an electric current is carried by electrons
of one spin sub-band. It is a spin polarized current and there is a current of magnetization. The emitter
is viewed as a reservoir of particles (conducting electrons) that carry a charge and a magnetic moment.
There is the rule that the emitter may exchange electrons with a base (a nonmagnetic layer) only if
those particles have the same “spin-polarization” as the base.

The main goal of our theoretical studies is to detect the general effect of the spatial dimension
on the spontaneous polarization in an electron Fermi gas as a possible sensory mechanism. Here we
introduce the concept of the “intermediate” sizes ν = 6, 5, 4 corresponding to the quasi-low space
dimensions ν* = 0, 1, 2 contrary to the “pure” space dimensions ν = 1, 2. We describe thermodynamic
properties of an electron Fermi gas for intermediate space dimensions in a general form and develop
a general criterion for the spontaneous polarization in electron Fermi gas.

2. An Effect of Space Dimension upon the Thermodynamics of the Trapped Electron Fermi Gas

Let us consider an arbitrary space dimension in the oscillator “trap” model. The energy of free
trapping electrons is:

ε = ∑
α

p2
α

2m
+ ∑

β

mω2
βq2

β

2
= ∑

α

P2
α

2
+ ∑

β

Q2
β

2
= ∑

ν

X2
ν

2
, (1)

where a general momentum Pα = pα√
m and a general coordinate Qβ = qβωβ

√
m. Here, the space

dimension ν = (α + β) = 1, 2, 3 corresponds to the real dimensions with α = 1, (Px,), α = 1, 2, (Px and Py),
or α = 1, 2, 3, (Px, Py, Pz) and β = 0, determining a free electron gas. The space dimensions ν = (α + β)
= 4, 5, 6 correspond to the α = 3 (Px, Py, Pz) and β = 1, (Qx) that results in ν = 4; α = 3 (Px, Py, Pz)
and β = 1, 2, (Qx and Qy), that leads to ν = 5; or α = 3 (Px, Py, Pz) and β = 1, 2, 3 (Qx, Qy, Qz) that
results in ν = 6. It determines a quasi-2 (with ν = 4 ∝ ν* = 2), quasi-1 (with ν = 5 ∝ ν* = 1), or quasi-0
(with ν = 6 ∝ ν* = 0) electron system. Because of the orthogonality and independence of all ν variables
Pα, Qβ that determine a phase configuration, we may use a universal variable set {Xν} instead of{

Pα, Qβ

}
variables. Then, we consider the Equation (1) as an equation of a spherical surface in the

ν-dimensional phase space:

ε = ∑
ν

X2
ν

2
(2)

with a radius R =
√

2ε of this hypersphere. The surface area of the ν-dimensional sphere and its
volume are:

Sν

(√
2ε
)
= 2πν/2

Γ(ν/2)

(√
2ε
)ν−1

Vν

(√
2ε
)
= πν/2

Γ(1+ν/2)

(√
2ε
)ν (3)
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where Γ(ν/2) is the gamma function. A system under consideration is not a two-, one-, or zero-dimensional
in the direct meaning, because the wavefunction of carriers is a function of three coordinates,
and electromagnetic fields propagate in three-dimensional space. In this case, the phase space for the
one-particle system is always six-dimensional. It is important to underline it in writing a normalization
condition for the N-particles Fermi system:

N =
s

gsnF(ε)
d3 pd3r
(2πh)3 = L6−ν gsm(6−ν)/2

(2πh)3ων−3

∫
nF(ε)dνX

= gsm(6−ν)/2

(2πh)3ων−3 L6−ν
∞∫
0

nF(ε)Sν

(√
2ε
)

d
(√

2ε
)

,
(4)

where nF(ε) is the Fermi–Dirac distribution; µ is the chemical potential; T is temperature in the
energy scale; and gs is a spin degeneration factor. A direct calculation of the integral (4) results in the
following expression:

N
L6−ν

= σ6−ν =
gsm3−ν/2(2π)ν/2

(2πh)3ων−3Γ(ν/2)

[
2
ν

µν/2 +
π2T2

6

(ν

2
− 1
)

µ−2+ν/2
]

, (5)

which determines the Fermi energy εF of the ν-dimensional system, if the temperature T→ 0 is applied:[
(2πh)3ων−3Γ(1 + ν/2)

gsm3−ν/2(2π)ν/2 σ6−ν

]2/ν

= µT=0 = εF, (6)

Taking into account the following recurrent relation for the ν-dimension concentration σ6−ν:

σ6−ν =
(

4πa2
osc

)ν−3
σν =

(
4π

h
2mω

)ν−3
σν,

εF =

[
(2πh)3ων−3Γ(1+ν/2)

gsm3−ν/2(2π)ν/2

(
4π h

2mω

)ν−3
σν

]2/ν

= h2

m (2π)
(

Γ(1+ν/2)
gs

σν

)2/ν
(7)

we find the Fermi Energy and the temperature corrections that determine the chemical potential of the
ν-dimensional system at the finite temperature:

∆µ

εF
= −

(ν

2
− 1
)π2

6

(
T
εF

)2
(8)

We have represented the expressions of the Fermi energies and their corrections for all space
dimensions in Table 1, where D* means spatial dimension of the system correspondent to the
ν*. We have used a Fermi integral to obtain all expressions of energy corrections, except for the
two-dimensional case. We exactly developed the correction for the two-dimensional case.
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Table 1. Fermi energies and their corrections for different space dimensions.

1D
ν = 1

εF = h2

m (2π)
(

Γ(1+1/2)
gs

σ1

)2/1

εF = h2

2m

(
πσ1
gs

)2
∆µ
εF

= +π2

12

(
T
εF

)2

2D
ν = 2

εF = h2

m (2π)
(

Γ(1+2/2)
gs

σ2

)2/2

εF = h2

m (2π)
(

σ2
gs

)
∆µ
εF

= 0

(∆µ = T ln
(

1− e−
εF
T

)
≈ −Te−

εF
T )

3D
ν = 3

εF = h2

m (2π)
(

Γ(1+3/2)
gs

σ3

)2/3

= h2

2m

(
6π2

gs
σ3

)2/3
∆µ
εF

= −π2

12

(
T
εF

)2

2D*
ν = 4

εF = h2

m (2π)
(

Γ(1+4/2)
gs

σ4

)2/4

= h2

maosc

(
2πσ2

gs

)1/2

σ6−4 =
(
4πa2

osc
)4−3

σ4

∆µ
εF

= −π2

6

(
T
εF

)2

1D*
ν = 5

εF = h2

m (2π)
(

Γ(1+5/2)
gs

σ5

)2/5

= h2

2m

(
15·π

4gs a4
osc

σ1

)2/5

σ6−5 =
(
4πa2

osc
)5−3

σ5

∆µ
εF

= −π2

4

(
T
εF

)2

0D*
ν = 6

εF = h2

2ma2
osc

(
6N
gs

)1/3
= hω ·

(
6N
gs

)1/3

σ6−6 =
(
4πa2

osc
)6−3

σ6

∆µ
εF

= +π2

6

(
T
εF

)2

The kinetic energy K of proper Fermi gas with the temperature corrections taken into account
determines the internal energy U of the ν-dimensional system:

U = K = (2π)
ν
2 m3− ν

2 l6−ν

Γ( ν
2 )(2πh)3ων−3 gs

∞∫
0

εν/2nF(ε)dε

= (2π)
ν
2 m3− ν

2 l6−ν

Γ( ν
2 +1)(2πh)3ων−3 gs

{
µ

ν
2 +1 + π2T2

6
(

ν
2 + 1

)
ν
2 µ

ν
2−1
}

Taking into account the general Equations (6) and (7) for the Fermi Energy and its correction
we have:

U =
ν

ν + 2
NεF

{
1 +

π2T2

6ε2
F

(ν

2
+ 1
)}

(9)

The expression for Grand potential Ω (or Landau Potential) leads us to the thermodynamics state
equation for the ν-dimensional electron Fermi system:

Ω = −T
(2π)

ν
2 m3− ν

2 l6−ν

Γ
(

ν
2
)
(2πh)3ων−3

gs

∞∫
0

ε
ν
2−1 ln

(
1 + e

µ−ε
T

)
dε =− 2

ν
U. (10)

Then, we have expressions for the entropy and for the specific heat per particle, respectively:

S = ν
6 N π2T

εF
,

c = C
N = T

N

(
∂S
∂T

)
Vν

= ν
6

π2T
εF

.
(11)

These patterns and thermodynamic relations are dependent on the space dimension of the electron
Fermi system. Their influence on the character of the spin ordering in such a system plays a crucial
role. Before we considered the polarization effects in the Fermi system, we present our results in
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the more appropriate form using the dimensionless parameter rs (see [2,4,5]). Let us introduce this
dimensionless parameter as a ν-dimensional concentration of particles, messed in the atomic units:

N
Lν = σν =

Γ( ν
2 +1)

rν
s ·aν

B ·π
ν
2

,

rs =
1

aB
·
(

Γ( ν
2 +1)

σν ·π
ν
2

) 1
ν

,
(12)

where we used the expression of the volume of the ν-dimensional sphere of Equation (3), and N is
the total number of electrons in the system under consideration. The current citing of Equation (12) is
shown in Table 2.

Table 2. Dimensionless universal parameter.

1D
ν = 1

rs =
Γ( 3

2 )
aB
√

π·σ1
= 1

2aB ·σ1
N
L1 = σ1

2D
ν = 2

rs =
1
aB
·
√

Γ(2)
π·σ2

= 1
aB
· 1√

π·σ2
N
L2 = σ2

3D
ν = 3

rs =
1
aB

(
Γ( 3

2 +1)

σ3·π
3
2

) 1
3

= 1
aB

(
3

4π·σ3

) 1
3 ,

N
L3 = σ3

2D*
ν = 4

rs =
1
aB
·
(

Γ(3)
σ4·π2

) 1
4
= 1

aB
·
(

8a2
osc

σ2·π

) 1
4 ,

N
L4 = σ4 =

(
4πa2

osc
)−1

σ2

1D*
ν = 5

rs =
1
aB
·
(

Γ( 5
2 +1)

σ5·π
5
2

) 1
5

= 1
aB
·
(

Γ( 7
2 )(4πa2

osc)
2

σ1·π
5
2

) 1
5

= aosc
aB
·
(

30
aosc ·σ1

) 1
5 ,

N
L5 = σ5 =

(
4πa2

osc
)−2

σ1

0D*
ν = 6

rs =
1
aB
·
(

Γ( 6
2 +1)

σ6·π
6
2

) 1
6

= 1
aB
·
(

6
σ6·π3

) 1
6
= 2aosc

aB
·
(

6
N

) 1
6 ,

N
L6 = σ6 =

(
4πa2

osc
)−3

σ0 = N
(4πa2

osc)
3

Here we express the Fermi energy εF of (7), and the internal energy U of the proper Fermi gas
(the kinetic energy K) of (9), using this dimensionless parameter rs:

εF = h2

m
2

r2
s ·a2

B

(
Γ2( ν

2 +1)
gs

)2/ν

= 2e2

r2
s ·aB

(
Γ2( ν

2 +1)
gs

)2/ν

,

U = ν
ν+2 N 2e2

r2
s ·aB

(
Γ2( ν

2 +1)
gs

)2/ν{
1 + π2T2

6ε2
F

(
ν
2 + 1

)}
.

(13)

Such a representation of these main parameters will be useful for consideration of polarized states
of the electron Fermi gas accounting for particle interaction.

3. Polarized State

The establishment of an equilibrium spin polarization is a result of the competition of two main
contributions: (i) Non-force exchange, which is a consequence of the Pauli exclusive principle, due to
which the kinetic energy of a Fermi gas increase when spins are unpaired because free particles should
occupy higher single-particle states; (ii) a Coulomb exchange interaction directly causing a decrease of
unpaired spins energy.
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A total Hamiltonian of the fermion system, taking into account Coulomb interaction among the
electrons, has the following form in the occupation numbers representation:

Ĥ = ∑
k,σ

(hk)2

2m
a†

kσakσ +
1
2 ∑

kσ

k′σ′

∑
q

V(q)a†
k+q,σa†

k′−q,σ′ ak′σ′ akσ, (14)

where
→
k is a wave vector of the free electron in the ν-dimensional phase space; σ is a spin projection on to

the quantization axis; and V(q) is a Fourier transform of the Coulomb interaction between the electrons.
Given that the polarized state of the fermion system with a polarization α degree, then:

N+ − N− = αN
N+ + N− = N,

(15)

where N± = N
2 (1± α) is the number of up and down spins, respectively and N is the total number

of electrons in the system. The presence of the polarization in the system of electrons changes the
position of the Fermi level in Equation (7) to:

ε±F = εF(1± α)2/ν =
h2k2

F(α)

2m
, (16)

where the Fermi wave vector kF(α) value, accounting for the polarization degree has the form:

kF(α) = kF(1± α)1/ν = 2
√

π[Γ(1 + ν/2)σν]
1/ν(1± α)1/ν. (17)

The ground state vector of the non-interacting electron system is:

|Ψ0(α)〉 = ∑
k ≤ kF(α)

s

a†
ks|0〉. (18)

In this case, the mean-value of the kinetic energy per particle of the ground state with respect to
polarization has the following expression:

K
N

= εF
1
gs

ν

ν + 2

{
(1 + α)

ν+2
ν + (1− α)

ν+2
ν

}
, (19)

Using Equation (13) with the temperature corrections through the dimensionless parameter rs,
the mean-value of the kinetic energy has the form:

K
N

=
ν

ν + 2
2e2

r2
s · aB

(
Γ2( ν

2 + 1)
gs

)2/ν

×
{
(1 + α)

ν+2
ν + (1− α)

ν+2
ν

}{
1 +

π2T2

6ε2
F

(ν

2
+ 1
)}

The first correction of Hartree-Fock energy is:

E(1) = 1
2 ∑

ks ≤ kF(α)

k′s′ ≤ kF(α)

∑
q
〈k + q, k′ − q|V(q)|k′, k〉 − 1

2 ∑
ks ≤ kF(α)

k′s′ ≤ kF(α)

∑
q
〈k + q, k′ − q|V(q)|k, k′〉, (20)
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where the first term corresponds to the direct Coulomb interaction, whereas the second is the exchange
contribution. Generally, we compute the exchange contribution in the above-mentioned oscillator
trapping model, where the oscillator’s wave function is taken in the VKB-form:

ψ(x) =
√

2mω
πp sin

{
1
h

x∫
−aosc

pdx + π
4

}
,∮

pdx = 2π mωa2
osc

2 .

The result of the analytical computation is shown in Table 3 for each space dimension.

Table 3. Exchange mean energy.

1D
ν = 1

E± exc
N = − e2kF

2

σ1

(
5
2 − 3γ

)(
(1 + α)2 + (1− α)2

)
= −C1ν=1e2

rs aB

(
(1 + α)

1+1
1 + (1− α)

1+1
1

)
C1ν=1 =

((
5
2 − 3γ

)
π2/2

)
2D
ν = 2

E± exc
N = − e2kF

3

6πσ2

(
(1 + α)3/2 + (1− α)3/2

)
= −C1ν=2

rs

e2

aB

(
(1 + α)

2+1
2 + (1− α)

2+1
2

)
,

C1ν=2 =
(

4
√

2/3π
)

3D
ν = 3

E± exc
N = − 3

2
e2kF

4

πσ3

(
(1± α)4/3 + (1± α)4/3

)
= −C1ν=3

rs

e2

aB

(
(1 + α)

3+1
3 + (1− α)

3+1
3

)
;

C1ν=3 = 0.458

2D*
ν = 4

E± exc
N = − 2

5
e2kF

5a2
osc

π2σ2

(
(1± α)5/4 + (1± α)5/4

)
,

Eexc
N = −C1ν=4

rs

e2

aB
{(1 + α)

4+1
4 + (1− α)

4+1
4 }

C1ν=4 = 2
π1/4

1D*
ν = 5

E± exc
N = − e2kF

6a5
osc

π5/2σ1

(
(1 + α)6/5 + (1− α)6/5

)
,

Eexc
N = −C1ν=5

rs

e2

aB
{(1 + α)

5+1
5 + (1− α)

5+1
5 }

C1ν=5 ≈ 225
4 ≈ 56

0D*
ν = 6

E± exc
N = − e2kF

7a6
osc

π3 N

(
(1 + α)7/6 + (1− α)7/6

)
,

Eexc
N = −C1ν=6

rs

e2

aB
{(1 + α)

6+1
6 + (1− α)

6+1
6 },

C1ν=6 = 3√
π

We paid attention to the regularity in the values of the power function exponents that allow us to
represent the exchange Hartree-Fock mean-value energy as follows:

E1
exc
N

= −C1ν

rs

e2

aB

(
(1 + α)

ν+1
ν + (1− α)

ν+1
ν

)
, (21)

where the coefficients C1ν for each space dimension are presented in Table 3. The detailed computation
of the exchange contributions for the different space dimensions can be seen in [2,4,5]. Then, the total
mean value of the energy per electron has the following general form in the atomic units accounting
for the space dimension ν:

E
N

=
C2ν

r2
s

(
(1 + α)

ν+2
ν + (1− α)

ν+2
ν

)
− C1ν

rs

(
(1 + α)

ν+1
ν + (1− α)

ν+1
ν

)
, (22)
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where the first term corresponds to the mean value of the kinetic energy contribution and the second
term describes the exchange contribution. The energy E(rs)

N as a function of the mean distance rs has
the extremum, i.e., 1

N
∂

∂rs
E(rs) = 0, if the critical parameter rs∗ is equal to:

rs∗ =
2C2ν

C1ν

(
(1 + α)

ν+2
ν + (1− α)

ν+2
ν

)
(
(1 + α)

ν+1
ν + (1− α)

ν+1
ν

) . (23)

It is easy to see that if rs < rs∗ the most preferable state is the state with the polarization
degree α→ 0 , i.e., non-polarized; for the case rs > rs∗ the energetically preferable state is polarized,
with α→ 1 . The key role in the appearance of the spontaneous spin polarization is played by the
coefficient relations 2C2ν/C1ν, which is dependent on the space dimension. These relations for each
space dimension, the same as for critical mean distances, are listed in Table 4. Analyzing the obtained
results, it is possible to assume that the polarized state is realized in the 0D*-, 1D*- metallic cluster
system (oscillator-trapped) and in the quantum-scaled 1D metallic system. The possibility of the
polarized state arising for quasi-two dimensional systems is dependent on free-electron concentration
and corresponds typically to semiconductors with rs > 2.356 (very low concentration) for the
quantum-scaled systems and rs > 1.191 for the above-mentioned real experimental situation [6,7],
considered in the oscillator-trapping model. That is why, despite the theoretical predictions of [2,8,13]
the polarized state is observed in experiments [6,7,21,31]. Figure 1 shows the obtained dependence
of the total mean value of the energy per electron (22) as a function of the rs parameter and the
polarization degree α for the 3D-, 2D-, and 1D-cases.Chemosensors 2019, 7, x 10 of 13 

 
Figure 1. Dependences of the total mean value of the energy per electron E/N as a function of the rs 
parameter and the polarization degree α for the 3D-, 2D-, and 1D-cases, separately. 

Table 4. Critical parameter. 

ν  2

1

2C
C

ν

ν

 
2 1

2
1

1

* 2s

C
r

C

ν

ν ν
α

ν

+

→→ =  

in a.u. 
1D 
ν = 1 

0.238 0.476 

2D 
ν = 2 

1.666 2.356 

3D 
ν = 3 

4.829 6.08 

2D* 
ν = 4 1/ 4

4 1.0015
3π

=  1.191 

1D* 
ν = 5 

1/ 5

3

2 0.374131
15

π
 

⋅ =  
 

 0.429763 

0D* 
ν = 6 

2 / 36 =0.465728
4 π

 
( ) 1

326 2

4
0.522762

π

⋅
=

=

 

4. Conclusions 

A system of electrons whose motion is free only in two (or one) spatial dimension and whose 
motion in the second and third dimensions corresponds to a discrete energy spectrum is called the 
dynamic two- (one)-dimensional (or quasi-two- (one)-dimensional) system. Thus, only two (or one) 
of the three components of the wave vector are good quantum numbers. We emphasize that such a 
system is not two- (one)-dimensional in the direct meaning, because the wave function of carriers is 
a function of three coordinates and electromagnetic fields propagate in three-dimensional space. It is 
virtually impossible to prepare such a sample with a really quantum second and third dimension 
size. The real experiments deal with quasi-two- (one)-dimensional clusters (for example, for a typical 
quantum well, width w~150 Å [23]), which is more conveniently described as a two- or one-
dimensional oscillator system with the second (and third dimension) proportional to the oscillator’s 
length. Spin aligning effects associated with the Coulomb exchange interaction of free electrons 
noticeably affect the magnetic ordering in 2D (1D) semiconductors and metals. This is because the 
main parameters characterizing the electron system in such a system in a magnetic field are quantities 
of the same order of magnitude, contrary to the 3D case. Now, it is important to underline that in this 
consideration of the low dimensional system with intermediate space-dimension we do not take into 
account very important corrections to the total energy of the system and the contributions of kinetic 
and exchange mean values to the total energy, like mass defects in the semiconductors and  
Fermi-liquid parameters. Their apparent mathematical definitions of an effective mass, m* and an 
effective fermi-liquid function Z*, and their determinations in the 2D-electron system have drawn 
strong experimental and theoretical interest [4,23]. The self-energy is in itself a cumbersome problem 
still unsolved. An accurate determination of the self-energy and the renormalized mass valid for an 

Figure 1. Dependences of the total mean value of the energy per electron E/N as a function of the rs

parameter and the polarization degree α for the 3D-, 2D-, and 1D-cases, separately.

Table 4. Critical parameter.

ν 2C2ν
C1ν

rs*→α→1= C2ν
C1ν

2
2ν+1

ν

in a.u.

1D
ν = 1 0.238 0.476

2D
ν = 2 1.666 2.356

3D
ν = 3 4.829 6.08

2D*
ν = 4

4
3π1/4 = 1.0015 1.191

1D*
ν = 5

√
π ·
(√

2
153

)1/5
= 0.374131 0.429763

0D*
ν = 6

62/3

4
√

π
= 0.465728

(62·
√

2)
1
3

4
√

π

= 0.522762



Chemosensors 2019, 7, 15 10 of 12

4. Conclusions

A system of electrons whose motion is free only in two (or one) spatial dimension and whose
motion in the second and third dimensions corresponds to a discrete energy spectrum is called
the dynamic two- (one)-dimensional (or quasi-two- (one)-dimensional) system. Thus, only two
(or one) of the three components of the wave vector are good quantum numbers. We emphasize
that such a system is not two- (one)-dimensional in the direct meaning, because the wave function of
carriers is a function of three coordinates and electromagnetic fields propagate in three-dimensional
space. It is virtually impossible to prepare such a sample with a really quantum second and third
dimension size. The real experiments deal with quasi-two- (one)-dimensional clusters (for example,
for a typical quantum well, width w~150 Å [23]), which is more conveniently described as a two-
or one-dimensional oscillator system with the second (and third dimension) proportional to the
oscillator’s length. Spin aligning effects associated with the Coulomb exchange interaction of free
electrons noticeably affect the magnetic ordering in 2D (1D) semiconductors and metals. This is
because the main parameters characterizing the electron system in such a system in a magnetic field are
quantities of the same order of magnitude, contrary to the 3D case. Now, it is important to underline
that in this consideration of the low dimensional system with intermediate space-dimension we do not
take into account very important corrections to the total energy of the system and the contributions
of kinetic and exchange mean values to the total energy, like mass defects in the semiconductors
and Fermi-liquid parameters. Their apparent mathematical definitions of an effective mass, m* and
an effective fermi-liquid function Z*, and their determinations in the 2D-electron system have drawn
strong experimental and theoretical interest [4,23]. The self-energy is in itself a cumbersome problem
still unsolved. An accurate determination of the self-energy and the renormalized mass valid for
an unpolarized electron 2D-Fermi gas has been done in [27]. The main goal for our consideration is
to understand how space dimension variation, in its pure form, directly affects the spin-polarization
ability of a Fermi gas.

We should also make a remark concerning the Hartree-Fock method (HF) applied to a Fermi gas.
It is well known that the neglect of correlations in the Hartree-Fock approximation introduces a strong
bias towards spin polarization. Adding electron correlations stabilizes the unpolarized state in the
3D and 2D cases; more accurate quantum-Monte Carlo calculations indicate that spin-polarization
occurs, if ever, in the liquid state of the homogeneous electron gas only in the very low density region
close to the Wigner transition (see, for example, the works of Drummond and Needs [13,14,28]).
The Landau Fermi-liquid method applied to the 2D Fermi system indicates a spin-polarization state
and a paramagnetic–ferromagnetic phase transition in the lower electron density as pointed out by
Hartree-Fock [4,21]. A direct comparison with experiments is problematic, since band structure effects
cannot be neglected, see [7,15,16]. Indeed, Hartree-Fock’s study is the least correct in describing the spin
system, since it uses only the spin projections of each electron. Taking into account the commutation
relations with the total spin value [S2, siz] 6= 0, it is clear that we have the worst results, definitely,
if the total spin projection is Sz = 0, due to the highest degeneration of the state in the total spin value.
Therefore, we preferably use the exchange perturbation theory or the Landau Fermi-liquid method
to describe spin systems with correlation effects (or spin ordering effects; see, for example, [4,29]).
Nevertheless, we applied the HF method in this work to take into account the exchange interaction
in the effects of spin ordering only because it provides the simplest way for analytical calculations
and a possibility to compare the space dimension influence on the main parameters of the electronic
system; or, in other words, a possibility to evaluate the influence of the spatial dimension on the
relationship between the two main contributions, the exchange interaction and the kinetic energy,
relative to the spin order. The HF method allowed us to make general calculations for all types of
spatial dimensions. Another reason for the use of HF is the developed model of the oscillator trap,
which takes into account the “quasi” character of a low-dimensional system. All calculations using
various methods taking into account the effects of exchange correlation consider the low-dimensional
system as a purely low-dimensional system and do not take into consideration the electron motion
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in the quantized direction. In contrast to electronic systems, such motion is taken into account in
low-dimensional Bose–Einstein condensates in the models of this oscillator, which is really useful for
describing an electronic cluster system.

The main result of the presented work is the general expressions of mean energy per electron (22),
(23) for an arbitrary space dimension with the analytically computed coefficients in them, as shown in
Tables 2 and 3. We have estimated the effect of the space dimension on spin ordering. There are two
competing factors: Non-force exchange, which affects the “interference” redistribution of the particle
density in the spatial space (as a consequence of the Pauli exclusion principle); and the exchange
Coulomb interaction, which is involved in the establishing of the equilibrium spin polarization. Thus,
the principle of the indistinguishability of identical particles is manifested on two sides: It prevents
spin polarization due to the kinetic energy of Fermi gas increases when spins are unpaired because free
particles should occupy higher single-particle states; and, on the contrary, it establishes spin ordering
thanks to the exchange interaction, and the degree of the ordering factor effect is dependent on the
coefficient ratio. We have shown that the more the space dimension of the system decreases, the more
the relative contribution of the exchange interaction increases as compared to the kinetic factor. This is
in good agreement with the experimental results [15,16,24,30,31]. The metal–insulator transition
experimentally observed in the metal–oxide-semiconductor field-effect transistors is characterized by
a low concentration of carriers and has the spin nature of a metallic state [6,7,10]. The same happens in
the 2D gas of current carriers in the Si–Ge and GaAs–GaAlAs heterojunctions [11,31]. It is impossible
to achieve the polarized state of the degenerate electron gas for the 3D case. This statement is in
agreement with [13,14].
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