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Abstract: The asymmetric resonance response in electro-thermal piezoresistive cantilever resonators
causes a need of an optimization treatment for taking parasitic actuation-sensing effects into account.
An electronic reference circuit for signal subtraction, integrated with the cantilever resonator has
the capability to reduce the effect of parasitic coupling. Measurement results demonstrated that a
symmetric amplitude shape (Lorentzian) and an optimized phase characteristic (i.e., monotonically
decreasing) were successfully extracted from an asymmetric resonance response. With the monotonic
phase response, real-time frequency tracking can be easier to implement using a phase-locked loop
(PLL) system. In this work, an electro-thermal piezoresistive cantilever resonator functionalized with
self-assembled monolayers of chitosan-covered ZnO nanorod arrays as sensitive layers has been
investigated under different relative humidity (rH) levels. Enhancement of resonance phase response
has been demonstrated by implementing the reference signal subtraction. Subsequently, a lock-in
amplifier integrated with PLL system (MFLI, Zurich Instruments, Zurich, Switzerland) was then
employed for continuously tracking the resonant frequency. As a result, we find a good correlation of
frequency shift (∆f 0) with change in rH monitored using a commercial reference sensor.

Keywords: phase optimization; phase-locked loop (PLL); electro-thermal cantilever; resonant MEMS
sensor; environmental monitoring

1. Introduction

Silicon micro-electro-mechanical system (MEMS)-based cantilevers combined with nanorod
arrays are a versatile platform integrating micro and nano-components (Figure 1), which can be
used in multiple sensing applications of physical, chemical, and biological targets [1]. Due to
their capability to detect small amounts of mass, they can be used as sensitive sensors with high
resolution (e.g., for monitoring humidity, toxic gases, and airborne nanoparticles) [2–4]. In dynamic
mode operation, MEMS cantilever sensors have normally been operated as micro-resonators,
in which their resonant frequency shift (∆f 0) can be monitored as their mass changes due to
the adsorption/desorption of analytes on/from the sensitive layer. Sensor characterization by
frequency sweeping is one of the most common methods used to figure out the amplitude and
phase responses, and finally identify the resonant frequency [5–7]. However, regardless of the set
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frequency interval during sweeping, this technique is not feasible for fast real-time measurement of
resonance shifting. Therefore, a robust real-time system, which is capable of measuring the resonance
shifts of microcantilever sensors continuously, is required.
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Figure 1. Schematic of micro-electro-mechanical system (MEMS) silicon cantilever sensor functionalized
with ZnO nanorods (NRs) on the top surface.

Phase-locked loop (PLL)-based systems have been broadly used to realize continuous real-time
frequency tracking of resonant sensors [8–10], which principally employ the excitation frequency
as a means to control the phase difference between excitation signal and sensor output. In the
case of cantilever sensors, the phase difference in resonance is ideally independent of the resonant
frequency. Therefore, the resonant frequency can be monitored by tracking the resonance phase.
When the resonance phase has reached the desired phase difference, the output frequency of the PLL
stays constant. This is commonly referred to as frequency lock and is interpreted as the resonant
frequency in this work. Here, the resonance phase becomes an essential parameter for detecting the
resonant frequency.

In this study, we implemented a PLL-based system for tracking the resonance shifting of
an electro-thermal piezoresistive silicon cantilever resonator, which is subsequently called an
electro-thermal piezoresistive cantilever sensor. This cantilever was covered by zinc oxide nanorod
(ZnO NR) arrays that were modified with self-assembled monolayers of chitosan (see Figure 1).
Nevertheless, PLL systems do not function properly in electro-thermal piezoresistive cantilever sensors
due to their reversed phase response. Low thermal-mechanical coupling and parasitic direct thermal
coupling [3] are inhibitive to an ideal phase response. Resonance tracking cannot work properly then,
because there is an ambiguity in the phase response, which subsequently leads to instabilities during
the locking process of the resonant frequency. Therefore, there is a need to develop a technique that
can guarantee an utmost suppression of parasitic effects on electro-thermal piezoresistive cantilever
sensors. Some work uses dual sensor systems that are fabricated in the same chip for cancelling the
parasitic effects [11–13]. However, implementation of dual sensor systems will enlarge the sensor size
and increase its power consumption. In the case of electro-thermal piezoresistive cantilever sensors,
realizing the similar effect of direct thermal-parasitic coupling between two cantilevers is complicated
as the heat supply and the boundary condition, which cause the temperature distribution in the
cantilever body, are not easily controlled precisely. Therefore, hereby we apply an external reference
signal in order to obtain a symmetric amplitude shape and a monotonic phase response by subtracting
it from the outputs of the electro-thermal piezoresistive cantilever sensor [14]. By using an external
circuit, the amplitude and phase of the reference signal can be controlled at a given frequency to obtain
a suitable signal for eliminating the direct thermal-parasitic effect. We expect that the implementation
of reference signal subtraction can expedite resonance tracking based on the PLL technique and reduce
instabilities during the locking process of the resonant frequency. As proof-of-concept measurements,
we investigated the resonance tracking of electro-thermal piezoresistive cantilever sensors under



Chemosensors 2019, 7, 2 3 of 14

different levels of relative humidity (rH). MEMS cantilever sensors with ZnO NRs and a chitosan layer
are highly sensitive to rH, and can most conveniently be used for sensing volatile organic compounds
(VOCs) [15,16] and gases [17,18].

2. Self-Actuating and Self-Sensing

Electro-thermal piezoresistive cantilever sensors were fabricated using bulk silicon wafers and
a bulk micromachining technique, leading to lower cost of materials and fabrication processes
with respect to surface micromachining [19]. This cantilever sensor design comprises two main
parts, i.e., for mechanical actuation and electrical sensing. Both are realized in the form of diffused
p-type silicon resistors (Figure 2). A heating resistor (HR) and piezoresistors in a U-shaped full
Wheatstone bridge (WB) configuration act as actuating and sensing components, respectively [20].
The HR, located at the cantilever clamped end, triggers an in-plane actuation of the cantilever beam.
Subsequently, this deflection is sensed by the WB that is located about 33 µm away from the HR.
The average size of the diffused resistors is around 60 µm × 10 µm. The cantilever beam has a total
length of 1000 µm, a width of 170 µm, and a thickness of 12 µm. Details of the fabrication procedure
of the electro-thermal piezoresistive cantilever sensors covered by ZnO NRs and chitosan layer were
described previously in [2,21,22].
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Figure 2. Optical micrograph of the electro-thermal piezoresistive cantilever sensor top surface showing
the heating resistor (HR, actuating part) and the U-shaped Wheatstone bridge (WB) with resistors
Ri (i = 1,2,3,4) representing the sensing part.

Mechanical actuation is obtained by applying an alternating current (AC) voltage Vaccos(2πft)
superimposed on a direct current (DC) voltage Vdc to the HR (Figure 3, in black line). The electrical current
passing through the HR is converted into heat by the Joule heating effect. Consequently, the electrical
power (P) is dissipated leading to a temperature field around the HR [9,23]. By inserting the AC and
DC components into Equation (1), the resulting power loss (dissipation energy) P can be illustrated
by a waveform, which is indicated by the red curve in Figure 3. In order to avoid an additional
oscillation with double period in the red curve, the amplitude of the third summand on the right side
of Equation (1) should be much higher than the fourth.
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Figure 3. Illustration of input voltage signal (AC + DC offset) of the HR (black line) that result in a
power dissipation (red line) which is in-phase with the input signal.

Here, R is the resistance of the HR, Vdc and Vac are the DC and AC voltage amplitudes,
respectively, f is the excitation frequency, and t is time.

Thermal energy is mostly generated due to the loss of kinetic energy of the current carrying
electrons by collisions among themselves and with the lattice atoms [24]. The thermal energy
subsequently results in static and dynamic temperature distributions in the cantilever. To further
analyze the temperature distribution and the thermally induced deflection of the microcantilevers due
to the Joule heating, finite element modelling (FEM) by COMSOL Multiphysics 4.4b was performed
using a 5 V DC voltage at the input of the HR. FEM shows that there is a temperature gradient in
the vicinity of the HR, with a maximum temperature of 302.4 K observed around the center of the
HR (Figure 4a). This local temperature increase yields an expansion of the cantilever around the HR
leading to a bending of the cantilever in the lateral (in-plane) direction. A total static displacement at
the free end of approximately 17.8 nm is observed (Figure 4b).
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Figure 4. Finite element modelling (FEM) simulations of (a) a heating resistor (HR) with resistance
of 1000 Ω (p-silicon; lightly doped; specific heat capacity (Cp) = 700 J/(kg·K); coefficient of thermal
expansion (α) = 2.6 × 10−6 K−1) and (b) beam deflection due to induced thermal-strain.

As discussed before, the response due to the electro-thermal actuation is sensed by four
piezoresistors configured in a U-shaped WB. The WB was designed for adapting the strain distribution
induced in the cantilever due to its lateral bending. Because of the dependence of resistivity on
the applied strain ε, the resistors Ri (i = 1, . . . , 4) of the WB experiences relative resistance changes
∆Ri according to:

∆Ri = Riπl/tσi (2)
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where πl/t and σi are, respectively, the longitudinal/transverse piezoresistive coefficient of p-type
silicon along the (110) crystal direction and the stress along the cantilever axis at the position of the
resistor Ri. By applying a supply voltage (VWB_in) to the full WB circuit, the cantilever bending leads
to an integral bridge resistance change ∆R, which can be recorded via the (transverse) output voltage
(VWB_out) of the WB.

Basically, a WB is a parallel combination of two voltage dividers (shown in Figure 5),
which subdivide a large voltage into smaller ones. The WB configuration can be used to measure
very low values of resistances down to the milli-ohms range. This is done by detecting a voltage
difference between the two output terminals (A and B). These two outputs are subsequently fed into
an instrumentation amplifier (INA217) that detects their differences. In the case of a DC signal input
(VA, VB), the amplifier subtracts and amplifies the input voltages according to Vout = G(VB − VA),
where G is an amplification factor. Nevertheless, the WB on the cantilever generates VA and VB in
the form of voltage oscillations. Therefore, in the differential amplifier output we obtain a sinusoidal
signal having the same frequency as the actuation signal. Figure 6 shows the amplified output voltage
in the time domain at resonance with an output signal to noise ratio (SNR) of 31.6 dB.
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3. Reference Signal Subtraction

The amplified WB output signal (VWB_out) shows an asymmetric spectral amplitude line shape
(Figure 7a) and a reversed phase response (Figure 7b) in the same frequency domain. An asymmetric
amplitude shape that occurs concurrently with a reversed phase characteristic is called Fano
resonance. It is yielded by mixing a discrete state (Lorentzian line shape) with a constant continuum
background [25]. Therefore, in order to obtain a symmetric amplitude shape (Lorentzian line
shape), elimination of the continuum background should be done by subtracting a corresponding
characteristic. Simultaneously, the symmetric amplitude shape should then be accompanied by
a monotonic phase response.
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The setup of reference signal subtraction is shown in Figure 8. An AC signal (2 V) with offset
voltage (5 VDC), generated by a lock-in amplifier (MFLI, Zurich Instruments, Zurich, Switzerland),
actuates the cantilever through contact pad 2. The vibrations are then detected by the WB, which is
supplied with 1 V DC through contact pad 6. Contact pads 1 and 5 act as common ground
(GND). The voltage difference at the WB outputs, picked-up at contact pads 7 and 4, are then fed
into the instrumentation amplifier through pin 2 and pin 3, respectively. Furthermore, the signal
output of reference circuit was subtracted from the signal output of the instrument amplifier (pin 6).
This subtraction was performed using both positive (V+) and negative (V−) voltage input terminals
of the MFLI lock-in amplifier. The V+ and V− terminals were connected to the output signal of the
instrumentation amplifier and the reference circuit, respectively, and the resultant output voltage (VO)
was then calculated internally in the MFLI lock-in amplifier. The reference circuit was designed and
fabricated to provide a controlling mechanism for the reference amplitude and phase signal through
VR1 and VR2. It was intended to generate and provide a suitable characteristic reference signal,
which could then be subtracted from signal of cantilever system. In order to yield a symmetric line
shape at the differential output, the amplitude and phase of reference signal should be placed close to
the baselines of the asymmetric amplitude and the reversed phase, respectively, of the electro-thermal
piezoresistive cantilever.

The signals of electro-thermal piezoresistive cantilever sensor and reference circuit, during
measurement, are depicted in Figure 9. The sensor amplitude (Figure 9a, black full line) has a baseline
between ~0.466 V and ~0.418 V whilst the baseline of the phase (Figure 9b, blue full line) ranges from
~73.60◦ to ~72.93◦ in the same frequency band, i.e., from 180.25 to 181.65 kHz. The reference signal
was then adjusted to the baseline of the sensor signal by VR1 and VR2 (see Figure 8), which resulted in
a measured reference amplitude increasing from ~0.436 V to ~0.441 V and a phase response decreasing
from ~70.35◦ to ~ 70.12◦ in the examined frequency range (shown in red dash-dot line). The slight
sloping behavior is caused by the inductance of the RCL circuit.
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Subtracting the reference from the sensor signal yields the required symmetric amplitude shape
(Figure 10a, full line) and an extended frequency range of monotonic phase response (Figure 10b,
dash-dot-dot line). The resonant frequency is measured at f 0 = 181.052 kHz, the stop band rejection of
amplitude response increases from 83 mV to 173 mV, while the phase response range increases from
21.82◦ to 75.61◦.
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To evaluate the measured resonant frequency (obtained by the reference subtraction method),
a Fano fitting approach [25] was used to extract the resonant frequency f 0 and the quality factor Q of
the asymmetric signal. The f 0 and Q are the most relevant parameters of the resonant-mode line
shape, which have a main influence on the sensitivity and detection limit of added substances on the
cantilever. In the Fano fitting approach, the signal amplitude σ is modeled by Equation (3) to extract
the resonant frequency f 0, and Q is calculated using Equation (4).

σ =

(
f− f0

g + q
)2

(
f− f0

g

)2
+ 1
× H + σ0 + (c× f ) (3)

Q =
f0

2g
√√

2− 1
(4)

where q, f, g, H are the asymmetry factor, the frequency, curve width, and gain parameters respectively.
An offset σ0 and a term varying linearly with frequency (c × f ) represent a frequency-dependent
part of the baseline. In the calculation of Q, the term (c × f) is neglected, because it has only a small
influence on the resonance line shape.

The measured asymmetric amplitude response (cf. black full line of Figure 9a) and the
corresponding amplitude Fano fitting curve of an electro-thermal piezoresistive cantilever sensor
are depicted in Figure 11. For fitting the curve, we implement a nonlinear least squares method with
95% confidence interval, thereby resulting in f 0 ≈ 181.055 kHz and Q ≈ 936. By fitting the simple
harmonic oscillator (SHO) formula to the data of Figure 10a, we obtain f 0 = 181.052 kHz and Q = 858
from the measured differential resonance signal. The obtained results from the two approaches indicate
that the resonant frequencies are comparable and similar. The observed lower Q-factor obtained from
the measured differential resonance signal are caused by non-perfect reference signal.
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an electro-thermal piezoresistive cantilever with ZnO NRs and chitosan self-assembled monolayers.

4. Real-Time Resonant Frequency Tracking

Tracking of the resonance frequency is performed by implementing the PLL technique, as shown in
Figure 12. Applying sensor and reference signals at differential mode results in a symmetric amplitude
shape (black full line) and an extended range of monotonic phase response with no ambiguity in the
phase response (blue dash-dot-dot line), as depicted in Figure 13. The monotonic phase response
is applicable in the PLL-based system for resonant frequency tracking. From the highest peak of
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amplitude, the resonance phase ϕ0, is determined. It is subsequently used as a set point of phase.
In the PLL, this set-point value is subtracted from the measured phase difference (resulted from mixing
process of differential output and oscillator), generating a current error signal e(t). A proportional
controller (P-controller) results in an output that is proportional to e(t). The response time of the
P-controller is adjusted by a proportional gain Kp which, however, never reaches the steady state
condition and thus maintains the steady-state error. Due to this limitation, an integral controller (I)
is used in addition to eliminate the steady-state error. It integrates the current error e(t) with the
previous errors at every sampling time τ and then sums a cumulative error e(τ) over a certain time
until it approaches zero. The controller speed can be increased by enlarging the integral gain Ki and
the proportional gain Kp. Once the error signal is zero, the resonance frequency f 0 is determined and
can be tracked henceforth. These two PI parameters are set to achieve the highest precision possible,
while still accurately tracking the resonant frequency.
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Figure 12. (a) Measurement setup for real-time measurement of rH using an electro-thermal
piezoresistive cantilever with ZnO NRs and chitosan self-assembled monolayers and a commercial
thermohygrometer. (b) A block diagram of the reference-subtraction control system.

The experiment setup shown in Figure 12 is used to confirm the performance of the monotonic
phase response that is obtained by subtracting the reference signal from the sensor output. The resonant
frequency tracking under changing relative humidity (rH) has been realized by using a lock-in
amplifier with an integrated PLL system (MFLI, Zurich Instruments). For comparison, rH was
simultaneously measured using a commercial thermohygrometer (CA 1246, Chauvin Arnoux, Paris,
France). In these experiments, we investigated if the resultant nearly monotonic phase response would
yield an improved response during the resonance frequency tracking. Therefore, the test configuration
involved an assessment of the resonance response and rH using both the electro-thermal piezoresistive
cantilever sensor (coated with ZnO NRs and chitosan) and the commercial rH sensor under identical
conditions. Both sensors were simultaneously placed in a bottle filled with a chemical solution that
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defined a certain rH level. Different chemical solutions were used, including phosphor pentoxide
(P2O5), potassium acetate (CH3COOK), and magnesium nitrate (Mg(NO3)2). The sensors measured
rH (thermohygrometer) and the corresponding frequency shift (cantilever sensor) in the bottle over
time, and were then removed and stabilized at ambient air before sequentially transferring them to
another bottle-filled chemical solution.
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set point ϕ0 for the phase-locked loop (PLL) corresponds to the frequency f 0 of the amplitude maximum.

The experimental results (Figure 14) showed the resonant frequency shifts (cantilever sensor)
and relative humidity (thermohygrometer, commercial sensor) over time. The rH levels measured by
the thermohygrometer were 19.37 ± 0.77%, 37.88 ± 0.70%, and 50.68 ± 0.97% for P2O5, CH3COOK,
and Mg(NO3)2, respectively. In the P2O5 and CH3COOK solutions, the electro-thermal piezoresistive
cantilever sensor presents large frequency changes ∆f 0, i.e., ~268.8 Hz (region B–C) and ~99.9 Hz
(region D–E). Moreover, this cantilever sensor also stabilizes faster than the commercial sensor at
ambient conditions as shown in regions of C–D and G–H. Obviously, the ZnO NRs and chitosan on the
cantilever more directly interact with the ambient air by absorbing and desorbing of water molecules
thereby yielding a fast response during changes of ambient conditions compared with the commercial
sensor, which uses capacitive-based sensing technique. In this case, the water molecules should first
pass through the conductor plate before reaching the dielectric material, which then modifies its
capacitance value. Therefore, it takes some time to stabilize during the absorption phase for every
rH level. From here, we can conclude that the electro-thermal piezoresistive cantilever sensor with
ZnO NRs and chitosan layer shows a better response time during the absorption process compared to
the commercial rH sensor.

At higher rH level, i.e., Mg(NO3)2 solution, however, the electro-thermal piezoresistive cantilever
sensor exhibits a slower response time (see Figure 14 (region H–I)) compared to P2O5 and CH3COOK
solutions. This is supposedly caused by a non-ideal configuration between the sensor and reference
signals at higher concentration of the water molecules. This condition is expected due to the change
of the baselines of the amplitude and phase responses of the sensor output. Moreover, the Q-factor
changes with rH level as well. By applying a fitting curve method on the sensor amplitude responses,
Q-values of about 1893 and 1779 were respectively obtained at low (Figure 15a, 1st condition) and high
(Figure 15b, 2nd condition) rH levels. This is an improvement compared to the previously reported
Q-values for a ZnO-covered cantilever at different rH levels, in which it was observed to decrease from
514 ± 18 (rH = 30%) to 437 ± 15 (rH = 60%) [26].
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Figure 14. Time-dependent resonant frequency shift (∆f 0) and rH measurements using an electro-thermal
piezoresistive cantilever sensor and a thermohygrometer, respectively, between ambient conditions (rH of
~44–48%) and defined rH levels P2O5 (brown); CH3COOK (yellow) and Mg(NO3)2 (blue).
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Figure 15. (a) Ideal configuration between sensor and reference signals for optimizing its phase
response, while in (b) it is not ideal. For both operating conditions, the same reference signal is used.

The illustrations in Figure 15 explain how a non-ideal configuration between sensor and reference
signals can gradually occur after extended operation and a corresponding increase of added mass on
the electro-thermal piezoresistive cantilever sensor. At the beginning (1st condition), we have an ideal
configuration as shown in Figure 15a, i.e., the reference signals (red) are put in balanced positions
between the baselines of amplitude and phase, respectively, of the sensor signal. In the 2nd condition,
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the mass added to the cantilever had increased. In this case, we have a non-ideal configuration
of sensor and reference signals. Amplitude and phase values shifted downwards to the reference
signal as shown in Figure 15b. This condition is expected to reduce the symmetry of amplitude line
shape and to thus yield a reversed phase response again. As previously explained, a reversed phase
response leads to signal instability in resonance locking. Development of an adaptive reference signal
is therefore required to ensure a monotonic phase response during real-time measurement and to
overcome this issue.

5. Conclusions

Asymmetric resonance in electro-thermal piezoresistive cantilever sensors with ZnO NRs and
chitosan has been successfully suppressed by subtracting a reference signal from the sensor output.
This technique reveals that monotonic phase responses are suitable for implementation in a PLL system
for tracking the resonant frequency of the sensor. By subtraction of a reference, symmetric amplitude
shapes can be effectively obtained from measured asymmetric resonance signals. Nearly monotonic
phase responses achieved by this technique have been employed successfully in a PLL system, resulting in
effective frequency tracking under changing rH conditions. However, further investigation is still
necessary to implement reference signals under a wide range of conditions (e.g., in sensor assessments
towards exposure to chemical analytes) due to changing Q-factor of the sensor during measurement.
Moreover, an adaptive reference will become a further challenge to be undertaken.
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