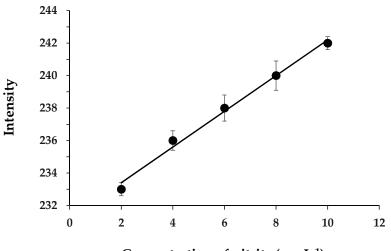


supplementary


One-Step Polylactic Acid Screen-Printing Microfluidic Paper-Based Analytical Device: Application for Simultaneous Detection of Nitrite and Nitrate in Food Samples

Siriwan Teepoo *, Supattra Arsawiset and Pitchayatida Chanayota

Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand; <u>arsawiset.supattra@gmail.com</u> (S.A.);

pitchayatida.jan@gmail.com (P.C.)

* Correspondence: <u>siriwan@mail.rmutt.ac.th</u>; Tel.: +66-02-549-3529

Concentration of nitrite (mg L⁻¹)

Figure S1. Calibration curves for nitrite.

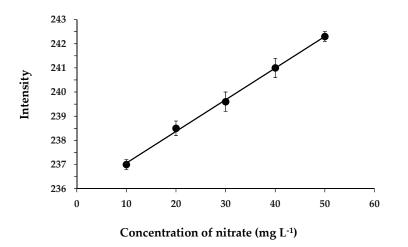


Figure S2. Calibration curves for nitrate.

Analyze	Real Sample	Analytical Method	Remarked	[Ref]
nitrate and nitrite	smoked sausage, chicken sausage, fish ball, meatballs, sour pork	μPAD	nitrite and nitrate reaction on chromatography paper and using scanner as detector	This work
nitrate and nitrite	tuna fish, tomato paste, infant food	electrothermal atomic absorption spectrometry	Indirect method; nitrite and nitrate were complex with Cu(I)- neocuproine before detection and also required liquid microextraction before real sample analysis	[1]
nitrite and nitrate	cheese, salam, Sausage	gas chromatography– mass spectrometry and liquid chromatography	nitrite was derivatived with 2,3- naphthotriazole to form fluorescent compound	[2]
nitrite	chips, pickle food, pickled vegetables	amperometry	using tetrasulfonated copper phthalocyanine modified glassy carbon electrode as working electrode	[3]
nitrite and nitrate	skim milk, whole milk, hydrolysate, buttermilk, infant formula	ion-exchange chromatography	required coupled post-column reduction of nitrate and derivatisation via Griess chemistry	[4]
nitrite and nitrate	baby foods	flow injection analysis	employing sulfanilamide and N-(1- naphthyl)ethylenediamine dihydrochloride as color reagents	[5]

Table S1. The comparison between different methods used for detection of nitrite and nitrate in food samples.

References

- Roohparvar, R.; Shamspur, T.; Mostafavi, A.; Bagheri, H. Indirect ultra-trace determination of nitrate and nitrite in food samples by in-syringe liquid microextraction and electrothermal atomic absorption spectrometry. *Microchem J.* 2018, 142, 135–139.
- [2] Akyuz, M.; Ata, S. Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography—mass spectrometry and liquid chromatography with fluorescence detection. *Talanta*. **2009**, *79*, 900–904.
- [3] Sudarvizhi, A.; Pandian, K.; Oluwafemi, OS.; Gopinathd, SCB. Amperometry detection of nitrite in food samples using tetrasulfonated copper phthalocyanine modified glassy carbon electrode. *Sens. Actuators. B. Chem.* 2018, 272, 151–159.
- [4] Gapper, LW.; Fong, BY.; Otter, DE.; Indyk, HE.; Woollard, DC. Determination of nitrite and nitrate in dairy products by ion exchange LC with spectrophotometric detection. *Int. Dairy. J.* 2004, 14, 881–887.
- [5] Chetty, AA.; Prasad, S. Flow injection analysis of nitrate and nitrite in commercial baby foods. *Food Chem.* **2016**, *197*, 503–508.