
Supporting Information

Electrochemical detection of H₂O₂ released from prostate cancer cells using Pt nanoparticle-decorated rGO-CNT nanocomposite-modified screen-printed carbon electrodes

Seokyung Lee¹, Young Ju Lee², Jae Hyung Kim¹ and Gi-Ja Lee^{1,2,*}

- ¹ Department of Medicine, Kyung Hee University Graduate School, Seoul 02447, Republic of Korea
- ² Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- * To whom correspondence should be addressed. E-mail: gjlee@khu.ac.kr

Figure S1. Changes in cathodic peak current (I_{Pc}) of CNT/rGO on GCE according to the mixing ratio between GO and CNT (wt/wt) in PBS solution (0.1 M, pH 7.4) containing 2.5 mM H₂O₂ and 0.1 M KCl.

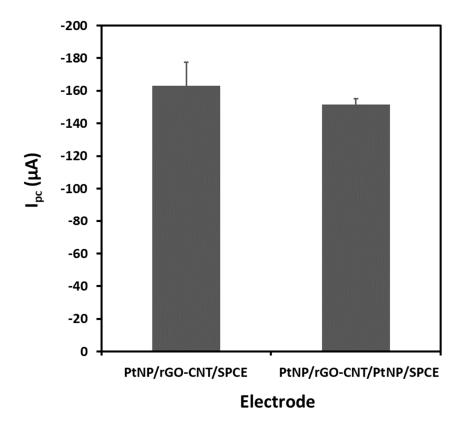


Figure S2. The cathodic peak current (I_{Pc}) of PtNP/rGO-CNT/SPCE and PtNP/rGO-CNT/PtNP electrodes (n=4, respectively) from the CV curves in N₂-saturated PBS solution (0.1 M, pH 7.4) containing 2.5 mM H₂O₂ and 0.1 M KCl at a₂potential range from -0.7 to 0.3 V (Ag pseudo-reference electrode) and at a scan rate of 50 mV/sec.

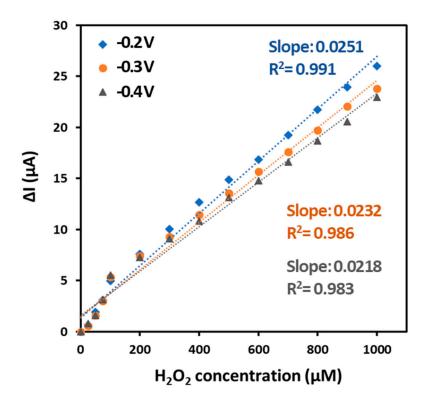


Figure S3. Effect of the applied potentials on the current response according to the H_2O_2 concentration.