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Abstract: Novel reliable and cost-effective potentiometric screen-printed sensors for free bilirubin
(BR) detection were presented. The sensors were fabricated using ordered mesoporous carbon (OMC)
as an ion-to-electron transducer. The ion-association complex [Ni(bphen)3]2+[BR]2− was utilized as a
sensory recognition material in the plasticized Polyvinyl Chloride (PVC) membrane. The membrane
was drop-casted on the OMC layer, which is attached on a carbon conductor (2-mm diameter).
In a 50 mM phosphate solution of pH 8.5, the electrodes offered a Nernstian slope of −26.8 ± 1.1
(r2 = 0.9997) mV/decade with a range of linearity 1.0 × 10−6–1 × 10−2 M towards free bilirubin with a
detection limit 8.8 × 10−7 M (0.52 µg/mL). The presented sensors offered good features in terms of
reliability, ease of design, high potential stability, high specificity and good accuracy and precision.
Chronopotentiometric and electrochemical impedance spectrometric measurements were used for
short-term potential stability and interfacial capacitance calculations. The sensors were used for the
determination of free bilirubin in biological fluids. The data obtained are fairly well consistent with
those obtained by the reference spectophotometric method. Based on the interaction of free BR with
albumin (1:1), the sensors were also utilized for the assessment of albumin in human serum.

Keywords: screen-printed; ordered mesoporous carbon (OMC); free bilirubin; human serum albumin
(HSA); point-of-care diagnostics

1. Introduction

Bilirubin (BR) is a tetrapyrrole compound that can be found in digestive juice due to the
breakdown of hemoglobin (Hb) in vertebrates [1]. It exists in two forms, un-conjugated bilirubin
(UCB), which is water insoluble and binds to albumin in serum, and conjugated bilirubin (CB)
(i.e., free bilirubin), which is conjugated with glucuronic acid in the liver [2,3]. The solubility of free
BR is pH dependent and can deposit in tissues [4]. Free bilirubin can accumulate in brain tissue,
leading to irreversible damage. This damage can lead to death through various neurological deficits,
seizures, abnormal reflexes and eye movements. Bilirubin-induced brain dysfunction is known as
kernicterus or bilirubin encephalopathy [5,6]. The reference concentration level of free BR in healthy
adults’ serum is 5–34 µM; however, in hyperbilirubinemia newborns, the level of free BR is higher
than 500 µM [7]. In cases of hyperbilirubinemia, it is very important to monitor the level of free BR in
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serum. Acute bilirubin encephalopathy, in which BR crosses the blood–brain barrier and can cause
irreversible neurological damage, has been found in newborns with normal levels of total BR but high
levels of free BR [8]. Therefore, analysis of free bilirubin at point of care will facilitate the proposed
treatment protocols that will reduce the risk of brain damage or death.

Several analytical techniques were reported for BR quantification, such as fluorimetry [9],
voltammetry [7], enzymatic electrochemical sensors based on enzymatic reactions [10–12],
chemiluminescence [13], high-performance liquid chromatography (HPLC) [14], piezoelectricity [15]
and capillary electrophoresis [16]. Bilirubin has been measured in clinical laboratories in three common
methods. The first is based on the reaction of BR with diazotized sulfanilic acid and the product is
measured spectrophotometrically [17]. This method is highly affected by pH variation. The second
method is a direct spectroscopic method which has severed interference from the presence of other
heme containing proteins and does not quantify free BR [18]. The last method is the transcutaneous
bilirubinometry (i.e., a skin reflectance technique), which is employed in most hospitals, and the
results can be influenced by skin pigmentation [19,20]. These methods suffer from severe limitations,
namely they are time consuming, complicated instruments are required, they are expensive and
non-reliable, multiple steps for sample preparation and separation are needed, and expensive and
unstable reagents are required. In addition, all of these methods are not able to determine free BR but
they measure only the total BR (complexed and free).

Ion-selective electrodes (ISEs) based on potentiometric transduction are characterized by many
distinctive features such as high sensitivity in measurement, good selectivity, easy operation and can
be a good alternative to free BR detection. These types of sensors have been widely used to detect
several analytes in clinical, environmental and industrial analyses [21–26]. Disposable screen-printed
electrodes (SPEs) can be integrated in potentiometric techniques and offered an attractive alternative to
the conventional potentiometry [27,28]. SPE can be assigned to mass-production technology, which is
based on the screening of the electro-conductive material and insulating inks at a controlled thickness
onto planar substrates made from different materials (i.e., plastic, ceramic, paper, polymers, etc.).
The integration of SPE in potentiometric techniques offered many advantages, such as: the elimination
of associated cumbersome handling related to the use of the conventional electrochemical cells, no need
for the lengthy cleaning procedures and ease of integration with portable instruments [29,30].

Direct application of the ion-sensing membrane to the screen of the electroc-conductive material
in SPEs can be considered as a type of coated wire electrodes (CWEs). These types of electrodes
rely on the blocked interface between ionic conductor (membrane) and electronic conductor and
in general show poor stability. Even if the interface is ideally blocked with no charge transfer a
variable parasitic capacitance will affect the stability of the signal [31]. However, in the solid-contact
ISEs (SC-ISEs), the solid-contact material inserted between the ion-sensing membrane (ISM) and
the electron-conducting substrate serves as the ion-to-electron transducer. Recently, carbon-based
nano-materials have been used as solid-contact transducers in manufacturing of potentiometric ISEs.
These materials include carbon nanotubes, graphene, graphene oxide (GO), ordered mesoporous carbon
(OMC) and carbon black. They are the most researched nano-solid contacts owing to their unique
characteristics including high interfacial area, fast charge transfer and excellent hydrophobicity [32].

To the best of our findings, only one cited paper-based potentiometric sensor was found to detect
free BR in human serum [33]. The sensor has an error in explaining the response mechanism of the
proposed sensor, lack of method validation and other important ions such as urate, creatinine and
dopamine that are present in the biological fluids were not studied in selectivity study.

In this work, a cost-effective, robust and reliable sensor based on potentiometric transduction
was prepared, characterized and presented for free bilirubin detection in human serum. The sensor’s
design is based on the use of screen-printed carbon platform modified with ordered mesoporous
carbon. The sensing material was the ion association of [Ni(bphen)3]2+[BR]2− complex in a plasticized
PVC matrix. The potentiometric characteristics of the proposed sensors, such as linearity, sensitivity,
selectivity and reliability, were studied. The short-term potential stability and double-layer capacitance
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of the sensor were characterized by chronopotentiometry and electrochemical impedance spectroscopy
measurements. The sensor was successfully introduced for free bilirubin detection in human serum.
Application to human serum albumin through indirect determination was also checked using the
proposed sensor.

2. Materials and Methods

2.1. Chemicals and Instrumentation

Bilirubin, L-ascorbic acid, D-(+)-glucose, creatinine, uric acid and dopamine were supplied from
Sigma-Aldrich (St. Louis, MO, USA) (www.sigmaaldrich.com). Tetrahydrofuran (THF), poly(vinyl)
chloride (PVC), 4,7-Diphenyl-1,10-phenanthroline (bphen) (≥97% purity) and o-nitrophenyloctyl ether
(o-NPOE) were purchased from Merck Inc. (Darmstadt, Germany). All the other chemicals were of
analytical grade and used as received.

All solutions were prepared using Millipore water (18.2 MΩ·cm). A 50 mMphosphate buffer
solution (PBS) of pH 8.5 was prepared and used as for serial dilutions and as a measurements
background. Stock solution of bilirubin was prepared in 1M NaOH and then the pH of the solution is
adjusted to pH 8.5. All bilirubin standard solutions were prepared in 50 mM phosphate buffer solution
(PBS) of pH 8.5.

Screen-Printed Carbon Electrodes (SPCEs) modified with Ordered Mesoporous Carbon (OMC)
(110 OMC) were purchased from DropSens (Metrohm, Switzerland). These SPCEs were designed for
the development of (bio)sensors with an enhanced electrochemical active area and enhanced electronic
transfer properties. They are based on ceramic substrate 9 L33 ×W10 × H0.5 mm) with silver electric
contacts. Electrochemical experiments were carried out using PXSJ-216 pH/mV meter (INESA-Scientific
Instrument Co. Ltd., Shanghai, China). Metrohompotentiostat/galvanostat (Autolab-model 204,
Herisau, Switzerland) were used for both chronopotentiometry and electron impedance spectroscopy
(EIS) measurements. In these measurements, screen-printed carbon electrodes (SPCEs) modified with
Ordered Mesoporous Carbon (OMC) as a three-electrode cell containing silver as a reference electrode
and carbon as an auxiliary electrode were employed. The current applied for these measurements was
±1 nA in a solution containing 50 µM bilirubin. The spectrophotometric studies were carried out on a
Shimadzu UV/VIS spectrophotometer (Shimadzu UV-1601 PC, Kyoto, Japan).

2.2. Sensors Constructions

The nickelII-bathophenanthroline/bilirubin ion-pair complex was prepared as previously
described [34]. A 100-mg portion of4,7-Diphenyl-1,10-phenanthroline (bphen) was dissolved in 25-mL
of ethanolic solution (70% v/v) followed by the addition of 1-mL of 0.1M nickel(II) sulfate. The solution
was stirred and mixed with a 3-mL aliquot of 1.0 × 10−1 M aqueous bilirubin solution (pH 8.5).
A greenish precipitate of NiII-bathophenanthroline/bilirubinate was formed, filtered, and washed
with de-ionized water several times. After drying, the precipitate was ground to fine powder and
exposed to elemental analysis. The obtained data confirmed the formation of [Ni(bphen)3][BR] ion-pair
complex. The elemental analysis obtained for the solid complex agree fairly well with the formula 1:1
of [Ni(bphen)3]2+[BR]2− (Calculated, C: 76.896%, H: 5.011%, N: 8.544%, found, C:76.834%, H: 5.004%,
N:8.523%).

The ion-sensing membrane (ISM) was prepared by dissolving 65.0 mg of PVC powder, 124.0 mg
of o-NPOE as a solvent mediator and 5.0 mg of [Ni(bphen)3][BR] ion-pair complex as previously
described [35]. All were dissolved in 2.0 mL THF until homogenous membrane cocktail is obtained.
A total of 10 µL of the previous cocktail solution was drop-casted over the ordered meso-porous
carbon (OMC) layer in the orifice of the screen-printed platform and then left to dry. The prepared
screen-printed electrode was conditioned before use in 10−3 M bilirubinate solution (pH 8.5) for
4 h. When not in use, the sensors were stored in de-ionized water. For various BR concentrations,
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the potential readings corresponding to each concentration was measured after potential stabilization
±2 mV and then plotted versus log [BR] concentration to construct the calibration graph.

2.3. Determination of Free BR in Presence of Albumin

A total of 1mL of albumin solution containing 800 µM was introduced to 9 mL of 50 mM PBS,
pH 8.5 containing different BR concentrations (100, 150, 200 and 500 µM). So, these solutions are now
containing 80 µM albumin as a final concentration. As reported in the literature [36], the binding of
BR to albumin is assumed to be 1:1. Therefore, each solution will contain 20, 70, 120 and 370 µM as
a detected free BR. The sensors were inserted in the test solution and the potential reading is then
recorded. From the calibration plot, the concentration of the free BR in each solution was detected.

2.4. Determination of Human Serum Albumin (HSA)

For the quantitative determination of human serum albumin (HSA), a calibration plot for albumin
was constructed. A total of 10 mL of 500 µM free BR, pH 8.5 was transferred to a 25-mL beaker and the
proposed electrochemical cell was immersed in the solution. After a constant potential reading was
obtained, different aliquots of albumin containing 100–400 µM were added. The potential reading after
each addition is recorded and the rate curves (potential/time) were plotted. The maximum initial rate
(∆E/∆t) was plotted versus the concentration of albumin. The constructed calibration plot was used for
albumin determination in unknown samples. In absence of albumin, a blank experiment was carried
out under the same conditions.

For HSA assessment in real samples, blood samples were collected from healthy volunteers
and then kept in the refrigerator for 8 h. Serum was extracted from the samples after centrifugation
at 12,000 rpm for 20 min. A total of 400 µL serum (100 µL in each injection) was added to 9 mL
phosphate buffer solution (PBS) of pH 8.5 contains 500 µM bilirubin. The potential reading after
sample addition is recorded and the rate curve (potential/time) was plotted. The maximum initial
rate (∆E/∆t) was calculated and compared with the calibration plot. All subjects gave their informed
consent for inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the National Research Centre
Medical Research Ethics Committee (HU/IACUC20187).

3. Results and Discussions

3.1. Response Characteristics of BR Sensor

The ion pair complexes of BR2− were prepared after its association with the cationic complex nickel
tris-bathophenanthroline [Ni(bphen)3]2+ to form a suitable sensing material used in potentiometric
membrane sensors. Bilirubin (BR2−) produces a well-defined water insoluble 1:1 ion association
complex upon its reaction with the divalent [Ni(bphen)3]2+ cation. This [Ni(bphen)3]2+[BR]2− complex
was incorporated with a suitable o-NPOE as a solvent mediator in a PVC matrix membrane [37].
Solid-contact bilirubin sensors based on [Ni(bphen)3]2+[BR]2− ion-association and ordered mesoporous
carbon (OMC) as an ion-to-electron transducer were prepared and characterized for free BR detection.
A schematic representation for the response mechanism of the proposed sensors is shown in Figure 1.
Over the concentration range of 1.0 × 10−7 to 1.0 × 10−3 M BR2−, the potential corresponding to each
concentration was recorded and plotted versus the log a(BR2)

−. The sensors revealed a Nernstian slope
of −26.8 ± 1.1 (r2 = 0.9997) mV/decade over the linear range of 1.0 × 10−6–1 × 10−2 M with a detection
limit 8.8 × 10−7 M (0.52 µg/mL). The potential plot versus log [BR2−] was presented in Figure 2.
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Figure 2. Potentiometric and time response of the proposed bilirubin sensor in 50 mM phosphate buffer
solution of pH 8.5.

The pH of the working solution was chosen to be 8.5, at which 99% of BR is present in its divalent
ionized form (pKa1 = 4.2, pKa2 = 4.9) [38]. So, 50 mM phosphate buffer solution of pH 8.5 was used as
a solution background for all subsequent measurements.

The response time of the presented sensor to attain 95% of the potential equilibrium was found to
be <5 s upon a 10-fold increase in BR2− concentration. As shown in Figure 2, the presented sensor
shows the fast response over a range of bilirubin concentration starting from 0.1 µM to 1.0 mM).
This wide linear range is enough to cover the clinically relevant concentration range of free BR in either
healthy patients or those suffering from hyper-bilirubinemia (30–500 µM) [39].

The long-term potential stability of bilirubin sensors was evaluated by continuously measuring in
freshly prepared bilirubin solutions with different concentrations (10 µM and 0.1 mM) for 15 days.
The sensors were stored in a dry state at room temperature. The sensitivity (in terms of slope of the
calibration plot) was calculated according to three assay results every day. The variation of the slope of
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calibration plots is <1.3 mV/decade after the third day and in the following 12 days, showing fairly
good stability.

3.2. Data Repeatability and Reproducibility

To check the repeatability and reproducibility of the presented method, the spread of results
when BR samples contained10–50.0 µM was measured either within a day or between-days.
These measurements were used to conform the data agreement between those obtained with the control
BR samples under different conditions with different sensors assemblies and instruments at different
times. The reproducibility (R) was calculated from the standard deviation data of the results (SR).

R = 2.8 × SR (1)

The reproducibility within a day and between days was found to be 1.7 ± 0.2–1.1 ± 0.4% and
1.3 ± 0.2–1.2 ± 0.5%, respectively.

3.3. Sensors’ Selectivity

The selectivity coefficients (Kpot
BR,J) of bilirubin sensor were evaluated using the modified separate

solutions method (MSSM) [40]. Typical potentiograms for all studied interfering ions are presented in
Figure 3. For sensors based on ion exchangers, selectivity is governed by the high lipophilicity of the
target ion. So, the high lipophilicity of BR permits it to be monitored by the proposed sensors with high
selectivity over the other less lipophilic species present in the bold serum. The calculated selectivity
coefficients of the presented sensor were shown in Table 1. The sensor revealed high selectivity over
different anions, such as Cl−, HPO4

2−, NO3
−, HCO3

−, salicylate, ascorbic acid, deoxycholate, lactate,
and pyruvate that are commonly present in serum. The data obtained showed good discrimination for
bilirubin over these common anions. According to literature survey, only one potentiometric sensor
was reported for bilirubin determination [33]. The sensor was paper-based and used the separate
solution method (SSM) for estimating the selectivity values. According to this method, bias selectivity
values were obtained because of the leaching of the primary ion from the membrane that influences the
response to the weakly interfering ion. Bias selectivity coefficient values may be also obtained when the
interfering agent is highly preferred and the sensor reveals counter ion interference. So, the modified
separate solutions method (MSSM) is used to determine the un-biased selectivity coefficients values
and the obtained values were compared with that reported by Bell et al. [33].
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Table 1. Selectivity coefficient values of the proposed screen-printed bilirubin sensor.

Interfering Ion *logPotKBR,I logPotKBR,I, [33] Physiological Levels in Serum

Cl− −5.32 ± 0.3 −6.11 98–106 mM, [41]
HPO4

2− −6.65 ± 0.7 −5.46 0.4–0.7 mM, [41]
NO3

−
−4.50 ± 0.2 −4.40 8–68 µM, [41]

HCO3
−

−5.71 ± 0.7 −6.25 17–29 mM, [41]
Salicylate −2.12 ± 0.4 −2.92 NR
Ascorbate −6.51 ± 0.6 −7.90 36–79 µM, [42]

Deoxycholate −4.4 ± 0.2 −4.33 5–10 µM, [43]
Lactate −5.91 ± 0.1 −6.47 0.5–1.8 mM, [44]

Pyruvate −6.31 ± 0.4 −6.50 40–120 µM, [45]
Creatinine −6.61 ± 0.7 - 35–140 µM, [46]
Dopamine −4.32 ± 0.8 - -

Urate −4.98 ± 0.9 - 200–430 µM, [47]

* Mean value obtained from three corresponding pairs of concentrations of BR and the respective interfering anion
in the Nernstian response range ± standard deviation.

3.4. Chronopotentiometry and Electrochemical Impedance Spectroscopy (EIS) Measurements

Short-term potential stability for the proposed sensors can be evaluated using the method proposed
by Bobacka 1999 [48]. The electrode is polarized after applying ±1 nA of direct current while the
potential of the electrode is recorded in the presence of 50 µM bilirubin solution. Upon reversing the
current, the bulk resistance of the sensor can be estimated from the Ohmic drop (iR). This approach
has become a standard method to estimate the short-term potential stabilities of all-solid-state ion
selective electrodes. The potential drift of the modified screen-printed electrode with OMC was
obtained calculated from the slope (∆E/∆t) of the curve and was found to be 0.3 mV/s. It was found
that these values are much lower than those obtained from the non-modified screen-printed electrode
(0.78 mV/s). The current-reversal chronopotentiogram for modified and non-modified BR sensors is
shown in Figure 4. These obtained data reveal that the potential stability of the modified screen-printed
BR electrodes is enhanced by inserting the OMC layer as a solid contact transducer. The low-frequency
capacitance (CL) for both modified and non-modified screen-printed BR electrodes was calculated to
be 52.3 ± 1.3 and 19.1 ± 0.8 µF, respectively.
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while the potential of the electrode is recorded in the presence of 50 µM bilirubin solution. Upon 
reversing the current, the bulk resistance of the sensor can be estimated from the Ohmic drop 
(iR).This approach has become a standard method to estimate the short-term potential stabilities of 
all-solid-state ion selective electrodes. The potential drift of the modified screen-printed electrode 
with OMC was obtained calculated from the slope (ΔE/Δt) of the curve and was found to be 0.3 
mV/s. It was found that these values are much lower than those obtained from the non-modified 
screen-printed electrode (0.78 mV/s). The current-reversal chronopotentiogram for modified and 
non-modified BR sensors is shown in Figure 4.These obtained data reveal that the potential stability 
of the modified screen-printed BR electrodes is enhanced by inserting the OMC layer as a solid 
contact transducer. The low-frequency capacitance (CL) for both modified and non-modified 
screen-printed BR electrodes was calculated to be 52.3 ± 1.3 and 19.1 ± 0.8 µF, respectively. 
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un-modified/modified with OMC as a three-electrode cell containing silver as a reference electrode 

Figure 4. Chronopotentiogram for (A) un-modified and (B) modified bilirubin sensors. Conditions:
applying current= ±1 nA; 50 µM bilirubin (BR) solution.

Impedance measurements were carried out using the screen-printed carbon electrodes (SPCEs)
un-modified/modified with OMC as a three-electrode cell containing silver as a reference electrode and
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carbon as an auxiliary electrode. The cell was immersed in 50 µM BR solution. The impedance spectra
were plotted within the frequency range 100 kHz–10 mHz as a sinusoidal excitation signal. A typical
impedance spectrum of the proposed sensors is shown in Figure 5. From the high-frequency semicircle,
the bulk resistances (Rb) of the modified and non-modified screen-printed electrodes were found to
be 0.84 ± 0.6 and 1.3 ± 0.2 MΩ, respectively. From the low frequency semicircle of the modified and
non-modified screen-printed electrodes, the double-layer capacitance (CL) were found to be 51.4 ± 0.7
and 18.8 ± 0.6 µF. This confirms that the existence of the OMC layer as an ion-to-electron transducer
significantly contributes to faster charge transportation between the interfaces and offers a stable
potential response for the presented BR solid-contact sensor.
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3.5. Bilirubin Assessment in Serum

The applicability of the proposed sensors for the successful determination of free BR in different
sample solutions was examined. The sample solutions contained different known concentrations
of BR (i.e., 100, 150, 200 and 500 µM) in the presence of 80 µM of albumin as a final concentration.
The levels of free BR in these samples were potentiometrically measured using the BR sensor. The data
obtained were compared with those obtained by the standard spectrophotmetric kit (Bilirubin Assay
Kit (Z5030053), BioChain, CA, USA) (Table 2). The standard reference method utilized the reaction of
bilirubin with diazotized sulfanilic acid, in which a red-colored product was formed and the intensity
of the color was measured at 510–550 nm. From t-student and F tests, the obtained results show that
there are no significant differences between the results obtained by the two methods and showed the
successful applicability of the presented sensor as a new analytical protocol for free BR assessment.

Table 2. Free BR assessment in presence of albumin using the proposed bilirubin sensor.

Sample Nominal Content of BR,
µM+ 80 µM of Albumin

Free BR Found, µM
t-Student Test b F-Test b

Proposed Method * Reference Spectrophotometric
Method *

1 100 17.4 ± 1.3 18.2 ± 1.1 2.3 4.6
2 150 62.7 ± 2.2 64.2 ± 1.5 3.1 5.2
3 200 119 ± 3.5 115.7 ± 1.4 1.8 6.1
4 500 362.6 ± 4.1 365.3 ± 2.1 2.1 5.3

* Mean of three replicate measurements ±standard deviation (SD); bt-Student and F-test at 95% confidence level
values are 4.30, 19.00 respectively.
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3.6. Application to Human Serum Albumin (HSA) Determination

For further validity use of the presented sensors, they were tested in detecting human serum
albumin (HSA). When diluted HSA solutions react with an excess of BR, there is a good approach to
the overall reaction expressed as:

BR2− + HSA� [BR2−][HSA] (2)

The reaction kinetics follow 2nd-order behavior. The potential E of the bilirubin sensor used for
monitoring the reaction is given by:

E = E0
− 0.0591/2 log [BR] (3)

Differentiating Equation (3) with time produces:

∆E/∆t = −0.059/2 × 1/[BR] × ∆[BR]/∆t (4)

∆[BR]/∆t = −k [BR][HSA] (5)

where k is the overall reaction rate constant. Substituting Equation (5) in Equation (4) yields:

∆E/∆t = 0.059/2 × k [HSA] (6)

From all of the above, the initial rate of substrate consumption measured from the initial slope of
the potential–time graph (mV/s) will be linearly related to the HSA concentration. As shown in Figure 6,
at 500 µM BR concentration as a background, a measurable change in the reaction rate at different HSA
concentration was obtained with a better linearity of calibration plot (from 100 to 400 µM), and a fast
response of the sensor was revealed for albumin detection. Herein, the experiment demonstrates the
successful application of the presented sensor in the indirect assessment of albumin in addition to the
free bilirubin.
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4. Conclusions

Novel screen-printed electrodes based on potentiometric transduction were fabricated and
presented for free bilirubin detection. The sensors were modified with ordered mesoporous
carbon (OMC) as an ion-to-electron transducer. The sensory material was the[Ni(bphen)3]2+[BR]2−

ion-association complex, which is dispersed in a plasticized PVC membrane. The sensors revealed
a Nernstian slope of −26.8 ± 1.1 (r2 = 0.9997) mV/decade over a linear range of 1.0 × 10−6–1 ×
10−2 M with a detection limit of 8.8 × 10−7 M (0.52 µg/mL) towards free bilirubin. They exhibited
considerable stability and good performance characteristics in terms of durability, ease of manufacture,
potential stability, selectivity and accuracy. The sensors were used for the successful determination of
free bilirubin in human serum. In addition, the sensors were successfully used for the determination of
human serum albumin (HAS). The kinetic assessment is based on the interaction of free bilirubin with
albumin in the stoichiometric ratio (1:1).
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