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Abstract: We report a paper-based electrochemical immunosensor made with sustainable materials to
detect aflatoxin B1 (AFB1), a highly toxic, carcinogenic mycotoxin found in food. The immunosensor
was prepared with a waterproof paper substrate and low-cost graphite-based conductive ink through
a simple cut-printing method. The working electrode was functionalized with a drop-cast film
of multiwalled carbon nanotubes (MWCNT)/chitosan on which a layer of anti-AFB1 monoclonal
antibodies was immobilized covalently. The architecture of the immunosensor was confirmed with
polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and electrochemical
impedance spectroscopy (EIS), including the effective immobilization of the active layer of anti-AFB1.
With EIS as the principle of detection, the immunosensor could detect AFB1 in the range from 1 to
30 ng·mL−1, and detection limit of 0.62 ng·mL−1. This sensitivity is sufficient to detect AFB1 in food
according to regulatory agencies. The immunosensor exhibited good repeatability, reproducibility,
stability, and selectivity in experiments with a possible interferent. Furthermore, detection of AFB1
in maize flour samples yielded recovery of 97–99%, in a demonstration of the possible use of the
paper-based immunosensor to detect AFB1 using extraction solutions from food samples.

Keywords: disposable immunosensor; electrochemical detection; aflatoxin B1; chitosan; carbon
nanotubes; paper-based sensor

1. Introduction

Aflatoxin B1 (AFB1) is a highly toxic mycotoxin secreted as a secondary metabolite by fungi species
such as Aspergillus flavus and Aspergillus parasiticus [1]. It is found as a contaminant in animal feed and
agricultural products, particularly in peanuts seeds, wheat, corn, beans, rice, soy, starch, as well as oils
and milk [2,3]. Because of its carcinogenic, mutagenic, and teratogenic nature, AFB1 has been associated
with deleterious effects on the health of humans and animals [4,5]. It is therefore relevant to develop
sensitive, reliable methods for the rapid detection of AFB1. Commonly used analytical methods for
AFB1 detection involves enzyme immunoabsorbent assay (ELISA) [6] and chromatographic assays [7]
which are time-consuming, costly, and require extensive sample preparation and highly trained
personnel [8]. Alternatives to detect trace levels of AFB1 have been electrochemical immunosensors
that rely on highly specific antibody-antigen recognition, providing high sensitivity and selectivity,
simplicity, low reagent consumption, low detection limit, easy operation, and portability [7,9–11].
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Indeed, disposable electrochemical sensors fabricated with low-cost manufacturing processes and
sustainable and cheap materials have been used to detect a series of analytes [12–17]. Special attention
has been devoted to the preparation of electrodes through printing deposition of single or multiple layers
of conductive ink onto a paper substrate [18–22]. Sensors made with conductive graphite-based inks
are advantageous owing to the flexibility, low cost, disposability, renewability, and ease of preparation.
Their performance can be further improved by modifying the electrodes’ surface via deposition of
nanoparticles [14,23], conductive polymers [19,24], and carbon-based materials [25,26] because of their
stability, electrical conductivity, and large surface area [27,28].

Functionalized multiwalled carbon nanotubes (MWCNTs) have been employed in electrochemical
immunosensors [29,30] in order to exploit their electrical properties in addition to their large surface
area-to-volume ratios and presence of functional groups for binding antibodies [31–33]. They may
be used in conjunction with chitosan, a biopolymer with outstanding characteristics for matrices in
biosensors for its biocompatibility, biodegradability, and non-toxicity. Chitosan also possesses reactive
functional groups to attach antibodies, including primary amine (-NH2) and primary and secondary
hydroxyl groups (-OH) [34–36]. Therefore, combining carbon nanotubes with chitosan may lead to
synergy in reaching a matrix with large number of active sites for immobilization of molecules and
enhanced electrochemical properties.

Herein, we developed a disposable paper-based electrochemical immunosensor for the fast and
sensitive determination of AFB1 in food samples. The sensing system was fabricated through a simple
and low-cost process by using a novel conductive ink composed of shellac, graphite, and carbon black on
a waterproof paper substrate. A chitosan/MWCNTs film was then deposited on the working electrode
via drop-casting and a layer of antibodies was covalently immobilized. The morphology, spectral
characteristics, and electrochemical properties of the immunosensor were investigated. Electrochemical
impedance spectroscopy was used for determining the AFB1 concentration. The developed platforms
were successfully applied to the rapid, sensitive, and specific determination of AFB1 on extraction
solutions from real food samples, thus being promising for food safety monitoring.

2. Experimental Section

2.1. Reagents

Multiwalled carbon nanotubes functionalized with carboxylic acid (MWCNT), aflatoxin B1,
anti-AFB1 antibody, ochratoxin A, N-ethyl-N’-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC),
N-hydroxyl succinimide (NHS), and MES buffer were purchased from Sigma-Aldrich.
Chitosan (average degree of deacetylation = 95%; viscosity average molecular weight = 85,000 g·mol−1)
was acquired from Cheng Yue Planting Co Ltd (Shenzhen, China) and purified according to the
methodology described in ref. [37]. Shellac was purchased from Acrilex (São Bernardo do Campo/SP,
Brazil), while graphite and carbon black were acquired from Synth (Diadema/SP; Brazil) and Cabot
(Boston, MA, USA), respectively. Adhesive paper was used as substrate from PIMACO (A4 ink-jet/laser
288.5 × 200.0 367 BIC®, Rio de Janeiro/RJ, Brazil).

2.2. Fabrication of Disposable Printed Electrodes

The electrodes were prepared in four stages as illustrated in Figure 1. First, a mixture of
graphite/carbon black powders (90/10 (w/w)) was suspended in shellac in a proportion of 30% (w/w)
and then treated with a disperser type UltraTurrax® (IKA, D125 Basic, Wilmington/NC, USA) for
3 min at 3500 rpm, yielding a homogeneous conductive ink. A thin layer of conductive ink was
deposited on the waterproof paper surface by using a paint spatula and dried at 40 ◦C for 1 h in
an air-circulating oven. Masks comprised of working (diameter = 3.3 mm), counter, and reference
electrodes were cut from as-prepared conductive sheets by using a cut printer (Silhouette, model 3,
Moema/SP, Brazil). The electrodes were removed and glued onto the surface of the waterproof paper,
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which was prepared by depositing a layer of shellac onto the paper surface. The electrode was designed
with the Silhouette Studio software.
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Figure 1. Preparation of disposable electrodes using a simple approach: (A) conductive ink preparation;
(B) application of the conductive ink on a sheet of self-adhesive paper; (C) the devices were cut using a
silhouette printer; (D) next, they were removed and glued onto the surface of the waterproof paper,
which was prepared by depositing a layer of shellac onto the adhesive paper surface, being ready for
further functionalization.

2.3. Functionalization of Printed Electrodes and Antibody Immobilization

The functionalization of working electrodes was performed using the drop-casting method.
MWCNTs were dispersed in a diluted aqueous acetic acid solution (1% (v/v)) via ultrasound treatment
(Branson-Sonifer, model 450D) for 3 min at 20 kHz to result in a concentration of 0.5 mg mL−1.
Then, 1 mL of the suspension was mixed with 1 mL of chitosan solution (0.5 mg/mL−1) in the same
solvent and placed again in ultrasound treatment under the operational conditions described before.
After optimization, 10 µL of filmogenic suspension were deposited onto the working electrode and
dried at 30 ◦C for 40 min in an air-circulating oven. The resulting composite film was neutralized
with 10 µL of 1 mol L−1 NaOH solution, washed with distilled water, and dried at 30 ◦C for 40 min.
For the immobilization of anti-AFB1, a solution of EDC (0.8 M) and NHS (0.2 M) in 0.1 mol·L−1 MES
buffer was dripped onto the modified electrode. This solution was maintained in contact with the
electrode for 40 min at 25 ◦C to activate the amine groups from chitosan and the carboxylic groups
from MWCNTs [38,39]. After rinsing the electrode with 10 mM PBS (pH 7.4) and drying at room
temperature, 10 µL of anti-AFB1 solution (100 µg/mL) in 0.1 mol·L−1 MES buffer were deposited onto
the modified working electrode and left for 40 min at 25 ◦C. Next, the electrode was washed with PBS
to remove non-immobilized antibodies and dried. In order to block non-active sites [38,40], 10 µL of
5 mg mL−1 BSA solution were deposited and let for 30 min at 25 ◦C. Then, the electrode surface was
rinsed with PBS and stored at 4 ◦C until use.



Chemosensors 2020, 8, 87 4 of 14

2.4. Morphological, Structural, and Electrochemical Characterization of Sensing Platforms

The morphology of the nanocomposites was evaluated using field emission scanning electron
microscopy (FESEM) with a Philips-XL30 FEG-SEM microscope. Polarized-modulated infrared
reflection absorption spectroscopy (PM-IRRAS) (KSV PMI550) was used to investigate the interactions
between chitosan/MWCNTs films and anti-AFB1. Electrochemical impedance spectroscopy (EIS) and
cyclic voltammetry (CV) measurements were performed using a potentiostat (Autolab PGSTAT 204
Metrohm) controlled with NOVA 2.1 software. The EIS experiments were carried out by applying a
voltage of 10 mV AC in the frequency range of 0.1 Hz to 10 kHz with open circuit potential (OCP).
The CV tests were performed in the potential range of −0.4 V to 0.4 V using a 5 mM solution of
ferri/ferrocyanide [Fe(CN)6]3−/4− dissolved in 10 mM PBS solution (pH 7.4). A pre-treatment process
was performed on the disposable electrodes before the measurements in the potential range of −1.5 V
to 1.5 V with a scanning speed of 50 mV using a solution of H2SO4 (0.5 mol·L−1).

2.5. Electrochemical Detection of AFB1

A stock solution of AFB1 in methanol (1 µg·mL−1) was prepared and aliquots were diluted with
PBS buffer yielding solutions with concentrations from 1 to 30 ng·mL−1, which were used to obtain the
calibration curve. In each measurement, 50 µL of AFB1 solution at a given concentration were dropped
onto the working electrode and left for 10 min. After rinsing the electrode with PBS, electrochemical
impedance measurements were performed in 5 mM of [Fe(CN)6]3−/4− in PBS. The same electrode was
used for measurements of different AFB1 concentrations.

2.6. Data Analysis with Information Visualization Techniques

The Nyquist spectra were processed with the multidimensional projection technique referred
to as interactive document mapping (IDMAP) using the Projection Explorer Sensors (Pex-Sensors)
software [41,42]. With IDMAP one may obtain 2-D maps by calculating the dissimilarity between two
spectra through the Euclidean distance in the original space X = {x1, x2, . . . , xn} and lower dimension
space Y = {y1, y2, ..., yn}. The placement of data points on the 2-D map is made using an error function

(injective function) (Equation (1)) that minimizes the term
∣∣∣∣δ(xi, x j

)
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where δmax and δmin are maximum and minimum distances between data instances, δ
(
xi, x j

)
is the

distance between two samples in the original space and d
(
yi, y j

)
is the distance between two samples

on the projected space (lower dimension space).

2.7. Application of the Immunosensors for Real Food Sample Analysis

Two AFB1-free maize flours from Brazilian brands purchased from a local market were used to
prepare solutions with 20 mL methanol/water (80:20, v/v), 1 g NaCl, and 5 g maize flour. The mixture
was shaken for 30 min on the flat mixer and then centrifuged at 6000 rpm for 10 min. An aliquot of
10 mL of the supernatant was diluted with 30 mL PBS and filtered with glass fiber. The extracts were
spiked with AFB1 at concentrations varying from 1 to 30 ng mL−1 [39].

3. Results and Discussion

3.1. Morphological, Electrochemical, and Spectral Characterization of Electrodes

Field emission scanning electron microscopy (FESEM) was used to evaluate the surface morphology
of the working electrodes, and Figure 2A shows a heterogeneous, rough, and lamellar-like surface for
the non-modified electrode. The surface of the cast chitosan/MWCNT film deposited onto the working
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electrode in Figure 2B is more homogenous and smoother, which was preserved after anti-AFB1
immobilization (Figure 2C).
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Figure 2. Field emission scanning electron microscopy (FESEM) image of the working electrode before
(A) and after modification with the chitosan/multiwalled carbon nanotubes (MWCNT) film (B) and
anti-AFB1 immobilization (C).

The electrochemical performance of non-modified electrode upon pretreatment was investigated
by using cyclic voltammetry (CV). The potential range was from −1.5 V to 1.5 V in 0.5 mol·L−1

H2SO4 solution at a scan rate of 50 mV·s−1, and the number of scanning cycles was varied. After
each scanning cycle, CV measurements were taken in the presence of the redox probe Fe(CN)6]3−/4−.
Figure 3A shows three CV cycles in H2SO4, and the CVs in Fe(CN)6]3−/4− solutions in Figure 3B indicate
an increase in the anodic and cathodic current peaks after the pretreatment [43]. This increase is
attributed to the activation of the carbon electrode surface. It also demonstrates that pre-treatment with
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only one scanning cycle is sufficient to improve the electrode response, which was then adopted in the
subsequent electrochemical studies. The electrochemical behavior at different stages of immunosensor
preparation was investigated by CV with the redox probe Fe(CN)6]3−/4−, as shown in Figure 3C.
The electrodes functionalized with chitosan/MWCNT film had an increased redox peak owing to the
MWCNTs. The peak current slightly decreased after antibody immobilization because anti-AFB1 is not
conducting. Electrochemical impedance spectroscopy (EIS) also confirmed the increase in conductivity
after electrode modification with chitosan/MWCNT film, followed by a decrease with immobilization
of anti-AFB1 (Figure 3D). The charge transfer resistance (Rct) for the pristine electrode was 93 Ω,
while deposition of the chitosan/MWCNT film changed it to 42 Ω. After immobilization of anti-AFB1,
Rct was 86 Ω.
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Figure 3. (A) Cyclic voltammetry (CV) measurements for 1, 3, and 5 scanning cycles in a solution of 
H2SO4 (0.5 mol L−1) in 50 mV·s−1, for the platform containing graphite, carbon black, and shellac in its 
composition. (B) CV measurements with the redox probe Fe(CN)6]3−/4− in 10 mM PBS buffer (pH 7.4) 
with a speed of 100 mV s−1 for disposable devices before and after the electrochemical pre-treatment; 
(C) CV and (D) electrochemical impedance spectroscopy (EIS) measurements with Fe(CN)6]3−/4−  in 
10 mM PBS buffer (pH 7.4) at different stages of immunosensor preparation. 

The immobilization of anti-AFB1 on chitosan/MWCNT-modified electrode is also corroborated 
by comparing the PM-IRRAS spectra in Figure 4. The spectrum of chitosan/MWCNT shows the 
characteristic bands of chitosan and MWCNT, as follows: The absorption band at 1350 cm−1 is due 
to amide III; the 1570 cm−1 band corresponds to the combination of N—H in-plane bending and C—
N stretching of amide II; at 1630 cm−1 there is C=O stretching of amide I from chitosan [44,45]. The 

Figure 3. (A) Cyclic voltammetry (CV) measurements for 1, 3, and 5 scanning cycles in a solution of
H2SO4 (0.5 mol L−1) in 50 mV·s−1, for the platform containing graphite, carbon black, and shellac in its
composition. (B) CV measurements with the redox probe Fe(CN)6]3−/4− in 10 mM PBS buffer (pH 7.4)
with a speed of 100 mV s−1 for disposable devices before and after the electrochemical pre-treatment;
(C) CV and (D) electrochemical impedance spectroscopy (EIS) measurements with Fe(CN)6]3−/4− in
10 mM PBS buffer (pH 7.4) at different stages of immunosensor preparation.

The immobilization of anti-AFB1 on chitosan/MWCNT-modified electrode is also corroborated
by comparing the PM-IRRAS spectra in Figure 4. The spectrum of chitosan/MWCNT shows the
characteristic bands of chitosan and MWCNT, as follows: The absorption band at 1350 cm−1 is due to
amide III; the 1570 cm−1 band corresponds to the combination of N—H in-plane bending and C—N
stretching of amide II; at 1630 cm−1 there is C=O stretching of amide I from chitosan [44,45]. The band at
1220 cm−1 is attributed to asymmetric stretching of C—O—C and the band at 1740 cm−1 is due to C—O
carbonyl stretching of MWCNT [33]. Covalent attachment of anti-AFB1 on activated chitosan/MWCNT
layer occurs via the linkage between −NH2 groups of chitosan with −COOH groups from anti-AFB1,
and through linkage of −NH2 groups of anti-AFB1 with −COOH terminal of MWCNTs resulting in
amide bonds [46,47]. As illustrated in Figure 4B, the bands corresponding to amide I and II at 1578 cm−1

and 1622 cm−1, respectively, become less intense and are shifted to lower wavenumbers after anti-AFB1
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conjugation. These alterations are attributed to the increase in oscillation energy of N-H/C-N dipoles
and modification in molecular orientation of N-H/C-N/C=O dipoles [33]. They provide evidence that
anti-AFB1 was covalently bound on the activated chitosan/MWCNT layer. In fact, the interaction
between AFB1 and the film caused a decrease in band intensity at 1570 and 1630 cm−1. Therefore,
the interaction between AFB1 and chitosan/MWCNT film affects the molecular orientation of amide I
and II (N-H/C-N/C=O) dipoles from chitosan and AFB1.
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Figure 4. (A) Polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) 
spectra for the chitosan/MWCNT at different steps of anti-AFB1 conjugation and (B) PM-IRRAS 
spectra in the range 1565–1645 showing the structural modifications on chitosan/MWCNT layer. 
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Figure 4. (A) Polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) spectra
for the chitosan/MWCNT at different steps of anti-AFB1 conjugation and (B) PM-IRRAS spectra in the
range 1565–1645 showing the structural modifications on chitosan/MWCNT layer.

3.2. Electrochemical Detection of Mycotoxin AFB1

The analytical performance of the electrochemical immunosensors to detect AFB1 was evaluated
by Faradaic impedance measurements performed with the redox pair ([Fe(CN)6]3−/4−) in triplicate.
Figure 5A shows the Nyquist plots for an immunosensor in AFB1 solutions at different concentrations
(the whole study included concentrations from 1 to 30 ng·mL−1, as shown in Figure S1 in the
Supplementary Materials). The equivalent circuit used as a model for calculating the values of Rct
comprises a resistance associated with the electrolytic solution Rs, and two branches representing
the electrolyte-film and the film-substrate interfaces. The branch related to the electrolyte interface
contains the double layer capacitance (CdL) and a diffusion impedance defined by a straight line
whose inclination is 45◦ [48], corresponding to the Warburg impedance (represented by a constant
phase element CPE)) and a charge transfer resistance (Rct). The branch related to the film-substrate
interface comprises a charge transfer resistance (Rct) and the double layer capacitance (CdL). The Rct
values decreased linearly with the logarithm of AFB1 concentration, as indicated in Figure 5B. The data
can be fitted using linear regression with Rct (Ohm) = −23.08 × log[AFB1] (ng/mL) + 76.93 (R2 = 0.99).
The detection limit (D.L.) of 0.62 ng·mL−1 was calculated from the ratio between the standard deviation
(σ) value of the response of three measurements by using an AFB1 solution with fixed concentration and
the slope (S) of calibration curve (D.L. = 3.3 σ/S) [49,50]. This D.L. is below the maximum allowed level
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of ABF1 in food established by European Union and the U.S. Food and Drug Administration (FDA)
legislation, which are 2 ng·mL−1 and 20 ng·mL−1, respectively [51,52]. Hence, this immunosensor is
adequate for monitoring food regarding AFB1 contamination.
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Figure 5. (A) Electrochemical impedance measurements for the electrode modified with chitosan/MWCNT
films and with the anti-AFB1 immobilized after the antibody/antigen incubation time with different
concentrations of AFB1. The inset (i) shows the equivalent circuit model used to fit and analyze the
impedance data. (B) Rct × logarithm of AFB1 concentration from 1 to 30 ng mL−1.

A visual inspection of the Nyquist plot in Figure 5A,B shows that changes caused by the
AFB1-chitosan/MWCNT interaction depend on the AFB1 concentration. This strategy can be
complemented by employing information visualization methods. We have used the multidimensional
projection interactive document mapping (IDMAP) to generate the 2D plot in Figure 6 using the data
of Figure 5A. In the plot, each point represents one Nyquist spectrum for an AFB1 concentration.
From Figure 6 one notes a clear separation of the low AFB1 concentrations, up to 10 ng/mL, which is the
ideal working concentration range for the immunosensors. At high concentrations the data points tend
to cluster together, as expected because in an immunosensor the signal saturates when the majority of
adsorption sites are taken.
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The inter-electrode and intra-electrode reproducibility were verified through repeated experiments
using a 20 ng mL−1 AFB1 solution. In three successive measurements, the relative standard
deviation (RSD) for a given electrode was 3.58%, which increased to 7.80% when three identical
electrodes were used. These values indicate that the immunosensors provide reproducible results.
The immunosensor stability was assessed by measuring response currents after three weeks of
storage at 4 ◦C. The results revealed that immunosensor maintained 90% of its initial current signal,
which indicates its long-term stability for anti-AFB1 detection. The immunosensor had similar
performance to others reported in the literature, as shown in Table 1 [39,40,53,54]. As expected, the
limit of detection of our immunosensor is not as low as in some of the previous reports, but it is
advantageous because the sensing system was fabricated through a simple and low-cost process
combined to a novel conductive ink formulation.

Table 1. Comparison of analytical performance of modified electrodes for detection of aflatoxin B1.

Immunoelectrode Linear Range
(ng mL−1)

Detection Limit
(ng mL−1)

Reference

BSA/anti-AFB1/AuNPs 0.001–100 0.0002 53

BSA/anti-AFB1/chitosan-AuNPs 0.1–1;
1–30 0.06 40

BSA/anti-AFB1/chitosan-AuNPs 0.2–2;
2–30 0.12 39

BSA/anti-AFB1/GO 0.05–6 0.05 54
BSA/anti-AFB1/chitosan/MWCNT 1–30 0.62 This work

3.3. Interference Studies and Real Sample Analysis

The selectivity of the electrochemical immunosensors was evaluated in the presence of interfering
ochratoxin A, another mycotoxin found in food. Faradaic impedance measurements were performed
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with samples containing different concentrations of aflatoxin B1 and ochratoxin A (1 and 30 ng·mL−1)
as well as in the presence of both mycotoxins at a concentration of 1 ng mL−1 each. Figure 7 shows that
Rct did not change in the presence of different concentrations of ochratoxin A. Furthermore, for the
measurement using the mixture of the two mycotoxins, the result was similar to the one with aflatoxin
B1 only, which demonstrates the high selectivity toward aflatoxin B1.
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Figure 7. Rct values for the chitosan/MWCNT and chitosan/MWCNT with immobilized anti-AFB1
immunosensor in the presence of interfering mycotoxin (ochratoxin A).

The applicability of the electrochemical immunosensor to detect AFB1 on two brands of commercial
maize flour samples was demonstrated. The recovery rates for sample 1 and sample 2 were 97%
and 99%, respectively, in a clear evidence of the accuracy and feasibility of the immunosensor to detect
AFB1 using extraction solutions from food samples.

4. Conclusions

A low-cost disposable paper-based immunosensor made with chitosan/MWCNT films modified
with anti-AFB1 has been employed to detect aflatoxin B1. The impedimetric immunosensor exhibited
high sensitivity combined to a suitable detection limit of 0.62 ng mL−1 and a linear range of detection
from 1 to 30 ng·mL−1. Also, the sensing platform proved useful for detecting aflatoxin B1 using
extraction solutions from maize flour samples, and showed high selectivity in the presence of another
mycotoxin. This paper-based immunosensor was developed with a simple experimental procedure
that can be replicated for other types of biosensors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9040/8/3/87/s1,
Figure S1: Electrochemical impedance measurements for the electrode modified with chitosan/MWCNT films and
with the anti-AFB1 immobilized after the antibody/antigen incubation time with different concentrations of AFB1
(1 to 30 ng·mL−1).
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