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Table S1. Groove widths and depths for used nucleic acid sequences [1,2]. 

Structure type Groove width [Å ] Groove depth [Å ] 

major minor major minor 

[a] poly rA –  poly rU   3.8 10.9 13.5 2.8 

[b] poly dA –  poly dT  11.4 3.3 7.5 7.9 

[c] poly dGdC – poly dGdC    13.5 9.5 10.0 7.2 

[c] poly dAdT – poly dAdT   11.2 6.3 8.5 7.5 

[a]  A-helical structure (e.g. A-DNA) 

[b]  C-helical structure (e.g. C-DNA) 

[c]  B- helical structure (e.g. B-DNA) 
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a)  

b)  

Figure S1. Chemical equilibria (a) and mole fraction distribution of species (b) for 4’-(N,N-

dimethylamino)-6-hydroxyflavylium in aqueous solution; data from ref. 20 in the paper 
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Figure S2. Changes in the UV/Vis spectra of F1 (c = 1  10-5 mol dm-3, sodium 

cacodylate buffer, pH = 5.0, I=0.05 mol dm-3) upon addition of polynucleotides. 
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Figure S3. Changes in CD spectra of ds-polynucleotides (c = 2  10-5 mol dm-3 ) upon 

addition of F1 at different ratios r = [F1] / [ds-polynucleotide] (sodium cacodylate 

buffer, pH = 5.0, I=0.05 mol dm-3). 
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Fitting titration data for calculation of binding constants 

 

Large errors with Scatchard analysis[3]are often encountered (please see I. R. 

Klotz, Ligand-Receptor Energetics, John Wiley & Sons, Inc. New York, 1997). 

Since the concentration of observable species can determine the number of 

binding sites reflected in the isotherm, the apparent stoichiometry can change 

based upon the concentration of the observable species. In addition, the errors 

associated with assigning spectral properties of the 100% “free“ versus the 

100% “bound” become amplified in all the data points, since the fraction bound 

at each data point is calculated from these two extremes. The data points for 

the 100% free and the 100% bound states are, therefore, “weighed” much more 

heavily than the points in the middle of the titration. 

On the other hand, non-linear analysis of binding data can help reduce the 

errors associated with quantifying the spectral properties of these “extreme” 

(and often inaccurate) data points. Non-linear analysis typically weighs all data 

points equally and fits all the points to a theoretical curve. However, it is 

advisable to carefully choose experimental conditions to assure that all dye 

molecules bind to dominant binding sites – this is done by preliminary 

experiment for rough estimation of binding affinity and then repeating more 

detailed titration at conditions of an excess of DNA/RNA binding sites over 

c(dye), which allows each dye molecule to find its dominant binding site 

according to J.D. Mc Ghee, P.H. von Hippel formalism for non-cooperative 

binding[4]. More detailed considerations how to organize titration experiment 

and analysis are nicely summarised in J. Lah and G. Vesnaver, J Mol Biol, 2004, 

342, 73 (pp 80). 
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Scatchard equation adapted for non-linear fitting procedure: 

Parameter Names: K, EpsKompleks, EpsLigand, n 

Independent variables: cDNA,cLigand 

Dependent variable: A 

A = EpsKompleks*cK + EpsLigand*(cLigand-cK)+ EpsDNA*(n*cDNA-cK); 

cK=(n*cDNA+cLigand+1/K-((n*cDNA+cLigand+1/K)^2-

4*n*cDNA*cLigand)^0.5)/2; 

Whereby K is binding constant; EpsKompleks is fluorescence intensity of dye/ 

polynucleotide complex divided by c(dye); EpsLigand is fluorescence intensity 

of dye divided by c(dye); n =[bound dye] / [polynucleotide]; cDNA is 

c(polynucleotide); cLigand is c(dye). 
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