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Abstract: In this paper, an algal identification and concentration determination method based on
discrete excitation fluorescence spectra is proposed for online algae identification and concentration
prediction. The discrete excitation fluorescence spectra of eight species of harmful algae from four
algal categories were assessed. After determining typical excitation wavelengths according to the
distribution of photosynthetic pigments and eliminating strongly correlated wavelengths by applying
the hierarchical clustering, seven characteristic excitation wavelengths (405, 435, 470, 490, 535, 555, and
590 nm) were selected. By adding the ratios between feature points (435 and 470 nm, 470 and 490 nm, as
well as 535 and 555 nm), standard feature spectra were established for classification. The classification
accuracy in pure samples exceeded 95%, and that of dominant algae species in a mixed sample
was 77.4%. Prediction of algae concentration was achieved by establishing linear regression models
between fluorescence intensity at seven characteristic excitation wavelengths and concentrations. All
models performed better at low concentrations, not exceeding the threshold concentration of red tide
algae outbreak, which provides a proximate cell density of dominant algal species.

Keywords: excitation fluorescence spectra; classification; concentration prediction

1. Introduction

In recent decades, occurrences of harmful algae blooms (HABs) have increased dramat-
ically, causing serious ecological damage and economic loss. The monitoring of HABs has
become an environmental concern worldwide [1]. More than 300 species have been reported
to cause HABs, approximately 80 of which are toxic [2]. Certain blooms, i.e., Phaeocystis sp.
in China [3] and Chattonella sp. in Japan [4], have caused massive fish mortality within a
few hours. Therefore, the rapid and accurate identification of causative species, particularly
toxic species, is of great importance for better management and controlling HABs.

Today, many techniques are in use for monitoring HABs, simply classified as image-
based [5], fluorescence-based [6–8] and molecular-based technologies [9]. Image recog-
nition technology is the most commonly used technology since the invention of the first
microscope. Combined with flow cytometry, microalgae could be clearly imaged since
2006 [10]. However, it remains difficult to identify algae smaller than 10 µm [11]. Molec-
ular methods, i.e., DNA barcoding and real time polymerase chain reaction (PCR), have
become well developed recent years [12], enabling a new prospective view on HABs. In
situ molecular tools have been very limited and expensive [13] and require an environ-
mental sampler processor [14]. Chlorophyll was first used as an indicator of production
of phytoplankton production [15] and a fluorometer is one of the most popular tools
for monitoring HABs. Then, in situ fluorometers with multiple excitation wavelengths
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were used to not only identify the content of Chl a, but also the content of other photo-
synthetic pigments, resulting in further characterization of HAB species. Pigment-based
approaches using fluorometric measurements have proven to be a promising tool for in
situ explorations of bloom compositions [7,8]. Three-dimensional (3D) fluorescence spectra
are often referred to as the fingerprint of target species because of their unique excitation
and emission wavelengths. Three dimensional fluorescence was successfully utilized for
identifying microalgae at the phyla level under variable circumstances [16]. Chlorophyta,
Cyanobacteria, Heterokontophyta, Haptophyta, Dinophyta, and Cryptophyta were identified
by the first submersible fluorometer, using multiple linear regression as calculation and
calibration method [17]. Later, the genera Alexandriu, Catenatum, and Chlorella could be
recognized via 3D fluorimeter [8,18]. Data processing for the identification of phytoplankton
pigmentation was also improved. Principal component analysis (PCA) [19] and Fisher’s
linear discriminant analysis (LDA) [20] are typically used to reduce the dimensionality, and
are commonly applied for analyzing data of 3D fluorescence spectra. Further processes
were developed to improve accuracy, i.e., Support vector machines (SVM) [21] and artificial
neural networks [22]. However, the achieved level of accuracy is still far from that required
to identify the HABs at the species level.

Therefore, considering the currently available techniques and statistical methods,
to better identify toxic HAB species (e.g., Alexandrium tamarense, Amphidinium carterae,
Phaeocystis globosa, Prymnesium parvum, Chattonella marina, and Heterosigma akashiwo) among
the non-toxic and common species Prorocentrum donghaiense and Skeletonema costatum, the
present study developed a new identification model based on excitation fluorescence spectra
measured in the laboratory. The proposed method not only achieves the rapid identification
of dominant HAB species, but also predicts their concentration in mono- and mixed-culture.

2. Materials and Methods
2.1. Phytoplankton Cultivation and Spectral Data Measurement

Eight marine HAB species, Alexandrium tamarense (AT), Amphidinium carterae (AC),
Phaeocystis globosa (PG), Prymnesium parvum (PP), Chattonella marina (CM), Heterosigma
akashiwo (HA), Prorocentrum donghaiense (PD), and Skeletonema costatum (SC), were selected
as target species. Algae were monoculture, single cell isolated from the East China Coast
and maintained in f/2 medium at 20 ◦C, 30‰ and 100 µmol m−2 s−1 of light intensity, with
a 12:12 light: dark cycle. All species were identified morphologically and AT, AC, PG, CM,
HA, and PP were identified with molecular methods. Subsamples for fluorescence detection
and enumeration were collected at the exponential growth stage under the above- mentioned
experimental conditions. Monoculture of each species was used first to establish feature
spectra, then, every two species of all eight algae were mixed according to concentration ratios
of 1:1, 1:3, 1:6, 3:1 and 6:1 (10,000 cells/mL represent a proportion of 1). Cell concentrations
were determined in a Sedgewick–Rafter chamber using a microscope at 100X.

Initial fluorescence excitation spectra were determined under an F-4600 fluorescence
spectrophotometer (Hitachi, Naka, Japan). The composition of photosynthetic pigments
was typical for each family or genus of phytoplankton (Table 1). Excitation wavelengths
were selected based on the absorption peak of those pigments, ranging from 40–600 nm at
interval of 1 nm (slit width 10 nm and photomultiplier tube voltage 400 V). The emission
wavelength was fixed at 680 nm because of the maximum absorption peaks and excita-
tion/emission matrix of those algal species (Figure 1). To suppress noise interference, each
sample was measured five times in parallel and the average was used as the final excitation
fluorescence spectral data.

2.2. Data Preprocessing

Spectral data were first analyzed through noise removal and standardization. Discrete
wavelet transformation (DWT) analysis was used to remove spectral noise, mainly based
on the time-frequency localization characteristics of the wavelet. This method decomposes
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the signal into high- and low-frequency components and then removes part of the high-
frequency information.

Table 1. Composition of pigments in different species of algae.

Scheme Phyla
Chlorophyll Carotenoids

Chl a Chl c1 Chl c2 Chl c3 Per Diad Fuco 19’Hex 19’But Zea β,β-carotene

CM Raphidophyta
√ √ √ √ √ √

HA

PG Haptophyta
√ √ √ √ √ √ √ √

PP

AC
Dinophyta

√ √ √ √ √
AT
PD

SC Bacillariophyta
√ √ √ √ √ √

Name and abbreviation of pigment: Chlorophyll a (Chl a); Chlorophyll c1-c3 (Chl c1-c3); Peridinin (Per); Diadinoxanthin (Diad); Fucoxanthin
(Fuco); 19′ Hexanoyloxyfucoxanthin (19’Hex); 19′Butanoyloxyfucoxanthin (19’But); Zeaxanthin (Zea).

Figure 1. Demonstration of excitation/emission matrix of Amphidinium carterae.

The key step for DWT is to select the threshold for quantization [23]. There are two
types of thresholds: hard and soft thresholds. A signal processed by a hard threshold can
be rougher than that processed by a soft threshold but may lose important information.
Hence, soft threshold processing is used more often for denoising.

In DWT analysis, the suitable wavelet also plays a key role. The energy-to-Shannon
entropy ratio [24] was used to select the most suitable wavelet function and level of
decomposition. A wavelet function with an appropriate level of decomposition maximizes
the value of energy-to-Shannon entropy ratio.

The energy-to-Shannon entropy was calculated for each sample using 22 wavelets,
i.e., haar, db2–db10, sym2–sym8, and coif1–coif5 at the third to fifth levels. For most
samples, the db10 wavelet at the third level of decomposition maximizes the values of
energy-to-Shannon entropy. Therefore, db10 with a third decomposition level was chosen
as the mother wavelet. In the first step, the db10 wavelet decomposes the spectrum into
A1 (approximation) and D1 (detail) coefficients. In the second step, db10 decomposes
A1 into A2 and D2 coefficients. In the final step, A2 is decomposed into A3 and D3. For
high-frequency coefficients at each decomposition scale, an appropriate threshold T is
selected for soft threshold quantization, for which the following formula is used:

T = σ
√

2 log2 N (1)
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where σ is the standard deviation of noise, estimated according to the decomposed detail D1
and N is the length of the spectrum. For each sample, D1 was obtained first by decomposing
the original spectrum to estimate σ; then, the threshold T could be determined according
to Formula (1). Two common noise-removal methods were compared here, i.e., Savitzky–
Golay and empirical mode decomposition (EMD).

Finally, standardization was performed to eliminate the difference in spectral intensity
caused by different concentrations when identifying algal species. The mean variance
method was adopted, and the relative mean value of the normalized fluorescence intensity
ranged between 0 and 1. The shape of spectra remained unchanged.

2.3. Data Processing for Algal Identification

Feature extraction followed these three steps: First, the excitation fluorescence spec-
tra were recorded to acquire an idea of spectral similarities and differences among the
assessed eight species of algae. Second, typical excitation wavelengths of marker pigments
were selected based on the photosynthesis principle of algae and the characteristic peaks
of absorption spectra of each pigment [25]. Third, the positions of peaks and troughs
of excitation spectra were determined in different algae. After combining all selected
wavelength positions, a new discrete excitation fluorescence spectrum with less typical
excitation wavelengths was established for each algal sample to further identification
and quantification.

Softmax classifier [26] was used for statistical analysis of data. For a training set
T =

{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
, the hypothesis function was applied to

estimate the probability value p(y(i) = j
∣∣∣x(i)) for each label y. The probability was judged

for each label y. If there is a total of k labels, the hypothesis function would output a
k-dimensional vector representing estimated probability values. The hypothesis function is
expressed in the following:

hθ(x(i)) =


p(y(i) = 1

∣∣∣x(i); θ)

p(y(i) = 2
∣∣∣x(i); θ)

...
p(y(i) = k

∣∣∣x(i); θ)

 =
1

k
∑

j=1
eθT

j x(i)


eθT

1 x(i)

eθT
2 x(i)

...
eθT

k x(i)

 (2)

where θ is the unknown parameter of this model. Based on the hypothesis function, the
following cost function is established:

J(θ) = − 1
m

 m

∑
i=1

k

∑
j=1
{y(i) = j} log

eθT
j x(i)

k
∑

j=1
eθT

j x(i)

 (3)

To minimize the cost function and calculate the parameter θ = [θ1, θ2, . . . , θk], a
gradient descent algorithm was used. The gradient of the cost function to the parameter
weight was optimized by calculating the partial derivative of the cost function. Finally,
according to the final probability value of k labels, the highest probability value was selected
as the result of discrimination.

2.4. Data Processing of Concentration Measurement

Because of the detection limit of the utilized fluorometer and the cell size of HAB
species assessed in this study, the concentrations of algae were specifically designed,
with small cells (smaller than 20 µm) at 10,000 cells/mL, middle cells (20–100 µm) at
1000 cells/mL, and large cells (larger than 100 µm) at 100 cells/mL.



Chemosensors 2021, 9, 293 5 of 16

To evaluate cell concentration, mono or mixed cultures were prepared at specific
concentrations and scanned by fluorometer at corresponding excitation wavelengths. The
relationship between fluorescence intensity and cell density at different excitation wave-
lengths was also studied. Excitation wavelengths with good linear fit to cell density were
preserved. Based on the selected excitation wavelengths, norm spectra with fluorescence
intensity information for each species at certain concentration were established. The
concentration was calculated according to the established linear model as follows:

F = ∑ fk · c + ε (4)

where ε is the random error and c represents the cell density. The measured spectra F and
the norm spectra fk are presented in their vector forms in the following:

F = [F1, F2, . . . , Fi]
T (5)

fk = [ fk,1, fk,2, . . . , fk,i]
T (6)

where Fi is the excitation fluorescence spectrum measured at wavelength i and fk,i is the
kth norm spectrum measured at wavelength i. c is calculated using the non-negative least
squares method, which minimizes the norm of the residual between measured spectra Fi
and reconstructed spectra. The formula is presented in the following:

minimise‖F− fk ĉ‖2

ĉ ≥ 0
(7)

The restraint set is based on the fact that the concentration is non-negative.

3. Results
3.1. Denoising Results

Taking AC as example, the denoised spectra based on three different methods are
shown in Figure 2. The estimated signal-to-noise ratio (SNR) and root mean square error
(RMSE) were used for comprehensively evaluating the denoising effect. The SNR and
RMSE, calculated based on these three methods, are shown in Table 2. Although EMD
presents a smoother result in Figure 2c than the other two methods, SNR is the lowest and
RMSE is the largest, which means that useful information may be lost after denoising. The
denoising effect of wavelet analysis and the Savitzky–Golay method seem to be similar,
but wavelet analysis method performs better considering SNR and RMSE. Therefore, DWT
was used in the following.
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Figure 2. Excitation fluorescence spectra before and after noise removal based on three different denoising methods:
(a) with soft threshold quantization under db10 wavelet at the third level (discrete wavelet transformation (DWT)), (b) with
the Savitzky–Golay Filter, and (c) with the empirical mode decomposition (EMD) filter.

Table 2. Comparison of denoising effects based on three different methods.

Methods SNR RMSE

DWT 144.0 0.3
Savitzky–Golay 140.4 0.4

EMD 136.6 0.4

For all eight species of algae, the RMSE and SNR values are shown in Table 3, indicat-
ing a relatively low RMSE and high SNR, which indicates a good denoising effect.

Table 3. Denoising effect of selected algae based on a discrete wavelet transformation (DWT) filter.

Label Species SNR RMSE

1 Amphidinium carterae 144.0 0.3
2 Phaeocystis globosa 140.2 0.3
3 Chattonella marina 146.6 0.4
4 Alexandrium tamarense 141.8 0.4
5 Prorocentrum donghaiense 142.7 0.5
6 Heterosigma akashiwo 142.2 0.4
7 Prymnesium parvum 146.3 0.3
8 Skeletonema costatum 139.8 0.4

3.2. Algal Identidication

Of all eight target HAB species, four of each phyla, CM (from Raphidophyta), PG (from
Haptophyta), AC (from Dinophyta), and SC (from Bacillariophyta) were first selected and
their initial spectra are shown in Figure 3 with unique pigmentation composition (Table 1).
In these spectra, excitation wavelengths of 435 nm (Chl a), 460 nm (Chl c1-c3), 470 nm
(Peridinin), 490 nm (Fucoxanthin), 495 nm (Diadinoxanthin, Zeaxanthin and β,β-carotene)
and 520 nm (19′Butanoyloxyfucoxanthin and 19′ Hexanoyloxyfucoxanthin) are included.
Moreover, a range of ±5 nm was considered for each wavelength (Figure 3a–d).

Chl a plays a fundamental role in peripheral antennas of PS II [27], which exists in all
these algae. In prior research, the level of Chl a was widely used to measure the degree of
eutrophication [28,29]. Additionally, its position is distinguishable in the spectra. Therefore,
435 nm, corresponding with Chl a, was chosen first.
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Figure 3. Excitation fluorescence spectra measured at the exponential growth phase under the condition at 20 ◦C, 30‰ and
100 µmol m−2 s−1 of light intensity with a 12:12 light:dark cycle, and the location of peaks of pigments of algae: (a) CM
(from Raphidophyta), (b) PG (from Haptophyta), (c) AC (from Dinophyta), and (d) SC (from Bacillariophyta).

Peridinin (470nm) is the marker pigment of Dinophyta and its position is separate
from other phyla; therefore, 470 nm was selected. Zeaxanthin (460 nm and 495 nm) was
used as marker pigment for Raphidophyta, and 19’ Hex and 19′ But. However, (490 nm
and 520 nm) were used as marker pigments of Haptophyta. The positions of characteristic
peaks of multiple pigments were very close and even overlapped, e.g., in Diadinoxanthin
(460 nm and 495 nm) and Zeaxanthin (460 nm and 495 nm), Fucoxanthin (490 nm), and
19’ Hex (490 nm). Therefore, it was difficult to match all positions of marker pigments with
the excitation wavelengths one-to-one, making it difficult to select typical wavelengths
merely based on the position of marker pigments.

Fortunately, the proportions of these pigments are different, which is reflected in the
changing trend of the excitation fluorescence spectra, e.g., the position shifts of peaks and
troughs of excitation fluorescence spectra. These features can also be utilized to determine
typical excitation wavelengths. Here, a peak-finding algorithm based on the difference
function was used to search and determine peaks and troughs of the excitation fluorescence
spectra of these eight species. The two toxic algae, AC and AT, from the same phylum are
compared, and the peaks and troughs are marked with a positive triangle and inverted triangle,
respectively, in Figure 4a,b. Although these two species of algae share a similar composition,
the fluctuating trends of the curves, as well as the position of peaks and troughs, may differ.



Chemosensors 2021, 9, 293 8 of 16

Figure 4. Process of feature extraction. (a,b) Peaks and troughs of smoothed excitation fluorescence spectra of AC and
AT; (c) Hierarchical clustering graph of 17 wavelengths; (d) Feature spectra of eight species of algae at seven wavelengths;
(e) Three ratios of relative fluorescence intensity between 435 and 470 nm, 470 and 490 nm, as well as 535 and 555 nm;
(f) Norm spectra of AC, PG, SC, and PD.
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After combining all peak and trough positions with the wavelengths of Chl a and
Peridinin (435 nm and 470 nm), the following 17 different excitation wavelengths were
initially selected: 405, 415, 420, 435, 445, 450, 465, 470, 490, 505, 525, 530, 535, 555, 560,
570, and 590 nm. To further reduce the number of excitation wavelengths, the shortest
distance hierarchical clustering method [30] was used to reflect the correlation of these
17 different wavelengths. Wavelengths with strong correlation with others were removed.
As shown in the hierarchical clustering graph (Figure 4c), the 11th and 12th wavelengths
(525 nm and 530 nm, respectively) were categorized into one category first, which means
that they had the strongest correlation. Furthermore, the 12th wavelength also had a strong
correlation with the 13th wavelength (535 nm). Therefore, 530 nm was deleted first. At
each step, one wavelength was deleted, and new discrete characteristic excitation spectra
were established with the remaining excitation wavelengths only.

The new discrete characteristic excitation spectra were set as feature spectra for train-
ing the Softmax Classifier model. To train and test the model, 80 monocultures of each
species were cultured in the same environmental conditions and were randomly classified
into training sets and validation sets according to a ratio of 7:1. Another eight pure samples
of each were used as testing sets. In total, there were 560 training samples, 80 validation
samples and 64 testing samples. The number of excitation wavelengths was reduced each
time. When the number of wavelengths had been reduced to seven, the identification
accuracy of the validation sets of monocultures exceeded 90%, and the accuracy of the test
sets of monocultures reached 88.2%. This represents a comparatively improved recognition
result. Therefore, discrete excitation wavelengths of 405, 435, 470, 490, 535, 555, and 590 nm
were selected for establishing feature spectra (Figure 4d).

The overall accuracy of identifying dominant HAB species from the mixed culture
was 67.7%. To increase the accuracy of dominant algae identification in mixtures, further
features were obtained based on other methods. The ratios of the relative fluorescence
intensity between 435 and 470 nm, 470 and 490 nm, as well as 535 and 555 nm in discrete
excitation fluorescence spectra were selected (Figure 4e). To evaluate the quality of the
added features, the discriminative probability values were compared. These were the
output of the Softmax classifier and could reflect the probability that test samples would
be discriminated as each species of algae. In this study, each test sample was assigned
eight discriminative probabilities corresponding to eight species of algae. The largest prob-
ability would be accepted as the corresponding label. With the seven-wavelength discrete
excitation fluorescence spectra as standard spectra for training, the average discriminative
probabilities were 54.3–88.9%. After adding new features, the average probability increased
to 75.8–98.1% (Table 4).

Table 4. Comparison of discriminant probabilities of different algae by adding features.

Label Species
Probability (%)

Initial Data (1 × 7) Feature1 (1 × 10) 1

1 Amphidinium carterae 77.0 89.3
2 Skeletonema costatum 77.8 80.9
3 Alexandrium tamarense 86.3 98.1
4 Prorocentrum donghaiense 88.9 97.1
5 Phaeocystis globosa 65.3 87.8
6 Heterosigma akashiwo 56.4 92.4
7 Prymnesium parvum 88.2 85.3
8 Chattonella marina 54.3 75.8

1 Feature 1: add three ratios with initial data.

For all eight species of algae, the probability increased by different degrees, except
for PP. Therefore, by adding new features, 10 new features of eight species of algae were
set as standard feature spectra for the training and testing of the classification model. The
identification accuracy for the pure test set exceeded 95%. The identification accuracy
indicates the proportion of the number of predicted samples in the total number of testing



Chemosensors 2021, 9, 293 10 of 16

samples. Moreover, for each species of pure testing algae, the precision, recall, and f1−score
were calculated to evaluate the model. The details of these evaluation indexes are expressed
in the following:

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

f 1− score = 2× precision× recall
precision + recall

(10)

where TP is the number of positive samples that were correctly predicted, FP is the number
of samples belonging to negative samples that were predicted to be positive, and FN is
the number of samples belonging to positive samples that were predicted to be negative.
In general, precision represents how exactly the respective species are predicted and recall
implies whether all species have been identified. For example, there is a total of eight
samples of AC among the testing samples, seven samples are accurately predicted as
AC, but one sample is misidentified as a different species; then, the precision would be
“7/(7 + 0)” and the recall would be “7/(7 + 1)”. A higher precision is always accompanied by
a lower recall. Sometimes the f1−score that combines precision and recall with the harmonic
mean can produce a balanced result to better evaluate the classifier.

In Table 5, the precision and recalls of SC, PD, PG, and PP reached 1.00, indicating that
their features could be easily distinguished from others. Regarding the other four species
of algae, the precision of AC was 1.00, but the recall was 0.88, and recall of AT was 1.00, but
the precision was 0.89. This implies that wrong classification existed between AC and AT.

Table 5. Precision, recall, and f1−score of test samples of eight species of algae.

Label Species Precision Recall F1−Score

1 Amphidinium carterae 1.00 0.88 0.93
2 Skeletonema costatum 1.00 1.00 1.00
3 Alexandrium tamarense 0.89 1.00 0.94
4 Prorocentrum donghaiense 1.00 1.00 1.00
5 Phaeocystis globose 1.00 1.00 1.00
6 Heterosigma akashiwo 0.89 1.00 0.94
7 Prymnesium parvum 1.00 1.00 1.00
8 Chattonella marina 1.00 0.88 0.93

Specifically, the confusion matrix was used to compare classification results with
actual values (Figure 5). One sample of AC was erroneously classified as AT, leading to a
decrease in the precision of AT and the recall of AC. Although Figure 4a,b show that their
feature points are different, sometimes, because of changes in the cell densities, there may
be a shift in position of feature areas, especially in the range of 470–535nm. Moreover, AT
and AC belong to the same phylum and share a similar pigment composition. Because
of these factors, their feature spectra are quite similar, and can thus be easily confused.
Similarly, one sample of CM was erroneously identified as Ha for similar reason. Generally,
100% accuracy was achieved among different phyla.

After adding features, the overall identification accuracy rate of the dominant species
in mixed test samples increased from 67.7–77.4%. The specific identifying results of each
species of algae are shown in Table 6. The identification accuracy rates vary in different
species of algae, and the results were greatly affected by the size of algae. For example,
Chattonella is the largest among all the algae, and even if its ratio only accounts for 1/3, a
good identification can still be obtained. However, smaller algae, such as PG, PP, and SC,
can only be identified when the ratio well exceeds 50%. This can be explained because in a
mixture, smaller algae are easily obstructed by the larger algae. Furthermore, the disparity
of pigment content inside each cell also plays a key role. In summary, this model performed
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well for all these eight species of algae if the relative content of the dominant algal species
exceeded 50%.

Figure 5. Confusion matrix of eight species of tested algal samples.

Table 6. Results of identification in mixed samples according to new features.

Ratio
(%)

Identification Accuracy Rates (%)

AC PG CM AT PD HA PP SC

14.3 14.3 14.3 85.7 57.1 28.6 57.1 0 0
25.0 14.3 14.3 85.7 57.1 42.9 57.1 14.3 0
50.0 71.4 57.1 100.0 85.7 71.4 85.7 42.9 42.9
75.0 85.7 85.7 100.0 100.0 85.7 100.0 100.0 100.0
85.7 100.0 100.0 100.0 100.0 85.7 100.0 100.0 85.7

Generally, identification based on pigment contents enables relatively high accuracy.
However, this method may be limited to changes of external factors. Sometimes, because of
changes in the environment (e.g., temperature and salinity), the content of certain pigments
may also change, which may make discrimination more difficult. Fortunately, such variety
in environmental factors is limited. Especially for AC and PD, the total pigment ratio
remains almost unchanged [31,32].

3.3. Concentration Prediction

The concentration model based on non-negative least squares was used to calculate
the corresponding cell density. Two toxic algae and two non-toxic algae were used for the
experiment: Amphidinium carterae and Phaeocystis globose, and VS Skeletonema costatum and
Prorocentrum donghaiensis. Their outbreaks are frequent and their biomass is difficult to
calculate. Different concentrations of algae were prepared by diluting the pure culture
with artificial sea water. Because this research focuses on the period before algal bloom, the
species involved were only collected at the exponential growth phase.

The linear relationship between fluorescence intensity and cell density at each excita-
tion wavelength (405, 435, 470, 490, 535, 555, and 590 nm) was assessed first (Figure 6). The
result shows that the R2 value in all linear models for these four species of algae exceeded
0.99 (p < 0.05), indicating good linearity at all seven wavelengths. Therefore, norm spectra
were constructed based on the seven-wavelength discrete excitation fluorescence spectra
for four species of algae (Figure 4f).
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Figure 6. Linear function between fluorescence intensity and concentration at seven characteristic excitation wavelengths
for four species of algae: (a) Amphidinium carterae (toxic algae); (b) Phaeocystis globose (toxic algae); (c) Skeletonema costatum
(non-toxic algae); and (d) Prorocentrum donghaiensis (non-toxic algae).

After confirming species, the norm spectrum was used to calculate the cell density
by the model. With all designed concentration ratios, only the dominant species were
targeted (Figure 7). The black line was fitted by standard concentration and the red circles
indicate measured concentrations. In general, the red circles are quite close to the standard,
especially at the initial part of the axis where the cell densities are below 5.35× 104 cells/mL.
More details of the results are shown in Table 7.

Figure 7. Concentration test results for monocultures of four species of algae.
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Table 7. Comparison of results for pure samples and mixed samples.

Sample Species
Designed

Concentration
(Cell/mL)

Measured
Concentration

(Cell/mL)
RE (%) ARE (%) Recovery Rate

(%)

1

AC

250 290 16.2

22.4

116.3
2 2500 3048 21.9 121.9
3 25,000 27,268 9.1 109.1
4 250,000 143,822 −42.3 57.5

5

PG

1400 1613 15.3

13.3

115.3
6 14,000 13,143 −6.1 93.9
7 140,000 124,671 −10.9 89.1
8 1400,000 1109,493 −20.8 79.2

9

PD

327 361 10.5

10.3

110.5
10 3270 3506 7.2 107.2
11 32,700 33,308 1.9 101.8
12 327,000 256,581 −21.5 78.5

13

SC

535 634 18.6

11.0

118.5
14 5350 6343 18.6 118.5
15 53,500 52,902 −1.1 98.9
16 535,000 504,867 −5.6 94.4

17 PG (*), AC 8950 13,012 45.4 45.4 145.4
18 PG (*), PD 8950 11,140 24.5 24.5 124.5
19 SC (*), PG 15,000 15,725 4.8 4.8 104.8
20 Pd, AC (*) 670 773 15.4 15.4 115.4

Note: Samples 1–15 are pure algae, and samples 16–19 are mixed algae. (*) Dominant sample. DC: Designed concentration; MC: Measured
concentration; RE: Relative error; ARE: Average and absolute relative error. Recovery rate = (MC/DC) × 100%; RE = (MC − DC)/DC × 100%.

Relative error (RE) and average and absolute relative error (ARE) were used to evaluate
the accuracy of the concentration predictions. The ARE of the monocultures of AC, PG, PD,
and SC was 22.4%, 13.3%, 10.3% and 11.0%, respectively. Large errors were found when
cell concentrations were high, except for Sc. Moreover, the recovery rates of most samples
were around 100%, especially at low concentrations. In mixed samples, the measured cell
density tended to be larger than the standard cell density. This can be explained because all
fluorescence received was considered to be emitted by the dominant algae when using the cor-
responding model to calculate the cell density. Because the entered fluorescence intensity value
was larger than the real value, the calculated density was also higher than the standard value.

4. Discussion

Fluorometers are commonly used in many fields of detection, and photosynthetic
pigments are one of the major molecules that can be found in the ocean. Because of the
advantage of higher sensitivity, better selectivity, and wider linear analysis range, photo-
synthetic pigments were selected as the tool for the rapid identification and evaluation
of the HAB species. Marine phytoplankton have a unique composition of photosynthetic
pigments, consisting of chlorophyll-a, chlorophyll-b, chlorophyll-c, phycocyanin, phycoery-
thrin, and carotenoids. Peridinin is the featured pigment of dinoflagellates, and zeaxanthin
is that of flagellates. These pigments have different fluorescence efficiencies when excited by
light of different wavelengths, which is indirectly reflected in the fluctuations in excitation
fluorescence spectra. Regarding the emission fluorescence spectrum, the excited light is al-
ways fixed at a certain wavelength, and emitted fluorescence signals are received at various
wavelengths. It is difficult to distinguish algae merely based on emission fluorescence spec-
tra, as all spectra show a similar peak at 680nm. Therefore, excitation fluorescence spectra
are more frequently applied in identification compared with emission fluorescence spectra.

Here, an approach for identifying HAB species is proposed by characterizing the
feature excitation spectra by pigment composition and statistical methodology. Excitation
wavelengths are selected through the pigment characteristics of each phylum of phyto-
plankton. Then, the original spectrum is simplified into a discrete excitation fluorescence
spectrum composed of seven excitation wavelengths (405, 435, 470, 490, 535, 555, and
590 nm). Bidigare et al. [33] showed that algal pigments have maximum absorption wave-
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lengths. Poryvkina et al. [34] found that these absorption wavelengths are close to their
excitation wavelengths and the feature spectra can be determined by the excitation spectra
and maximum absorption wavelengths. Beutler et al. [17] used five excitation wavelengths
(450, 525, 570, 590, and 610 nm) to differentiate Chlorophyta, Cyanophyta, Cryptophyta and
Dinophyta/Bacillariophyta. Yoshida et al. [35] proposed a study based on nine excitation
wavelengths (375, 400, 420, 435, 470, 505, 525, 570, and 590 nm) to distinguish between
Dinophyta and Bacillariophyta. Zieger et al. [36] selected eight wavelengths (375, 405, 430,
450, 475, 525, 590, and 640 nm). A discrimination of Cyanobacteria and Dinophytes as well-
known toxin-producing phyla was realized. In most work, high accuracy of identification
among different phyla can be obtained, but a lack of methods still exists, obstructing the
identification and quantification of specific algal species.

In this study, the Softmax classifier was applied for the data processing. The discrimi-
native probabilities of distinguishing all eight HAB species via Softmax Classifier exceeded
80%, except in Chattonella. The identification accuracy rate of pure samples exceeded 95%,
and that of dominant algal species in mixed samples reached 77.4%. The Softmax classifier
has advantages of fast calculation speeds as well as intuitiveness compared with other
classifications [37].

In addition, a concentration prediction model was established, mainly based on the
linear model between fluorescence intensity at seven wavelengths and corresponding
cell densities. Non-negative weighted least square linear regression analysis was used to
calculate the concentration of dominant HAB species.

In most studies, multiple linear regression was applied directly to calculate the com-
position as well as the concentration of each phylum. However, it was not used extensively
to evaluate the cell concentration of species. Here, the developed model combined the
Softmax classifier with linear concentration prediction model served as a potential tool
for improving the identification of algae as well as the prediction of their concentration.
The result of the comparation of the developed method with the multiple linear regression
based on the same samples in Section 3.3 are shown in Table 8.

Table 8. Comparison of our method with multiple linear regression.

Sample Species
Designed

Concentration
(Cell/mL)

Developed Method Multiple Linear Regression

Identify
Correctly?

Measured
Concentration

(Cell/mL)

Identify
Correctly?

Measured
Concentration

(Cell/mL)

1

AC

250
√

290
√

283
2 2500

√
3048

√
2855

3 25,000
√

27,268
√

25,075
4 250,000 × 143,822 × 84,269

5

PG

1400
√

1613 × 347
6 14,000

√
13,143

√
37,416

7 140,000
√

124,671
√

48,692
8 1400,000

√
1109,493

√
386,720

9

PD

327
√

361
√

210
10 3270

√
3506 × 62

11 32,700
√

33,308 × 0
12 327,000

√
256,581 × 0

13

SC

535
√

634 × 0
14 5350

√
6343

√
5569

15 53,500
√

52,902
√

48,840
16 535,000

√
504,867

√
430,150

17 PG (*), AC 8950
√

13,012 × 473
18 PG (*), PD 8950

√
11,140

√
17,492

19 SC (*), PG 15,000
√

15,725
√

13,925
20 Pd, AC (*) 670

√
773 × 0

Note: Samples 1–15 are pure algae, and samples 16–19 are mixed algae. (*) Dominant sample.
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The developed method achieves a higher accuracy of identification. All dominant
algae could be identified, expect for one sample of AC. Identification with multiple linear
regression performed worse, especially in PD due to its higher cell density. Errors in
multiple linear regression are mainly caused by the participation of algae that do not exist
in the composition. Because all norm spectra are involved in the calculation each time, the
amount of calculation required increased and the accuracy of the result decreased. In the
developed method, after identification, only the norm spectra of the dominant species are
involved in the further calculation.

As this study was carried out in a laboratory environment, environmental factors were
not considered. More relevant work should be undertaken to improve the algorithm for
practical application and to further increase the accuracy of the concentration predictions.
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