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Abstract: Emerging research in biosensors has attracted much attention worldwide, particularly in
response to the recent pandemic outbreak of coronavirus disease 2019 (COVID-19). Nevertheless,
initiating research in biosensing applied to the diagnosis of diseases is still challenging for researchers,
be it in the preferences of biosensor platforms, selection of biomarkers, detection strategies, or other
aspects (e.g., cutoff values) to fulfill the clinical purpose. There are two sides to the development
of a diagnostic tool: the biosensor development side and the clinical side. From the development
side, the research engineers seek the typical characteristics of a biosensor: sensitivity, selectivity,
linearity, stability, and reproducibility. On the other side are the physicians that expect a diagnostic
tool that provides fast acquisition of patient information to obtain an early diagnosis or an efficient
patient stratification, which consequently allows for making assertive and efficient clinical decisions.
The development of diagnostic devices always involves assay developer researchers working as
pivots to bridge both sides whose role is to find detection strategies suitable to the clinical needs by
understanding (1) the intended use of the technology and its basic principle and (2) the preferable
type of test: qualitative or quantitative, sample matrix challenges, biomarker(s) threshold (cutoff
value), and if the system requires a mono- or multiplex assay format. This review highlights the
challenges for the development of biosensors for clinical assessment and its broad application
in multidisciplinary fields. This review paper highlights the following biosensor technologies:
magnetoresistive (MR)-based, transistor-based, quartz crystal microbalance (QCM), and optical-
based biosensors. Its working mechanisms are discussed with their pros and cons. The article also
gives an overview of the most critical parameters that are optimized by developing a diagnostic tool.

Keywords: biosensors; biomarker; clinical; diagnostic; cutoff value; panel biomarkers; dynamic
range; sensitivity

1. Introduction

Biosensors for clinical application is an emerging research field, particularly for the
rapid detection and early screening of biomarkers in the case of an outbreak, such as
coronavirus disease 2019 (COVID-19) [1,2]. More than hundreds of thousands of confirmed
cases are reported from hundreds of countries around the globe. In this vast increment
of the new cases, the paramedics in these countries are overwhelmed with screenings of
suspected cases for quarantined patients. The facts brought by the recent pandemic caused
by SARS-CoV-2 emphasize the need for early screening methods to interrupt the spread of
the disease. Those screening methods can be relevant in airports, seaports, country borders,
or among communities. The conventional methods for pathogen detection, such as cell
culture systems or reverse transcript polymerase chain reactions (RT-PCRs), are laborious,
costly, and time-consuming from sample preparation until signal interpretation.

The definition of a biosensor by the International Union of Pure and Applied Chem-
istry (IUPAC) is a device or platform that uses specific biochemical reactions mediated by
isolated enzymes, immunosystems, tissues, organelles, or whole cells to detect specific
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biochemical compounds, usually by electrical, thermal, magnetic or optical signals [3].
By its definition, biosensors include three crucial parts: (1) the interesting biomarker to
target, (2) the receptor (i.e., the biorecognition element to use in the sensing area that
will specifically interact or react with the interested biomarker(s)), and (3) the method to
generate the signal response of the biomarker–receptor interaction. Moreover, according to
the World Health Organization (WHO), an emerging requirement for biosensor technology
features is called ASSURED, which stands from affordable, sensitive, specific, user-friendly,
rapid and robust, equipment-free, and deliverable to the end users [4].

This article discusses the state of the art, recent issues, and challenges of biosensor
development for clinical applications. Aside from the several existing biosensor platforms
available in the market for specific clinical applications, there is still no consensus by the
health authorities regarding biosensor utilization, particularly during the outbreak or for
screening purposes. The biosensor platform in this article focuses on magnetoresistive-
based, field-effect transistor (FET)-based, quartz crystal microbalance (QCM), surface
plasmon resonance (SPR)-based, and surface-enhanced Raman spectroscopy (SERS)-based
biosensors. The preferred platform in this review represents different transducing mecha-
nisms and working principles from various biosensor platforms in the literature.

Additionally, biomarker preferences are a critical issue from the clinical side. The
biomarkers can be proteins, nucleic acids, volatile organic compounds, cells, or particular
biochemical substances, either as single biomarkers or combinations of several biomarkers
for the detection validity, accuracy, and disease stratification [5]. The preference of a mul-
tiplex detection approach can be very challenging because each biomarker has different
characteristics in terms of biophysical properties, concentrations, and relevant clinical
cutoff values. Aside from the importance of the limit of detection (LoD) and sensitivity
performance within the different biosensor technologies, those aspects should be consid-
ered in developing biosensors for advanced clinical studies. Finally, this review article
provides a comprehensive overview for either early scientists or experts and for engineers
or biochemists for their research roadmaps in the clinical applications of the biosensors.

This paper is organized into six sections. Section 1, “Introduction”, discusses the back-
ground and challenges behind developing a biosensor for clinical applications. Section 2,
“Biosensor Technologies”, focuses on the state of the art of the most common biosensor
platforms. Section 3, “Biosensor Analytical Performance”, is related to the parameters that
need to be tackled to obtain robust diagnostic devices. Section 4, “Biomarker Strategy,”
explains the importance of using individual or multiple biomarkers. Section 5, “Biomarker
Clinical Cutoff Value”, explains its role in the detection strategy. The last section, “Conclu-
sion”, will cover the systematic key steps to consider in developing a clinical diagnostic
tool in a workflow chart.

2. Biosensor Technologies

Several technologies are reporting their applications in biosensing, either as proofs of
concept or as commercial platforms, with their pros and cons. In this section, the current
technologies in biosensor development are categorized into the following clusters: (1)
magnetoresistive (MR)-based, (2) transistor-based, (3) quartz crystal microbalance (QCM),
and (4) optical-based biosensors. These technologies have specific working mechanisms
that translate particular challenging physical properties of the biomarkers (e.g., the charge
of biomarkers, molecular weight, and refractive indices). These will define which detection
strategy to apply in a particular clinical application (e.g., sample matrix or required cutoff
value). For example, a magnetoresistive-based biosensor relies on the magnetic field, while
a transistor-based biosensor relies on charge transfer mechanisms between the detection
sample and the surface. QCM relies on the resonance frequency between piezoelectric
materials, and finally, the optical-based biosensor relies on the photon interaction for the
sensing region and target sample.
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2.1. Magnetoresistive-Based Biosensors

MR-based biosensors make use of a device conventionally used for read heads in
hard disk drives. This sensor measures the resistivity of the material or structures by the
presence of magnetic fields [6]. In an MR-based biosensor, the magnetic nanoparticles
(MNPs) are used to label the interest biomarkers that interact with the biorecognition
elements over the magnetoresistive structures [7,8]. Consequently, this induces changes in
the resistance value of the structure, which can be measured in real time (Figure 1).
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Figure 1A depicts an MR-based sensor measured using the CIP, in which the electrical
current flows parallel to the plane of the MR sensor. Moreover, several sensors are con-
structed using the current-to-perpendicular plane (CPP) as depicted in Figure 1B, where
the electrical current flows perpendicular to the plane of the MR structures. Monitoring
the voltage value of the MR structures results in a real-time signal (Figure 1C) when the
MNP-labeled biomarkers are captured by the biorecognition elements immobilized in the
sensing surface. The signal magnitude in the MR biosensor will be the difference between
the reference signal (Vs) and the specific binding signal (Vb) such that ∆V = Vs − Vb.

Based on the structure of the materials, the MR-based biosensor can be config-
ured mainly using giant magnetoresistance (GMR) and tunneling magnetoresistance
(TMR) [7,9,10]. The main advantages of using an MR biosensor are that the magnetic
field through the presence of MNPs is not sensitive to the charge and the mild temperature
gradient of the sample. Therefore, the noise in the reference signal is independent of the
temperature and charge effect from the sample or target markers [11,12].

2.2. Transistor-Based Biosensors

Transistor-based biosensors are dominated by the FET device that uses the gate
structure to perform the biomolecular interaction. The detection principle of this biosensor
is based on the accumulation of charged biomarkers at the biorecognition surface (e.g.,
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gate oxide) that create changes in the surface potential, leading to variations in the drain
current for a fixed gate voltage. This signal can be used to observe biomarker detection
in the FET device, and the shift direction is related to the charge of the biomarker in the
sample medium.

Figure 2A depicts a typical FET-based biosensor by using the gate of the device as
a sensing membrane. The accumulation of the probes or targets will be represented by
the charge accumulation on the gate and the shifting of the threshold voltage shifting, as
illustrated in Figure 2B. Assuming that the FET device in Figure 2A is an n-type device, the
negatively charged samples result in the threshold voltage (VTH) shifting to a lower value,
as depicted by the solid lines of Figure 2B. In the case of positively charged targets, the VTH
shifts to the higher VG (the dashed line in Figure 2B). The real-time measurement can be
performed by monitoring the drain current (ID) at a particular fixed gate voltage (VG) value
around the linear region of the Id–Vg curve. Another strategy of signal acquisition will be
monitoring the VG at a constant threshold current (typically 1 µA in microelectronics). This
signal acquisition in an FET biosensor that utilizes the feedback circuit is called constant
voltage constant current (CVCC) [13].
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The advantage of the FET biosensor device is that it is label-free. However, several
FET technologies keep using labels to enhance the detection signal or to integrate the FET
detection simultaneously with other methods, such as electrochemical or optical analy-
ses [14–16]. Nevertheless, biomarkers with a neutral charge (e.g., IgG2 and hemoglobin)
are challenging to detect using the FET biosensor device [17,18]. FET-based biosensors can
be configured as portable and low-power platforms adapted from the integrated circuit (IC)
industry, such as well-known FET technologies in microelectronics and microprocessors for
digital devices [14,19,20]. Moreover, the use of the commercial FET device for this sensor
configuration is also possible to apply by using the extended gate field effect transistor
(EGFET) configuration. In the EGFET device, the sensing membrane is connected to the
gate, and various treatments of the sensing area can be performed separately from the
transistor circuit [21–23].

2.3. Quartz Crystal Microbalance Biosensors

A quartz crystal microbalance (QCM) device is a sensor for the detection of surface
binding by monitoring the resonance frequency [24–26]. It has two conductive electrodes
usually made from gold that are separated by a quartz crystal as a piezoelectric material.
This technology is relatively mature because it is well known for monitoring material
deposition in microelectronics fabrication. It works by supplying a frequency range from
the kHz level to a few MHz to define the resonance state. The higher the thickness of the
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quartz substrate, the lower the resonance frequency measured. The QCM is well known
for the high-quality factor (Q) of the sensor. However, due to the thick substrate (in mm),
the only possible frequency operation is in the low range of frequencies. Consequently,
this sensing platform has a high detection resolution and a wide dynamic range [27]. The
advantage of the biosensing platform using a QCM is that the sample can be used either in
the liquid or vapor phase [28].

The principle of signal acquisition on the QCM platform can be illustrated in Figure 3B.
The resonance frequency can be shifted to the lower value when the substance or molecules
bind to the electrode’s surface. Moreover, real-time signal acquisitions can be applied by
monitoring the resonance frequency along with the time domain as depicted in the inset of
Figure 3B.
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2.4. Optical-Based Biosensors

Optical-based biosensors typically use light in the infrared or visible region as the
excitation source for the sensing region. They are sensitive to the refractive index of the
surface. In this article, this type of biosensors will be divided into two groups: plasmonic-
based and surface-enhanced Raman scattering (SERS)-based platforms.

2.4.1. Plasmonic-Based Biosensors

A plasmonic is an electromagnetic field naturally generated in a noble metal fabricated
in nanofilm or nanostructures. In a nanofilm metal structure, the plasmonic field is called
surface plasmon resonance (SPR). The existing field is located at the interface of the metal
film and the dielectric medium, while in the nanoparticle structures, it is called localized
surface plasmon resonance (LSPR). Along with a massive trend in nanotechnology, this
technology has gained much attention from scientists due to the plasmonic phenomena
that do not exist in bulk structures [29]. The plasmonic phenomena in a metal, due to the
sensitivity, have excellent potential for the application of single-molecule detection [30].

Figure 4A illustrates the SPR sensor using a prism coupler to excite the surface plasmon
wave (SPW) in the interface of the thin metal film and sample medium. At a particular
angular incident angle (θ) and wavelength (λ), the p-polarized light will be resonated
with the SPW. Therefore, a fraction of the incident light will be absorbed into the SPW.
Consequently, in the reflectance spectra, the loss of reflected light can be observed as a
dark band along with the angular or wavelength domain (Figure 4C,D). This dark band
will be the reference point of the sensing. In case the medium shifts to a higher refractive
index (n2 > n1) or the sensing metal adsorbs the biomolecules, the resonance condition
will be shifting to the higher wavelength (∆n ∼= ∆λ) or higher incident angle (∆n ∼= ∆θ).
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The shifting can be tracked as real-time signals from the intensity modulation, angular
interrogation, or wavelength interrogation (Figure 4C,D). In Figure 4B, the sensing metal
is replaced by the nanodisc array. In this configuration, the plasmonic field oscillates
surrounding the discs and also at the interspace between the discs. Theoretically, the
plasmonic field in the LSPR configuration is stronger than in the SPR. Thus, the sensing
performance can be boosted to achieve smaller detection limits [31–35]. However, the
fabrication process can be costly, such as with the nanostructure array with a precise
arrangement. Aside from the nanodisc array, various metal nanostructures can be utilized,
such as gold or silver nanoparticles, nanoholes, nanostars, nanocubes, nanorods, and other
different shapes. The particular metal nanopatterns have specific resonance wavelength
regions in the range of visible light, and the shifting of the resonance wavelength leads to
the color change. This LSPR behavior can be utilized as a colorimetry sensor [36,37].
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The plasmonic-based platforms are well known for the high sensitivity performance
of the biosensors [29,38]. Nevertheless, most of the commercial platform in the market re-
quires a very high investment cost [39–41]. The drawback of this type of platform is the high
sensitivity to temperature gradients. This disadvantage is due to the transducing mecha-
nism’s dependence on the solution’s refractive indices at the sensing interface. Because the
refractive indices values of the solution sample entirely depend on the temperature, the
accuracy of the measurement can therefore be misinterpreted.

2.4.2. SERS-Based Biosensors

The SERS-based biosensor uses Raman spectroscopy as the central platform. Raman
spectroscopy measurements are based on inelastic scattering of light excitation when the
light interacts with the vibration of chemical bonds. The scattered light shifts to different
wavelengths compared with the incident light. Every chemical bond leads to different
wavelength shifting. Therefore, Raman spectroscopy is one of the powerful techniques to
observe the chemical fingerprint of materials [42–44].

The Raman system can be optimized as a SERS-based biosensor platform by using
metallic nanostructures as the sensing region to detect the biomarker binding. The metallic
nanostructures confine a strong plasmonic field in the LSPR mode. Next, it interacts with
the incident photons to enhance the scattering intensity of the Raman signal [45]. When the
immobilized biorecognition elements in the nanostructures capture the target biomarker,
the unique Raman fingerprint signal can be obtained. The intensity modulation of the
Raman signal can be correlated to the target concentrations. The illustration of the SERS
measurement is depicted in Figure 5.

The photons of the laser’s incident light (hv) are exciting the abundance of electrons on
the metal surface. The LSPR energy level by the metal nanostructures enhances the electron
supply to the HOMO energy level at the Rhodamine 6G (R6G) molecules (Figure 5B).
Consequently, a strong Raman signal is generated by the electron transition from the
HOMO to the LUMO energy level. Therefore, the Raman signal from the R6G represents
the existence of biomolecules on the surface of the nanostructures.

The SERS-based biosensor has been acknowledged for its very high sensitivity per-
formance. This platform is promising for the future advanced study of single-cell detec-
tion [46,47]. The performance enhancement factor of SERS was reported to achieve several
orders of magnitude [48–51]. Nevertheless, the SERS platform cannot perform real-time
signal acquisition to observe the binding affinity of the biomolecules. In addition, the
fabrication cost of the metal nanostructures is high, and electron beam lithography (EBL)
in particular is required for high precision of the nanopatterns.

The assay developer researcher needs to identify the biophysical properties of the
target sample before the investment of the specific biosensors. For example, for a target
sample with a neutral charge (e.g., peptide, IgG2, and hemoglobin) [17,18,52], the decision
of using a FET-based platform is not suitable. In addition, in the case of requiring the
use of various solutions with significantly different refractive indices values or multiple
temperature gradients, it can be challenging to be detected in the plasmonic-based platform
(SPR and LSPR biosensors) [53].

Table 1 can be an essential list for potential biosensor users according to their sample
characteristics and its biophysical properties. Therefore, the selection of a transducing
mechanism can be adequately considered. In addition, the cost and simplicity of the
operation are also important factors for the user, whether it requires advanced training
for the user or not. In applications such as outbreak diseases, simple operation biosensors
can be preferable for early users to perform enormous tests. Moreover, the label-free and
real-time features can be another advantage for the user´s consideration. The label-free
scheme leads to a straightforward and low-cost assay in practical use, while the real-time
signal can be analyzed to see the binding affinity of the target molecules to the receptor, as
well as the direct qualitative and quantitative interpretation along with the time domain.
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Table 1. Comparison features and characteristics of biosensor platforms.

Platform
Category

Transducing
Mechanism

Cost of
Equipment,
Operation

Pros Cons Label-Free
Option

Real-Time,
Portability

Options
Ref

Magnetoresistive
Detection of

magnetic field
fringe of MNP

High, High

Robust, not
sensitive to
charge and

temperature;
tailored
labeling

Required
magnetic
labeling

No Yes, Yes [6–12]

FET Detection of
sample charge Low, Low Mature

technology

Difficulty in
detecting

neutral charge
samples; noise
from unstable

charge

Yes Yes, Yes [13–16,19–23]

QCM Detection of
mass coverage Low, Low High Q factor

Low resolution,
potential

interference of
operational
frequency

Yes Yes, Yes [24–28]

SPR

Detection of
refractive

indices shift or
mass coverage

High, Low High
sensitivity

Temperature-
sensitive Yes Yes, Yes [29,30,36–41]

LSPR

Detection of
refractive

indices shift or
mass coverage

High, High Very high
sensitivity

Temperature-
sensitive,
high-cost

nanostructure

Yes Yes, Yes [31–35]

SERS

Detection of
the energy

transition at
molecules

High, High Very high
sensitivity

Required label,
high-cost

nanostructure
No No, No [42–51]

MNP: magnetic nanoparticles; FET: field effect transistor; QCM: quartz crystal microbalance; Q factor: quality factor; SPR: surface plasmon
resonance; LSPR: localized surface plasmon resonance; SERS: surface-enhanced Raman spectroscopy.

3. Biosensor Analytical Performance

The analytical performance of a clinical biosensor allows us to understand the capa-
bilities and limitations of the technology and essentially analyze if it addresses a specific
application or not. Several general parameters indicate the performance of a biosensor,
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such as the sensitivity, limit of detection (LOD), specificity, reproducibility, and dynamic
range (DR). Therefore, before starting to develop a biosensor, it is important to have an in-
tended clinical purpose. For example, the diagnosis of some complex diseases requires the
detection of multiple biomarkers with specific cutoff values, meaning that those biomarkers
may exist in an ordinary person but at constant or low concentrations. This issue is one of
the most challenging aspects to address in developing a diagnostic tool. The device needs
to look for multiple rather than individual biomarkers and distinguish between certain
levels of those biomarkers, rather than distinguishing a minimal concentration from zero.
In this case, the biosensors’ sensitivity, dynamic ranges, and resolutions may be critical
parameters to address. Therefore, the detection strategy should be optimized considering
the complexity of the biomarker(s), the affinity of the biorecognition elements, the clinical
cutoff values, the relevant dynamic range, and the sample matrix. In this section, the
essential parameters related to the performance of a clinical biosensor will be described
using simple illustrative curves for the detection of a small-to-high target concentration.
Some examples of adjusting the parameters to the clinical challenge are also reported.

3.1. Sensitivity

The biosensor sensitivity is defined as the response signal for every unit of the target
sample’s concentration. The typical standard curve of the biosensing response for the
target detection with a dose–response fitting is depicted in Figure 6. In this curve, a pM
unit of concentration is assumed. The slope of the linear region determines the sensitivity
(s) in the fitting curve, which is the value of the signal magnitude (y) divided by the unit
concentration (x) of the response slope. The higher y value in the response of the similar x
value indicates the better sensitivity performance of the biosensor.

Chemosensors 2021, 9, 299 10 of 29 
 

 

 
Figure 6. The illustration of sensitivity performance in biosensors. 

In principle, the sensitivity can be enhanced by improving the biosensors' signal-to-
noise ratio (SNR), such as by using sandwich assays [54–56] or by utilization of nanopar-
ticle labels in the analytical system [57–59]. Other attempts include downscaling the sens-
ing area into two-dimensional (2D) or one-dimensional (1D) structures [60–63]. The 2D 
materials for the advanced sensing structure can be graphene [38,64,65], which enhances 
the detection down to attomolar and femtomolar ranges [66–68]. Other 2D materials, such 
as molybdenum disulfide (MoS2), were reported to be able to boost the detection down to 
the femtomolar range for protein [69] and DNA detection [70]. Furthermore, the advanced 
2D material Mxene was reported to enhance the biosensor detection performance down 
to 330 fM for the breast cancer marker [71]. While the popular 1D material for biosensing 
structures can be carbon nanotubes [72–74], it was reported to be able to perform the de-
tection down to 10 fM for the trimethylamine target [72], while metal oxide-decorated 
carbon nanofiber was reported to be able to improve the detection down to 5 fM for the 
binding of platelet-derived growth factor-BB (PDGF-BB) [75]. Nevertheless, the significant 
challenges for 1D material sensing are the high fabrication cost for the scaled-up produc-
tion and the device-to-device variations. 

3.2. Dynamic Range 
The definition of the dynamic range is the concentration window between the maxi-

mum and minimum usable indication of the signal response. Technically, the dynamic 
range is calculated from the detection limit to the saturation level of the biosensor signal 
(Figure 7A). Nevertheless, in the dynamic range, the signal response does not always in-
crease proportionally to the target concentration, particularly in the extremely low or high 
concentration target. Therefore, another term that biosensor experts use is the linear dy-
namic range to determine the biosensor signal response in the linear region of the fitting 
curve (Figure 7B). Consequently, the linear range is a trade-off parameter compared with 
the sensitivity (i.e., when the sensitivity value is high, the detection range will be small, 
since the saturation level will be reached at a lower target concentration). On the other 
hand, if the application requires a large linear range performance, the sensitivity of the 
biosensor will be lower [76,77]. 

Figure 6. The illustration of sensitivity performance in biosensors.

In principle, the sensitivity can be enhanced by improving the biosensors’ signal-to-
noise ratio (SNR), such as by using sandwich assays [54–56] or by utilization of nanoparticle
labels in the analytical system [57–59]. Other attempts include downscaling the sensing
area into two-dimensional (2D) or one-dimensional (1D) structures [60–63]. The 2D mate-
rials for the advanced sensing structure can be graphene [38,64,65], which enhances the
detection down to attomolar and femtomolar ranges [66–68]. Other 2D materials, such as
molybdenum disulfide (MoS2), were reported to be able to boost the detection down to
the femtomolar range for protein [69] and DNA detection [70]. Furthermore, the advanced
2D material Mxene was reported to enhance the biosensor detection performance down
to 330 fM for the breast cancer marker [71]. While the popular 1D material for biosensing
structures can be carbon nanotubes [72–74], it was reported to be able to perform the
detection down to 10 fM for the trimethylamine target [72], while metal oxide-decorated
carbon nanofiber was reported to be able to improve the detection down to 5 fM for the
binding of platelet-derived growth factor-BB (PDGF-BB) [75]. Nevertheless, the significant
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challenges for 1D material sensing are the high fabrication cost for the scaled-up production
and the device-to-device variations.

3.2. Dynamic Range

The definition of the dynamic range is the concentration window between the max-
imum and minimum usable indication of the signal response. Technically, the dynamic
range is calculated from the detection limit to the saturation level of the biosensor signal
(Figure 7A). Nevertheless, in the dynamic range, the signal response does not always
increase proportionally to the target concentration, particularly in the extremely low or
high concentration target. Therefore, another term that biosensor experts use is the linear
dynamic range to determine the biosensor signal response in the linear region of the fitting
curve (Figure 7B). Consequently, the linear range is a trade-off parameter compared with
the sensitivity (i.e., when the sensitivity value is high, the detection range will be small,
since the saturation level will be reached at a lower target concentration). On the other
hand, if the application requires a large linear range performance, the sensitivity of the
biosensor will be lower [76,77].
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The dynamic range can be enhanced by increasing the surface area of the sensing.
The larger surface area can be engineered by using three-dimensional (3D) sensing struc-
tures, such as nanopillar or nanoflower arrays, to improve the area for the occupancy
of the biorecognition elements [78–80], thereby improving the probability to detect high
concentrations of the target. However, when developing detection strategies for clinical
biomarkers, what will determine the valid dynamic range is the cutoff value (threshold) of
the interested biomarkers (explained in detail in Section 4). Technology may allow a log-
linear range, but depending on the device’s intended use, the researcher may need to adjust
several parameters (if possible) to obtain a narrower dynamic range. The use of different
structures of sensing [77,81], diluted and label tailoring [82], varying the concentration
of biorecognition elements [83], and the use of antibodies with different affinities [84] are
some of the parameters that can be manipulated to achieve the pretended sensitivity and
dynamic range. Several strategies for dynamic range enhancements are listed in Table 2.
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Table 2. Summary of the dynamic range enhancement.

Platform Sample Technical Remark Dynamic Range Ref.

Dual cavity FPI N/a Utilizing weak
composite 1.359–1.452 [76]

SPR Sucrose water Al/Au sensing
structure 1.33–1.45 RIU [77]

SPR Antibody loading Zwitterionic hydrogel Antibody capacity up
to 693 ng/cm2 [78]

SPR N/a TiO2/SiO2 1.7742–1.9542 RIU [81]
SERS Bilirubin Au-MoS2 NFs 10−12 to 10−4 M [79]

Electrochemical Staphylococcus
epidermidis ZnO Nanograss 10−11–10−4 M [80]

Magnetoresistive cFn Dilution MNP 1–4 µg/mL [82]

Octet Biosensor Human mAb Varying biorecognition
concentration 0.15–40 nM [83]

FPI: Fabry–Perot interferometer; SPR: surface plasmon resonance; SERS: surface-enhanced Raman spectroscopy; cFn: cellular fibronectin; RIU:
refractive index unit; Au-MoS2 NFs: gold molybdenum disulfide nanoflowers; MNP: magnetic nanoparticles; mAb: monoclonal antibody.

3.3. Limit of Detection

Based on the IUPAC, the definition of the LOD is the value expressed by the smallest
concentration (x) that can be detected with a reasonable certainty confidence level [85].
Figure 8 shows a common LOD concept in biosensor application. The lowest response
signal is obtained by three times the standard deviation (3SD) from the mean value of a
blank measurement (y0). However, another article reported using different confidence level
values instead of three times the standard deviation, such as 3.29 times the SD, to obtain a
95% confidence interval of the smallest signal from the blank measurement [86]. For the
simplicity of the illustration, in Figure 8, a confidence level of 3 is applied. The magnitude
of 3SD from the reference signal can be plotted to find the concentration value of the LOD.
Therefore, to define a valid LOD value, the measurement of the zero-concentration target
as the reference signal is mandatory. The accurate value of the LOD (x), can be calculated
by the known value (y0 + 3SD) on the fitting curve’s (red) formula. Based on this definition,
the SD of the blank measurement is the most critical factor in obtaining the LOD value.
The measurement uncertainty will determine the accuracy of the LOD. Moreover, if the
linear sensitivity slope is higher, a lower LOD can be obtained (in the case of an identical
SD value). Therefore, for early detection purposes, the high sensitivity value is preferable
to achieve a lower LOD.
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3.4. Specificity

The general concept of sensing is distinguishing a particular substance from others
(selective) and capturing a particular target (specific). Therefore, the biosensing system
should be configured to detect a specific target by binding with the specific biorecognition
element through strong and selective affinity. The quality of the biological components
will determine the specificity and, consequently, the sensitivity of the developed detection
strategy. Moreover, complex samples may require two labels (dual labeling) to increase the
assay specificity [87]. For the evaluation of the specificity performance, the measurement
of the non-complementary samples should be compared to the specific target. A functional
biosensor should be able to distinguish these different samples producing significantly
different response signals. Ideally, the non-specific target’s resulting signal level is sim-
ilar to the zero-concentration measurement of the biosensor. Nevertheless, in the high
concentration of non-specific targets, the false positive or drift signal can appear due to
non-specific bindings and interferences. The illustration of the specificity performance in
biosensors can be depicted in Figure 9.
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Several attempts have been reported to improve the specificity and low-fouling bind-
ing during the biosensing measurements, either using a competitive assay or complex
media such as serum or whole blood, as well as blocking assays [88–90], a polymer brush,
and a zwitterionic functionalization surface [91–94], or by using label and sandwich assays
to obtain a specific signal [95–97]. In immunoassays, monoclonal antibodies are also rec-
ommended to obtain high specificity and lower cross-reactivity events [98]. The summary
of specificity strategies is listed in Table 3.

Table 3. Summary of the specificity enhancement.

Strategy Platform Sample Technical Remark Performance Ref.

Blocking SPR ssODNs of MTBC and
M. gordonae

Spacer arms on
probe-ssODNs, MCH
for blocking and probe

orientation

Regenerative sensing,
up to 12 weeks, RT

storage
[88]

Blocking Electrochemical cTnI nMo3Se4 embedded
on rGO, BSA blocking

LDR: 10−6–100
ng/mL; shelf life 35

days
[89]

Blocking Electrochemical PDGF GOD blocking,
P-Gra-GNPs

LOD 1.7 pM
LDR: 0.005–60 nM [90]

Anti-fouling
membrane Fluorescence DENV and ZIKV

3D Cu- zwitterionic
MOF, simultaneous

detection

LOD (in pM):
192 (DENV)
332 (ZIKV)

[91]
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Table 3. Cont.

Strategy Platform Sample Technical Remark Performance Ref.

Anti-fouling
membrane SPR

Undiluted human
plasma and serum,
mammalian cells

polyAAEE brushes on
sensing

Undetectable protein
adsorption (<0.3

ng/cm2)
[93]

Anti-fouling
membrane SPR Epstein-Barr virus in

serum
Label-free,

regenerative sensor
Detection clinical
samples in serum [94]

Sandwich assay SPR CEA in plasma blood bio-AuNPs LOD: 0.1 ng/mL [95]

Sandwich assay Lateral flow PDGF-BB and
thrombin

Au-labeled aptamer
probe

LOD (in nM): 1.0
(PDGF-BB) and 1.5

(thrombin)
[96]

Sandwich assay Photoelectrochemical cTnI Ag@Cu2O particles on
CdS QDs

LDR (in ng/mL): 2 ×
10−5–50

LOD: 6.7 fg/mL,
[97]

mAb SPR Uranyl affine proteins Two-step
immunoassays LOD: 7 nM [98]

SPR: surface plasmon resonance; ssODNs: single-strand oligodeoxynucleotides; MCH: 6-mercaptohexanol; RT: room temperature; cTnI:
cardiac troponin I; nMo3Se4: nanostructured metal chalcogenide; rGO: reduced graphene oxide; BSA: bovine serum albumin; PDGF:
platelet-derived growth factor; GOD: glucose oxidase; LDR: linear dynamic range; LOD: limit of detection; DENV: dengue virus; ZIKV:
Zika virus; 3D Cu: three-dimensional copper, MOF: metal-organic framework; polyAAEE: polymerized acryloylaminoethoxyethanol; CEA:
carcinoembryonic antigen; bio-AuNPs: biofunctionalized gold nanoparticles; Ag@Cu2O: silver coated copper oxide; CdS: cadmium sulfide;
QDs: quantum dots; mAb: monoclonal antibody.

3.5. Reproducibility

Reproducibility is characterized by the accuracy and precision of the biosensor. It is
essential to determine the degree of agreement between independent measurements under
slightly different circumstances (or different users) for similar samples and concentrations
(a mean value close to the true value). Meanwhile, for precision performance for identical
circumstances (or same user), such as experiments on the same day, this can be considered
repeatability [99]. Therefore, measuring each sample several times is essential to obtain
the SD value in the standard curve, such as in Figure 10. Later, the accuracy and precision
of the measurement can be determined. The illustrations of accuracy and precision are
depicted in Figure 10.
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The first inset illustration (1) represents the excellent accuracy and precision perfor-
mance of a biosensor. The repetition of the measurements results in an accurate average
value and low SD in the signal response. The second illustration (2) of low-accuracy and
low-precision measurements leads to a valid average value but a high SD value. For
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the next illustration (3) for the low-accuracy and high-precision measurement, an inaccu-
rate average value with a small SD is obtained in the standard curve. In this case of the
biosensor performance, a calibration protocol is required before measuring the target. The
last illustration (4) of the low-accuracy and low-precision measurement is an example of
the biosensor’s poor repeatability or reproducibility performance. A high-accuracy and
high-precision platform typically requires complicated, bulky, and non-portable instru-
ments [10,100,101]. Still, another method to improve the accuracy and precision of the
biosensor signal is advanced signal processing [102–106]. One aspect that is sometimes
undervalued is the operator. The detection system should avoid operator interference as
much as possible during the measurements. Therefore, robust, portable, and autonomous
technology will benefit the reproducibility of the technology for border applications. The
main analytical parameters of a biosensor that should be considered when developing a
diagnostic device are summarized in Table 4.

Table 4. Analytical performance of a biosensor.

Analytical
Performance Definition Significant Factor Improvement Strategy Ref

Sensitivity The signal response in
every target concentration SNR, slope

Downscaling sensing area,
sandwich assays, and use

of labels (e.g.,
nanoparticles)

[54–63]

Dynamic range

The ratio between the
maximum and minimum
usable indication of the

signal response

Linear range,
saturation level

Surface area enhancement,
3D sensing structure, label

tailoring, antibodies
affinity, concentration

[35,76–80]

LOD

The value expressed by the
smallest concentration that

can be detected with a
reasonable certainty and

confidence level

Sensitivity, SD of
reference

Sensitivity improvement,
SNR enhancement, signal

stability, instrument
calibrations, signal

processing

[10,54–63,98–104]

Specificity
The sensing ability for

capturing a specific target
from the other substance

Biomarker preference,
low-fouling binding

Blocking assays, advanced
surface functionalization,
dual-labeling, molecule

affinity

[88–97]

Reproducibility

The accuracy and precision
of the measurements by

different users using
identical samples and

concentrations

SD, instrumentation

Instrument configuration,
signal processing, reduce
the number of variables

(e.g., operator interference)

[10,100–106]

SNR: signal-to-noise ratio; 3D: three-dimensional; LOD: limit of detection; SD: standard deviation.

4. Biomarker Strategy

A biological marker or biomarker is an objective indicator or parameter of biological
conditions to assess the normal biological processes, pathogenic processes, or pharma-
cologic responses to a therapeutic intervention [107,108]. Generally, the biomarkers are
categorized as molecular biomarkers, cellular biomarkers, or imaging biomarkers. The
molecular biomarkers commonly used in biosensors are proteins (such as IgG, IgM, an-
tibodies, and proteins) and nucleic acid-based markers (such as RNA, DNA, or KRAS
genes) [109–114]. The biomarker identification methods based on protein biomarkers and
nucleic acids are called proteomics and transcriptomics, respectively [115]. Cellular-based
biomarkers are very popular for cancer studies, such as detecting circulating tumor cells
(CTCs) [116]. An imaging biomarker is a biological characteristic that is detectable on an
image, such as bone, tissue, and tumor cells in diagnostics using, for example, magnetic
resonance image (MRI) or computed tomography (CT) scans [117–119]. In the biosensors
field, the biomarker characteristics lead to biorecognition preferences, such as the immo-
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bilization method on the sensing area, to configure the detection strategy. In this section,
biosensors for the detection of individual and multiple biomarkers are discussed.

4.1. Single Biomarker

Sequence-based biomarkers mainly dominate the single (or simplex)-biomarker strat-
egy in biosensing detection due to their specific correlation with pathogen species or
cells. The detection method in biosensing studies can either monitor DNA hybridiza-
tion directly [23,34,120] or in combination with the DNA amplification method, such
as by polymerase chain reactions (PCRs) and loop-mediated isothermal amplification
(LAMP) [102,121]. Recently, potential biomarkers have been proposed using microRNA
(miRNA) for several diseases, where miRNA consists of 19–23 nucleotide-long, noncod-
ing, ribonucleic acid (RNA) molecules that are highly conserved across species [115]. In
addition, the use of aptamers (synthetically processed single-stranded DNA or RNA) in
the biosensing field has also gained much attention from researchers. The simplicity of
the aptamer is that the required sequence can be customized to the specific purpose of the
sensing method, either to direct detection of the complementary sequence or to utilize it as
the biorecognition element for other biomolecules or toxins [122–125].

Although sequence-based biomarkers are widely available and suitable for multiple
diseases, protein biomarkers are of paramount importance in clinical settings [126]. A
well-known protein biomarker for the early screening of prostate cancer is the prostate-
specific antigen (PSA). It is a typical glycoprotein produced by the prostate epithelium,
which is secreted in the disruption of the ductal lumen and basement membrane disor-
der [127]. Several biosensor applications and methods have been reported utilizing PSA
as a biomarker, such as in the nanowire FET-based devices [61,128], SERS platform [129],
piezoelectric-based device [130], and SPR sensors [131,132].

Another acknowledged simplex biomarker in trophoblastic tumors is human chori-
onic gonadotropin (hCG) [133]. Recent studies found the hCG can be used as a biomarker
for multiple diseases [134]. The hCG is a hormone present in healthy pregnant women.
Nevertheless, in the patient with the trophoblastic tumor, the hCG secretion can increase
up to 10,000 mIU/mL at 5 weeks, 1000 mIU/mL at 8 weeks, or detectable at 24 weeks
after the evacuation of the mole, at which point is recommended for the patient to un-
dergo chemotherapy [133,135]. Several studies reported the detection of hCG in biosensor
platforms, such as in magnetometer-based biosensor [8,136–138], plasmonic-based biosen-
sor [139,140], QCM platform [141], and FET-based device [142].

Cardiac troponins (cTn) that are part of the contractile apparatus proteins are spe-
cific to the heart, indicating they can be applied as biomarkers for cardiovascular dis-
eases [143,144]. Various detection techniques and biosensor platforms have been proposed
for the detection of cTn biomarkers, such as in piezoelectric platforms [145], plasmonic
sensor platforms [146–151], and FET-based biosensors [152–155]. A resume of different
biomarkers detected with the single biomarker strategy is presented in Table 5.

Table 5. List of biosensor studies utilizing single-biomarker detection strategy.

Biomarker Platform Technical Remark Performance Ref.

16S rRNA gene S.
aureus EGFET sensor Direct hybridization, Nanopatterned

gold sensing LOD 1 pM [23]

ZIKV RNA LSPR mediated
fluorescence Hybrid probes NP-qDots-MB LOD 1.7–7.6 copies/mL [34]

DNA FET PNA probe, RGO sensing LOD 100 fM [156]
IS6110 DNA of
M. tuberculosis SPR Amplified- and labeled-DNA by

PCR LOD 63 pg/mL [102]

PSA FET nanowire Operated under the subthreshold
regime LOD 1.5 fM [61]

PSA Memristive Nanowire sensing, aptamer probe LOD 23 aM [128]

PSA SERS MNP labeled aptamer probe LOD 5.0 pg/mL
Range: 5–500 pg/mL [129]
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Table 5. Cont.

Biomarker Platform Technical Remark Performance Ref.

PSA Piezoelectric resonator Dual-channel resonator LOD: 0.25 ng/mL [130]

PSA SPR Paired amplitude and phase degree
of the heterodyne signal

LOD (in aM): 300 (in
buffer); 2000 (in serum) [131]

PSA SPR Sandwich antibody
LOD: 10.2 ng/ml (in

buffer); 18.1 ng/mL (in
serum)

[132]

hCG GMR MNP-labeled 25 mIU/mL [8]
hCG TMR MNP-labeled 25 mIU/mL [136]
hCG Magnetometer Hybrid to the lateral flow sensor 10 pg/mL [137]
hCG Magnetometer Hybrid to the lateral flow sensor 0.014 mIU/mL [138]

hCG SPR Sampling method LOD: 10 ng/mL (in
plasma blood) [139]

hCG Colorimetric sensor LSPR colorimetric using
AuNP-Aptamer probe

LOD: 15 mIU/mL
LDR: up to 1000

mIU/mL
[140]

cTn Piezoelectric sensor ZnO piezoelectric film LOD: 20 pg/mL
LDR: 0.04 to 2 ng/mL [145]

cTn LSPR Nanoimprint lithography sensing 0.55 ng/mL [146]

cTn Long Range SPR Waveguide mode SPR at λ=1310 nm
LOD: 430 pg/mL

(direct); 28 pg/mL
(sandwich)

[147]

cTn Plasmonic based IGZO sensing, AuNP assisted LSPR. LOD: 0.1 ng/mL (in
blood) [148]

cTn SPR MNP-labelled assisted SPR LOD: 1.25 ng/mL [149]

cTn LSPR Au triangular nanoprisms sensing LOD: 15 aM (in plasma
blood) [150]

cTn SPR AuNP assisted amplification,
sandwich.

LOD: 38 ng/mL
LDR: 1.25–40 µg/mL [151]

cTn FET Single drop whole blood sample 20 ng/mL [152]

cTn FET AlGaN/GaN HEMT
LOD: 250 fM (in

buffer)LDR: 0.006–148
ng/mL

[153]

rRNA: ribosomal ribonucleic acid; FET: field effect transistor; EGFET: extended gate field effect transistor; ZIKV: Zika virus; RNA:
ribonucleic acid; SPR: surface plasmon resonance; LSPR: localized surface plasmon resonance; NP-qDots-MB: nanoparticles-quantum
dots-molecular beacon; DNA: deoxyribonucleic acid; PNA: peptide nucleic acid; RGO: reduced graphene oxide; PSA: prostate specific
antigen; LOD: limit of detection; LDR: linear dynamic range; hCG: human chorionic gonadotropin; cTn: cardiac troponin; AuNP: gold
nanoparticles; ZnO: zinc oxide; IGZO: indium gallium zinc oxide; AlGaN: aluminum gallium nitride; GaN: gallium nitride; HEMT:
high-electron mobility transistor.

4.2. Multiple Biomarkers

In the case of complex diseases in medical science, analyzing a single biomarker is
not enough to evaluate the biological or pathogenic process. Therefore, assessing a panel
of biomarkers is required to improve the specificity and accuracy of the diagnosis. For
example, Duffy 2020 [157] noted that PSA single biomarker detection is not enough to
assess the prostate cancer state. Their study proposed additional biomarkers such as
(Prostate Health Index) PHI, 4K score, and prostate cancer gene 3 (PCA3) as the panel
biomarkers. The 4K score itself contains the total PSA, free PSA, intact PSA (a form of
free PSA), and human kallikrein 2 (hK2) [157]. Another panel of biomarkers has been
proposed for the evaluation of colorectal cancer (CRC). In clinical practice, the RAS gene
family (KRAS and NRAS), BRAF, HER2, and microsatellite instability (MSI) have been
reported as candidates for the panel of biomarkers [158]. A panel of biomarkers has also
been proposed for ovarian cancer assessment [159]. These findings in medical sciences
can be a valuable milestone for the clinical application of biosensors to perform panel
biomarkers simultaneously.

An example of the biosensing application of the multiplex strategy was reported by
Katchman 2016 [160] using the flexible display of organic-light emitting diodes (OLED).
This study demonstrated an application for multiplex detection of the HPV16 proteins
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E2, E6, and E7, which are known as biomarkers for cervical, head, and neck cancer. A
detection limit of 10 pg/mL was achieved [160]. Qureshi et al. proposed a sensing array
using a capacitor-based biosensor for high-throughput measurements. Gold interdigitated
electrodes (GID) are configured to detect a panel of inflammation and cardiovascular
risk biomarkers, including C-reactive protein (CRP), TNFα, and IL6. A dynamic range
performance was presented from 25 pg/ml to 25 ng/ml [161]. Another proof-of-concept
of multiplex biosensor for the detection of cardiovascular diseases was reported by Shan-
mugam et al. The troponin markers group (cTnI and cTnT) were detected simultaneously
in human serum, using Electrochemical Impedance Spectroscopy (EIS) and Mott-Schottky
methods [162]. A GMR-based biosensor was reported to detect a panel of cardiovas-
cular biomarkers: PAPP-A, PCSK9, and ST2. A LOD of 40 pg/mL for the ST2 antigen
was achieved, which the dynamic range is going up four orders of magnitude [7]. A
magnetoresistive-based biosensor was demonstrated for the detection of rare cell biomark-
ers: epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor 2
(HER2), and epidermal growth factor receptor (EGFR) on individual cells. The accuracy
was claimed to be 96%, compared to the 15% obtained with the Cell-Search method, while
the throughput sample achieved was up to ~107 cells/min [163].

Multi-analyte detection to assess Salmonella infection was demonstrated by Ewald et al.
using an optical biosensor reflectometer. Anti-Salmonella antibodies and CRP were de-
tected simultaneously, with a dynamic range from 5.74 to 122.52 mg/L [164]. Foun-
toglou et al. reported an LSPR sensor using colorimetric-induced gold nanoparticles as a
multi-allele DNA biosensor to detect thrombosis biomarkers. DNA amplification using
PCR was performed before the colorimetric detection, and 100% accuracy was reported
with this methodology [165]. A nanoparticle-based LSPR sensor was also proposed by
Lee et al. to detect a panel of cancer biomarkers, such as α-fetoprotein (AFP), carcinoembry-
onic antigen (CEA), and PSA. The reported detection limit performances from the analytes
in patient-mimicked serums were 91 fM for AFP, 94 fM for CEA, and 10 fM for PSA [166].
Another colorimetric sensor utilizing AuNP and aptamer probes was reported to detect
multiple proteins on the exosome surface [167]. A photonic crystal biosensor achieved the
multiplex detection of exosome vesicles (EV) released by macrophages. A panel of seven
biomarkers was used, including CD9, CD63, CD68, CD80, CD81, CD86, and I-A/I-E. A
dynamic range of EVs detection from 2×1011 particles/mL to 2×109 particles/mL was
achieved [168].

Multiplex detection of sepsis biomarkers was reported in a modular electrochemical
biosensor. The sensing layer used a nanoporous nylon membrane integrated onto the micro-
electrode. The LOD was of 0.1 ng/mL for procalcitonin (PCT), and 1 µg/mL for lipoteichoic
acid (LTA) and lipopolysaccharide (LPS) and LTA, while the dynamic ranges achieved
were from 0.1 ng/mL to 10 µg/mL for PCT and from 1 µg/mL to 1000 µg/mL for LPS and
LTA biomarkers [169]. Multiplex measurement of physiological body fluid biomarkers was
demonstrated in a wearable biosensor by Yokus et al. This research reported a wireless,
real-time, and high-throughput measurement of glucose, lactate, pH, and temperature. The
wearable sensors demonstrated sensitivity performance of 26.31 µA/mM·cm2 for glucose,
1.49 µA/mM·cm2 for lactate, 54 mV/pH for pH, and 0.002 ◦C-1 for temperature [170].
Some biosensors studies for multiplex biomarkers assessment are summarized in Table 6.
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Table 6. Summary of biosensor studies for multiplex detection of biomarkers.

Disease Diagnostic Biomarkers Platform Technical Remark Performance Ref.

Cardiovascular CRP; TNFα; IL6 GID capacitor
arrays

Co-immobilized chip
with equimolar

mixtures of
antibodies

LDR: 0.025–25 ng/mL [161]

Cardiovascular cTnI; cTnT
Disposable

electrochemical
sensor

ZnO vertical rod
sensing

LDR: 0.1–1 × 105

pg/mL
LOD (in pg/mL): 1
(cTnI); 0.1 (cTnT)

[162]

Cardiovascular PAPP-A; PCSK9;
ST2 GMR 8×8 sensor array LDR: 0.04-400 ng/mL [7]

Cancer EpCAM; HER2;
EGFR; CTC

Micro-Hall
detector 2×4 sensor array LDR:10–105 cells [163]

Cancer
CD9; CD63; CD68;
CD80; CD81; CD86;

I-A/I-E.
Photonic crystal 12 channels LDR: 2 × 1011-2 × 109

particles/mL
[168]

Cancer AFP; CEA; PSA LSPR
Biomarkers detected
in the human serum

sample

LOD (in fM): 91 (AFP),
94 (CEA) and 10 (PSA) [166]

Cancer
CD63;

EpCAM; PDGF;
PSMA; PTK7

LSPR colorimetric Aptamer probes on
AuNP

Profiling exosomal
proteins in minutes [167]

Salmonella infection
CRP;

anti-Salmonella
(AS)

1-lambda-
reflectometry

Label-free, portable
platform

LDR (in ng/mL):
5.74–122.52 (AS);
1.26–29.56 (CRP)

LOD (in ng/mL): 2.21
(AS);

0.72 (CRP)

[164]

Thrombosis

DNA sequences
from H1299R;
A1298C; V34L;

4G/5G
polymorphism

LSPR colorimetric PCR amplification,
dipstick sensing

Accuracy: 100% for 15
blind clinical samples [165]

Sepsis PCT; LTA; LPS Nanochannel
electrochemical

Detection in the
whole blood sample

LDR (in µg/mL):
0.0001-10 (PCT);

1-1000 (LPS and LTA)
[169]

Physiological body
fluid

Glucose, lactate,
pH, and

temperature from
sweat

Electrochemical Wearable and
wireless device

Sensitivity (in
µA/mM·cm2) 26.31

(glucose); 1.49 (lactate);
54 mV/pH (pH); 0.002

◦C−1 (temp.)

[170]

CRP: C-reactive protein; TNFα: tumor necrosis factor-α; IL6: interleukin 6; GID: gold interdigitated electrodes; cTnI: cardiac troponin
I; cTnT: cardiac troponin T; ZNO: zinc oxide; LDR: linear dynamic range; PAPP-A: pregnancy-associated plasma protein A; PCSK9:
proprotein convertase subtilisin/kexin type 9; ST2: suppression of tumorigenicity 2; GMR: giant magnetoresistive; EpCAM: epithelial
cell adhesion molecule; HER2: human epidermal growth factor receptor 2; EGFR: estimated glomerular filtration rate; CTC: circulated
tumor cell; AFP: alpha-fetoprotein; CEA: carcinoembryonic antigen; PSA: prostate-specific antigen; PDGF: platelet-derived growth factor;
PSMA: prostate-specific membrane antigen; PTK7: protein tyrosine kinase 7; AuNP: gold nanoparticles; DNA: deoxyribonucleic acid; PCR:
polymerase chain reaction; PCT: procalcitonin; LTA: lipoteichoic acid; LPS: lipopolysaccharide.

5. Biomarker Clinical Cut-Off Value

The cutoff value is an important element to be considered in the development of
a diagnostic tool. In principle, the clinical cutoff is a threshold value of the biomarker
concentration that distinguishes the clinical condition from the healthy patient. Therefore,
the precision and accuracy of quantifying this type of value play a significant role in
biosensor research. The typical illustration of the biomarker clinical cutoff value is depicted
in Figure 11. The use of cutoff value can help to provide the stage or diagnosis of the disease.
However, a fraction of the population fits in the false negative or false positive region,
and to overcome this issue, the use of a panel of biomarkers can enhance the analytical
performance of the biosensor. Therefore, a comprehensive analysis of the biomarkers in
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the context of the clinical diagnostic is critical for the development of a biosensing method
able to improve clinical decisions.
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For example, in the case of prostate cancer, a study suggested a clinical cutoff value for
the PSA biomarker of 4 ng/ml in blood. In patients, the PSA concentration can reach up to
104 ng/mL, while it is usually below 0.1 ng/mL in healthy people. As such, patients with a
PSA concentration higher than 4 ng/mL are required to perform a biopsy analysis. Another
study recommended that the range of 2–4 ng/mL be considered the grey area, although it
will decrease the TP rate [127]. Although only one biomarker is detected, if the biosensor is
sensitive enough (LoD below 4 ng/mL), it can increase the chance for diagnostic of prostate
cancer at an earlier stage of the disease, improving the chances of a positive outcome for the
patient. Another option could be the inclusion of multiple biomarkers in the initial analysis
as suggested by Duffy 2020 [157], which proposed the use of additional biomarkers such
as prostate cancer gene 3 (PCA3), and the Prostate Health Index (PHI), 4K score. These
biomarkers must be thoughtfully studied to determine a cutoff value and the entire panel
for clinical analysis.

For ovarian cancer, the biomarker CA-125 is a peptide epitope with a molecular
weight of 3–5 MDa mucin, MUC16. This biomarker is present in healthy individuals in the
range of 0-35 U/mL, while it is overexpressed in ovarian cancer patients. As such, some
studies suggest a clinical cutoff level around 30-35 U/mL [171,172]. In addition, CRP is
a well-known biomarker for cardiovascular disease and general inflammation, including
bacterial and viral infections, such as Salmonella and COVID-19 [161,164,173,174]. The
WHO reported this biomarker also for the nutrition state assessment. The CRP clinical
cutoff concentration in blood is around 10 ng/mL. This concentration rapidly increases
several hours after the inflammatory disease onset and can reach up to 350–400 ng/mL
in 2 days [175]. Consequently, for this biomarker, a biosensor platform with a dynamic
range from less than 10 ng/mL to 400 ng/mL, would be necessary for inflammatory
disease assessment. Nevertheless, CRP is a general inflammatory marker; a biosensor for
single biomarker CRP detection cannot distinguish the origin of the disease. Therefore this
scenario will be challenging for a clinical decision.
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To obtain a full picture of complex diseases, the cutoff value for multiple biomarkers
must be determined to achieve precision and accuracy in the clinical diagnostic tools.
One such example can be seen for stratification ischemic stroke patients for tPA (tissue
Plasminogen Activator) therapy. A group of researchers from clinical neurosciences pro-
posed a panel of biomarkers that reflect patients undergoing ischemic stroke [176]. It
was proposed that for levels of cellular-Fibronectin above 3.6 µg/mL [177,178], Matrix
Metalloproteinase-9 above 140 ng/mL [177,178], Platelet-derived Growth Factor-CC above
175 ng/mL [179], Neuroserpin below 70 ng/mL [180], and the calcium-binding protein
S100β above 230 ng/mL [177,181], the patients can be at a higher risk on developing a
hemorrhagic transformation (HT) after tPA treatment. Although the detection of each
biomarker is not specific for HT risk, the combination of at least two biomarkers (c-Fn
and MMP9) can provide a detection specificity of 87%, increasing the chances of a safe
diagnosis and improving clinical decision [178].

It is also essential to notice that the same biomarkers could be used to diagnose other
diseases as long as the cutoff values and biomarker combination considered are adjusted to
the clinical condition at study. Wood et al [182] also report optimizing multiples parameters
in a particle-based platform to achieve detection of 3 different analytes (multiplex assay)
with different ranges of relevant concentrations. Parameters such as particle concentra-
tion [82,182], capture antibody affinity [82,182], measuring conditions [82], and sample
preparation (e.g., dilutions) [82,182] affect the outcome of the developed assay and can be
tuned to fit the necessary cutoff value for the clinical application being targeted.

As such, biosensor platform application to the clinical environment depends on
adjusting its dynamic range to cover the clinical cutoff concentration of the biomarkers and
the ability to provide multiple biomarker detection to provide specific diagnostics.

6. Conclusions

In conclusion, to initiate multidisciplinary research in the biosensors field, several
steps should be considered systematically, which are illustrated in Figure 12.
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sample preparation (e.g., dilutions) [82,182] affect the outcome of the developed assay and 
can be tuned to fit the necessary cutoff value for the clinical application being targeted.  

 As such, biosensor platform application to the clinical environment depends on ad-
justing its dynamic range to cover the clinical cutoff concentration of the biomarkers and 
the ability to provide multiple biomarker detection to provide specific diagnostics. 

6. Conclusions 
In conclusion, to initiate multidisciplinary research in the biosensors field, several 

steps should be considered systematically, which are illustrated in Figure 12. 

 
Figure 12. The main steps to be considered in the development of a diagnostic tool from biomarker selection, analysis of 
the biophysical properties, clinical cut-off overview, biosensor preferences, and detection strategy to data analysis. 

The sequential concept from biomarker preferences allows the assay developer to 
choose the platform and detection methods with broader options. 

Moreover, the future outlook and challenges of the development biosensor platform 
will be for high-throughput samples that will be an essential feature for panel biomarker 
study. Nevertheless, if the biomarkers in the panel contain different structures or physical 
properties, a different dynamic range for the biosensor platform could be required, such 
as if the panel biomarkers consist of nucleic acid sequences, proteins, and cells. Another 
case is if the panel biomarkers consist of sequences of nucleic acid with different lengths. 
Therefore, each marker may require different clinical cut-off values, detection methods, 
and dynamic ranges of biosensor performance. In these cases, each channel of the high-
throughput biosensors will be excellent if it can be adjustable for the different dynamic 
range performances to comply with the biomarker properties. In addition, in the high-
throughput biosensors for panel biomarker analysis, advanced signal processing and in-
tegration with a machine learning algorithm to improve the detection accuracy will be a 
remarkable trend in the future. 

Figure 12. The main steps to be considered in the development of a diagnostic tool from biomarker selection, analysis of the
biophysical properties, clinical cutoff overview, biosensor preferences, and detection strategy to data analysis.

The sequential concept from biomarker preferences allows the assay developer to
choose the platform and detection methods with broader options.

Moreover, the future outlook and challenges of the development biosensor platform
will be for high-throughput samples that will be an essential feature for panel biomarker
study. Nevertheless, if the biomarkers in the panel contain different structures or physical
properties, a different dynamic range for the biosensor platform could be required, such
as if the panel biomarkers consist of nucleic acid sequences, proteins, and cells. Another
case is if the panel biomarkers consist of sequences of nucleic acid with different lengths.
Therefore, each marker may require different clinical cutoff values, detection methods,
and dynamic ranges of biosensor performance. In these cases, each channel of the high-
throughput biosensors will be excellent if it can be adjustable for the different dynamic
range performances to comply with the biomarker properties. In addition, in the high-
throughput biosensors for panel biomarker analysis, advanced signal processing and
integration with a machine learning algorithm to improve the detection accuracy will be a
remarkable trend in the future.
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