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Abstract: Plums are one of the commercially important stone fruits that are available on the market
in both fresh and processed form and the most sought-after products are prunes, cans, jams, and
juices. Maturity, harvest, and post-harvest technologies fundamentally determine the relatively
short shelf life of plums which is often threatened by Monilinia spp. Causing brown rot worldwide.
The aim of the present research was to use advanced analytical techniques, such as hand-held near
infrared spectroscopy (NIRS) and electronic tongue (e-tongue) to detect M. fructigena fungal infection
on plums and quantify this fungal contamination in raw plum juices. For this purpose, plums
were inoculated with fungal mycelia in different ways (control, intact, and through injury) and
stored under different conditions (5 ◦C, and 24 ◦C) for eight days. The results obtained with the
two instruments were analyzed with chemometric methods, such as linear discriminant analysis
(LDA) and partial least squares regression (PLSR). The NIRS-based method proved successful when
detectability before the appearance of visible signs of the infection was studied. E-tongue was able
to detect and quantify the concentration of juice derived from plum developed with M. fructigena
with RMSECV lower than 5% w/w. Overall, the two methods proved to be suitable for discriminating
between the treatment groups, however, the classification accuracy was higher for samples stored
at 24 ◦C. The research results show both NIRS and e-tongue are beneficial methods to reduce food
waste by providing rapid determination of fruit quality.

Keywords: authentication; chemometrics; fruit shelf life; early detection of fungi infection; fingerprint
analysis

1. Introduction

The genus Prunus includes a number of economically important stone fruits, such as
peaches, cherries, and plums. Among these, plums have become increasingly important
with valued commercial significance, especially for the European (Prunus domestica) and
Japanese (Prunus salicina) varieties. The world’s leading plum producer is China, followed
by Romania, Serbia, and the United States [1]. Approximately 2000 species of plums are
known worldwide with varying shapes where terminologies such as tiny, round, large,
and oval are used to describe their appearance. In terms of color, they can range from pale
yellow to red fruit flesh and yellow to black skin [2,3]. Plums are commercially available
in both fresh and processed forms and the most sought-after products are prunes, cans,
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jams, and juices [4]. Nutritionally, fruits are good sources of water-soluble and insoluble
fibers that have a regulatory function and selection of gut microflora [5,6]. The flesh is the
major and edible part of the plum fruit that is characterized by a low-calorie content. After
water, carbohydrates are the main component of fruits that represent more than 90% of
their dry matter. Stone fruits, such as plums, have also been important sources of an array
of phytochemicals (e.g., flavonoids, flavanols, and flavonols) that may reduce the risk of
cardiovascular diseases [7]. Plum products, among others, contribute to ease dejection,
increase bone health, and improve cognition [8]. Plums and their products, in particular,
have been recognized as functional foods as they contain a number of compounds that
have beneficial health effects upon consumption [9].

Generally, maturity, harvest, and post-harvest technologies fundamentally determine
the shelf life of plums, which is 2–6 weeks depending on the species. Even when stored
at 0 ◦C [10], a significant proportion of the production loss of up to 50% is due to fruit
diseases [11], among which the most substantial is the Monilinia spp. Monilinia spp. are
especially known for causing brown rot worldwide [12,13]. In Europe, M. fructicola and
M. laxa are best known for their ability to secrete cell wall-degrading enzymes to infect
pome and stone fruits. M. fructigena spp. are also known for spreading readily through
contact after contamination via mechanical injury [14–16]. To counter post-harvest losses, it
is essential to sort suspected or infected fruits from the lot as soon as possible to maintain the
quality of fruit products expected by consumers. In this way, further fungal contamination
and processing of spoiled fruits may be abated to improve agricultural profits.

To date, there is no objective method based on the measurement of parameters that
could exhaustively describe the physiological status of fruits. Only a finite number of
characteristics can be determined at a time, but the so-called fingerprint methods provide a
solution in a fast and non-destructive manner. Near infrared (NIR) spectroscopy with its
100-year history is one of the most suitable techniques to determine the internal quality
indices and safety of fruits (e.g., defects, and decays) [17–19]. During a storage test on
plums, Li et al. [20] applied visible-NIR spectroscopy coupled with Pearson correlation,
principal component analysis (PCA), and partial least squares regression (PLSR) to predict
soluble solid content (SSC), pH, titratable acid (TA), sugar-acid ratio (SSC/TA), flesh color
(L *, a *, and b *), and firmness during low-temperature storage (5 ◦C) of black skinned
“Friar” plums. According to their results, flesh color proved to be a crucial factor to consider
when assessing the quality of post-ripening. Pérez-Marín et al. [21] studied the utility of
a diode-array Vis-NIR (400–1700 nm) and a handheld micro-electro-mechanical system
(1600–2400 nm) spectrometer to assess SSC and firmness of plum varieties stored at 0 ◦C for
9 d. Promising results were obtained when it was examined how accurately six varieties and
three storage periods (0, 6, and 9 d) could be classified using PLS discriminant analysis (DA).
In another research, almost 100% correct classification was achieved by using NIRS and
back propagation-artificial neural networks (BP-ANN) when detecting flesh-browning of
intact plums [22]. Regarding the fungal infection of fruits, Siedliska et al. [23] got similarly
good results when employing Vis-NIR, small wavelength IR hyperspectral imaging (HSI)
and BNN to detect Botrytis cinerea and Collatotrichum acutatum in strawberries. In a study on
citruses, Vis-NIR HSI and N-way PLS-DA models were developed for the discrimination of
sound and green mold (Penicillium digitatum) infected orange and mandarin varieties [24].
Liu et al. [25] also used Vis-NIR HSI (400–1000 nm) to predict the fungal colony count in
peaches infected with Botrytis cinerea, Rhizopus stolonifera, and Monilinia fructicola. They
additionally performed PCA evaluation which showed successful discrimination of fruits
at different levels of infection (acceptable, moldy, and highly moldy) during storage.

Due to the sharply growing consumer demand for minimally processed fruit products,
fruit juices are also frequent targets for various forms of food fraud, since they can be easily
manipulated across the production line. The adulteration covered by this concept can be
quite simple or sophisticated, e.g., when industrial slops, by-products, or lower quality
juices are added [26]. The verification of food authenticity is of paramount importance
not only from an economic purview, but also from a food-safety point of view. The use
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of untargeted methods can be observed more and more in this area as well [27,28]; an
outstanding example of these untargeted methods is the electronic tongue (e-tongue). The
e-tongue mimics human taste perception and can be effectively used for qualitative and
quantitative analysis of liquid samples. It is also often used in cases where human sensory
evaluation would not be feasible [18,29]. A commercial multi-parameter liquid sensor
system based on ISFET technology was employed when the post-harvest ripeness of plums
was examined. A significant correlation was found between sensor signals and TA, SSC/TA,
and total sugars/TA ratios [30]. Based on the investigations of Rudnitskaya et al. [31], the
developed e-tongue was able to discriminate fresh-pressed and concentrate based juices,
the dilution by water or sugar syrup. Besides, the degradation of the juices over time and
the degrees of spoilage could be effectively traced and detected. Hong et al. have repeatedly
used the e-tongue and nose data fusion techniques to the recognition and quantification of
fresh cherry tomato juice adulteration with juices of overripe tomatoes [32,33]. The results
of a study on the spoilage of apple juices reveal that Zygosaccharomyces rouxii contamination
could be detected as early as 12 h after inoculation by LDA on e-tongue data. PLSR for
estimating the cell count showed high prediction accuracies for the tested strains [34].

Relatively few scientific results are available on plums and their products with state-
of-the-art non-destructive methods, particularly with regard to the monitoring of microbial
contamination. To the best of our knowledge, there is no published study to date, that has
addressed the use of NIR spectroscopy and e-tongue based classifier and predictor models
to detect Monilinia spp. infection in plums and contamination in raw fruit juices. This
preliminary study aims to detect Monilinia fructigena in stored plums by NIR spectroscopy,
also to qualify and quantify raw plum juices with e-tongue.

2. Materials and Methods
2.1. Fruit Samples and Fungal Isolates

European plums used for the experiment were collected at the Újpest Market and
Fair Hall, Budapest, during the late autumn season. Fruits from the Stanley variety were
pre-selected according to their size and integrity. The fruits were fully matured, colored,
and free of any visible damage.

Isolation of Monilinia ssp. from different fruits (e.g., apples, quinces, and plums)
showing signs of brown rot was performed. A small slice of the fruit was aseptically cut
and plated onto malt extract agar (Biolab, 1% yeast extract, 2% malt, 4% glucose, and 1.5%
agar), followed by incubation for 7 d at 21 ◦C. Naturally infected quince isolates were
identified as Monilia fructigena by PCR and DNA sequencing based on the sequence analysis
of the ribosomal ITS (Internal Transcribed Spacer) region of isolates [35]. The sequences
were compared to similar fungal sequences available from GenBank using BLAST (Basic
Local Alignment Search Tool) [36]. Fresh inoculations were performed weekly from the
margins of the cultures onto malt extract agar, and propagated at 24 ◦C. The edges of fungal
mycelia developed on the culture media were used for infection.

2.2. Sample Preparation

The surface of the plums was disinfected with 76% ethyl alcohol, and artificially
infected with M. fructigena as summarized in Table 1. Subsequently, half of the samples
prepared were exposed to controlled storage in refrigerator (−5.3 ± 0.7 ◦C; 58.5 ± 3.6%
RH) or at room temperature (24.5 ± 1.0 ◦C; 66.4 ± 3.8% RH) for 8 d. The storage at about
5 ◦C simulated refrigerated storage conditions that befit for both home and industrial
storage temperature, while the storage at about 24.5 ◦C, which is the optimum temperature
of M. fructigena, simulated a practical storage condition on the shelf. Storage conditions
were monitored with a data logger. The following six groups of plums were obtained
by storage in different conditions: “5 ◦C Control”, “5 ◦C Injury”, “5 ◦C Intact”, “24 ◦C
Control”, “24 ◦C Injury”, and “24 ◦C Intact”. To ensure a sufficient sample quantity for the
measurements, five parallel plums were infected in each sample group and were examined
in a non-destructive manner with NIR spectroscopy.
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Table 1. Infection of plums with Monilia fructigena.

Sample Name Sample Count Mode of Inoculation

Control 2 × 5 There was no infection.

Injury 2 × 5

A cut of about −1 cm was applied to the fruit surface with a
sterile knife tip. The plums were infected via this wound
with culture medium edge interlaced with fungal mycelia
by using sterile inoculation loops.

Intact 2 × 5
The sound fruit surface was inoculated in a circle about 1
cm in diameter with culture medium edge interlaced with
fungal mycelia by using sterile inoculation loops.

After 8 d of storage, raw juices were extracted from each of the six groups of plums
stored in different ways by a fruit centrifuge (Philips HR 1851). In addition to raw juices of
the “Injury” fruits stored at 24 ◦C for 8 d and had developed M. fructigena on their surface
were mixed in 5, 10, 20, and 30% with raw juices from the “24 ◦C Control” samples to
simulate juice production that does not conform to good manufacturing practice. By mixing
“Control” and “Injury” samples stored at 24 ◦C in different ratios, the following four groups
of samples were obtained: “24 ◦C Control + Injury 5%”, “24 ◦C Control + Injury 10%”,
“24 ◦C Control + Injury 20%”, and “24 ◦C Control + Injury 30%”. Three parallel samples
were prepared (centrifuged and mixed) simultaneously for each sample group of raw plum
juices of different compositions (six sample groups and four mixtures), giving a total of
30 samples which were further analyzed with e-tongue.

2.3. Methods
2.3.1. Spectral Acquisition of the Plum Samples with Hand-Held Spectrometer

For non-destructive examination of plums stored and infected in different ways,
30 whole fruits (six sample groups × five parallel samples) were subjected to near infrared
scanning using a NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan) hand-held reflectance
spectrometer. The spectral data was collected in the wavelength range of 900–1700 nm.
The spectra were recorded along the vertical axis of the fruits (from stalk to apex) at five
measurement positions. Three consecutive scans were recorded at each measurement
position. After each measurement, the instrument contact surface was disinfected with 76%
ethyl alcohol. The spectra acquisition was performed twice per day during 8 d of storage,
except for day 8, when there was only one measurement, thus, there were a total of 15
measurement occasions. A total of 450 spectra were collected per occasions (i.e., 30 samples
× five positions × three consecutives).

2.3.2. Electronic Tongue Analysis of the Plum Juice Samples

The Alpha Astree potentiometric electronic tongue (Alpha M.O.S., Toulouse, France)
was used to study the taste profile of plum juices and mixtures. A measuring head with
an Ag/AgCl reference electrode and seven ISFET sensors specially developed for food
analysis immersed in the liquids at once with continuous stirring. Beside the seven sensors,
a pH electrode (SevenMulti, Mettler Toledo, Greifensee, Switzerland) was also included in
the measuring system. Before starting the measurements, the instrument was prepared in
accordance with the manufacturer’s instructions [37]. The raw fruit juices and mixtures
were 50-fold diluted and filtered with pleated paper filters with a pore size of 30 µm and
diameter of 125 mm (Macherey-Nagel GmbH. and Co., Düren, Germany). The amount
of sample solution tested by the e-tongue was 100 mL, measuring time was 120 s, the
sampling frequency was 1 s, and the cleaning time with distilled water was 15 s between
measurements. All three parallel samples in the 10 different sample groups were measured
four times. Thus, for the subsequent data analysis, a total data set of 120 observations was
obtained (10 sample groups × three parallel samples × four measurement repetition).
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2.3.3. Data Analysis
Multivariate Analysis of the NIR Spectra

The NIR spectra were evaluated in the 950–1630 nm wavelength range. Principal
component analysis (PCA) was applied to compress highly autocorrelated NIR data into
variables (principal components) that no longer correlated. This also enabled sorting of
outliers by identifying data points that fall outside the 95% confidence interval. Outliers
were detected per sample group, and 6049 of the 6750 spectra were further evaluated.

Besides Savitzky-Golay smoothing (second order polynomial, 21 points), various
spectral pretreatments were used to optimize later statistical modeling. The following
treatments were applied: detrending (elimination of polynomial baseline tendencies), mul-
tiplicative scatter correction (baseline shift reduction), standard normal variate (correction
of linear and additive effects), first derivative (removal of constant offsets), and second
derivative (removal of linear offsets) with different data point frames (13; 17; 21). The
article summarizes the best models obtained with different pretreatments.

Principal component analysis based linear discriminant analysis (PCA-LDA) was
performed to classify samples according to mode of inoculation (“Control”, “Injury”, and
“Intact”), storage conditions (“5 ◦C”, and “24 ◦C”), different treatment groups (“5 ◦C Con-
trol”, “5 ◦C Injury”, “5 ◦C Intact”, “24 ◦C Control”, “24 ◦C Injury”, and “24 ◦C Intact”), and
signs of visible Monilia infection (“−”, and “+”). In these analyses, principal component
scores were used as input for the LDA models. The optimal number of principal com-
ponents (NrPCs) were determined on the model training set (with the exclusion of data
corresponding to one of the five parallelly prepared samples) by omitting the consecutive
scans. The R-based algorithm collected and compared LDA training and cross-validation
accuracies up to the predefined 40 NrPCs. The NrPCs providing the smallest difference
between the accuracies of model building and cross-validation as well as the highest vali-
dation accuracy was used to build the final model using the 4/5 of data involved in the
optimization. During the validation, the external set, the 1/5 of data (corresponding to
previously omitted parallelly prepared samples) was projected into the model built in this
way. To examine the early detectability of M. fructigena, independent LDA prediction was
employed. In this case, a classification model was built with three-fold cross-validation
on the data of “24 ◦C Injury” samples measured on the third, fourth, fifth, and sixth mea-
surement days and was tested by projecting the results of fruits that soon showed signs
of infection (day 1, and day 2). The training set included 600 spectra (550 after outlier
deletion) and 300 spectra in the validation set. In this way, it was possible to determine
where samples that did not yet show visible signs of infection in the first few days could
actually be classified according to their spectra (infection “−”, or “+”).

Multivariate Analysis of the E-Tongue Data

The evaluation of the e-tongue results used the average of the sensor signals measured
in the last 10 s on each sensor separately, then drift correction was performed to improve e-
tongue sensor signals [38,39]. The results of the first three measuring cycles were excluded
from the initial dataset, since then the sensors were still conditioning to the sample solutions.
Then PCA was applied whose sole purpose was to detect possible outliers which were
manually sorted. After this, a total of 81 datapoints were further analyzed.

LDA was employed to classify each group of raw plum juice samples. The LDA
models were built by omitting the sensor signals belonging to one of the three parallelly
prepared samples. During the external validation, the previously left-out sample data was
projected into the LDA models.

Partial least square regression (PLSR) was used to predict “24 ◦C Injury” raw fruit juice
content in authentic plum juices. The predictive model was validated with leave-one-out
cross-validation (“LOO”), which is a generally accepted validation procedure in e-tongue
data analysis [40]. In this case, model construction was done with the omission of one case,
and model testing was done with the previously omitted one. This cycle was executed as
many times as all the cases were included during model building and validation. The fit
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accuracy of the PLSR model was given by the coefficient of determination (R2) and the
root mean square error (RMSE) during calibration (C) and validation (CV). The R-based
algorithm tested the number of latent variables (NrLV) optimal for the model construction
and selected the one with minimal RMSE values.

The data systematization and analysis were implemented in MS Excel and R-project
(3.6.3) software and “aquap 2” package [41].

3. Results and Discussion
3.1. Results of Near Infrared Spectroscopy
3.1.1. Discrimination of the Different Treatment Groups of the Plum Samples with the
Hand-Held Spectrometer

The smoothed NIR spectra recorded on the eighth storage day with the hand-held
spectrometer is shown in Figure 1. It was observed that the spectra of different sample
groups overlap significantly. Around 1400–1500 nm, the samples show high light absorp-
tion, suggesting differences in water structure patterns. Based on the figure, the spectra
of the “24 ◦C Injury” samples were characterized by lower absorbance values compared
to the other sample groups. This is also due to the appearance of Monilinia conidia on the
surface of fruits and a significant decrease in the water content of these samples. The highly
overlapping spectra supported the need for statistical analyzes to show the differences
hidden in the data.

1 
 

 

Figure 1. NIR spectra of control and infected plums samples from measurement day 8 (N = 357).

Figure 2 reports the first two linear discriminant variables of the PCA-LDA model,
calculated to discriminate the different sample groups on the eighth day of storage. The
groups of control and differently infected samples stored at 5 ◦C were almost completely
overlapping in the presented discriminant space. The groups of “Control” and “Intact”
samples stored at 24 ◦C were separated relatively close to this. Data of fruits inoculated
via injured surface clearly formed a distinct group. Table 2 summarizes the prediction
classification for the different treatment groups during model building and external val-
idation (72.29%, and 56.67%). Based on the above mentioned, it was expected that the
classification of the samples, especially of the injured fruits stored at 24 ◦C was more
accurate than that of the samples stored at 5 ◦C. As external validation, projecting the
data of every first parallel sample into the training model showed that “5 ◦C Control” and
“5 ◦C Injury” samples were classified equally during model validation. For the samples
“24 ◦C Intact” the validation accuracy was relatively low, misclassification was mostly
to the “5 ◦C Control” group. The significant segregation of data points belonging to the
“24 ◦C Injury” group can be attributed to the fact that Monilia was able to obtain the optimal
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developmental circumstances under such conditions. Conidia developing on the surface
of the fruits contributed to the large scattering of light, besides, the water content of the
fruits also decreased greatly in this treatment group. This resulted in 100% prediction
classification during validation. This was typical for the “24 ◦C Injury” samples.
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Table 2. PCA-LDA classification model on the NIRS data of control and infected plums from measurement day 8 with first
parallel sample data validation when the different treatment groups were used as class variable (N = 357, NrPCs = 12).

Accuracy % 24 ◦C
Control

24 ◦C
Injury

24 ◦C
Intact

5 ◦C
Control

5 ◦C
Injury

5 ◦C
Intact

Correct
Classification

Recognition
N = 289

24 ◦C Control 67.39 5.26 22.45 0 6.67 0

72.29%

24 ◦C Injury 6.52 94.74 0 0 0 0

24 ◦C Intact 17.39 0 77.55 10.42 0 0

5 ◦C Control 0 0 0 50.00 26.67 16.33

5 ◦C Injury 8.7 0 0 12.50 64.44 4.08

5 ◦C Intact 0 0 0 27.08 2.22 79.59

Validation
N = 68

24 ◦C Control 100 0 33.33 0 20.00 13.33

56.67%

24 ◦C Injury 0 100 0 0 0 0

24 ◦C Intact 0 0 33.33 0 0 0

5 ◦C Control 0 0 0 40.00 40.00 40.00

5 ◦C Injury 0 0 0 0 40.00 20.00

5 ◦C Intact 0 0 33.33 60 0 26.67

It was worthwhile to split the data according to storage conditions because there was
considerable overlap between sample groups at each of the temperature levels. Thereby,
we were able to get a more accurate picture of the effect of the Monilia inoculation mode
on the spectra. Figure 3. exemplifies how the data points of differently infected plums in
the discriminant space were separated. Storage at 5 ◦C for 8 d did not result in significant
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spectral differences; the data points of the different treatment groups significantly overlap
(Figure 3a). Classification accuracies for the discrimination of the three groups stored at
5 ◦C were 74.41 and 43.33% during recognition and validation, respectively. The projection
of data of every fifth sample resulted that the method classified the “5 ◦C Intact” samples
most inaccurately, with the highest misclassification being done for the “5 ◦C Injury”
samples (Table 3). As mentioned above, there were no visible signs of Monilia growth in
this sample group because the storage conditions were not optimal for the fungus, the
classification of the “Control” samples was the most accurate. This was almost completely
classified as “Intact”. This can be attributed to the very similar surface properties, since
there was no wound on the surface of these fruits.
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Figure 3. PCA-LDA classification model on the NIRS data of control and infected plums from
measurement day 8 with external validation when the inoculation mode was used as class variable:
(a) PCA-LDA of samples stored at 5 ◦C (N = 177, and NrPCs = 16); (b) PCA-LDA of samples stored
at 24 ◦C (N = 180, and NrPCs = 10).

Table 3. PCA-LDA classification model on the NIRS data of control and infected plums stored at
5 ◦C with 5th parallel sample data validation when the inoculation mode was used as class variable
(N = 177, and LV = 16).

Accuracy % 5 ◦C
Control

5 ◦C
Injury

5 ◦C
Intact

Correct
Classification

Recognition
N = 144

5 ◦C Control 68.29 7.41 12.24

74.41%5 ◦C Injury 9.76 81.48 14.29

5 ◦C Intact 21.95 11.11 73.47

Validation
N = 33

5 ◦C Control 0 50.00 0

43.33%5 ◦C Injury 8.33 50.00 20.00

5 ◦C Intact 91.67 0 80.00

For the samples stored at 24 ◦C, the “24 ◦C Control” and “24 ◦C Intact” sample
groups presented more overlapping pattern with each other than with the “24 ◦C Injury”
group on the PCA-LDA (Figure 3b). Using the data of every fourth parallel samples as
external validation resulted in the classification accuracies summarized in Table 4. The
correct classification during model building and testing were 85.21 and 66.82%, respectively.
The most accurate classification was found for the “24 ◦C Injury” samples, with minimal
misclassification for the “24 ◦C Intact” ones. The other two groups, especially in the case
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of the “Control” samples, there was higher misclassification observed into each other’s
groups (Table 4).

Table 4. PCA-LDA classification model on the NIRS data of control and infected plums stored at
24 ◦C with 4th parallel sample data validation when the inoculation mode was used as class variable
(N = 180, and NrPCs = 10).

Accuracy % 24 ◦C
Control

24 ◦C
Injury

24 ◦C
Intact

Correct
Classification

Recognition
N = 145

24 ◦C Control 93.02 5.56 31.82

85.21%24 ◦C Injury 0 94.44 0

24 ◦C Intact 6.98 0 68.18

Validation
N = 35

24 ◦C Control 23.08 0 14.29

66.82%24 ◦C Injury 23.08 91.67 0

24 ◦C Intact 53.85 8.33 85.71

3.1.2. Early Detection of Monilia fructigena Contamination on Plums with the Hand-Held
Spectrometer

During the 8 d of storage visible signs of M. fructigena infection was observed only in
the cases of plum samples stored at 24 ◦C and infected by injury (“24 ◦C Injury”). Table 5
summarizes when M. fructigena infection was visually noticed on the five test samples of
the “24 ◦C Injury”sample group. In order to achieve early detection of these samples with
the NIR technique, we built a PCA-LDA model on the spectra of the “24 ◦C Injury” samples
from the third, fourth, fifth, and sixth measurement days (N = 550, and NrPCs = 20), which
classified the samples according to the visible signs of infection. The spectra of the first
2 d of the “24 ◦C Injury” samples (N = 300, and NrPCs = 20) were projected into this
model for independent prediction. According to our results, the method classified all the
“24 ◦C Injury” samples as positive for Monilia infection based on the data of the first two
measurement days. Due to the dark skin color of the Stanley variety, signs of infection
could only be seen when some form of fungal mycelium and/or conidia have developed.
Generally, all of the five measurement positions on the fruit surface contributed to the
successful identification. Such obligate aerobic fungal infections are characterized by the
fact that they spread rapidly through the fruit tissue after infection, whilst the fruit itself
collapses, and proliferating from the outside inwards [14]. As a result of this process, the
infection may be detected at measurement positions where it is not yet visible. The fact
that a cut was applied on the fruit surface also might have contributed to the distinction on
the first 2 d.

Table 5. Appearance of visible signs of M. fructigena infection on “24 ◦C Injury” plums stored for 8 d (— plums with no
visible sign of infection; and + plums with the visible sign of infection) and the early detectability (*) of the infection with
NIR spectroscopy.

Sample Sets
Storage

Day
Plum 1. Plum 2. Plum 3. Plum 4. Plum 5.

Vis NIR Vis NIR Vis NIR Vis NIR Vis NIR
Independent
prediction set

Day 1. — + * — + * — + * — + * — + *
Day 2. — + * — + * — + * — + * — + *

Model
building set

Day 3. + + + — —
Day 4. + + + — —
Day 5. + + + — +
Day 6. + + + + +
Day 7. + + + + +
Day 8. + + + + +
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3.2. Results of Electronic Tongue
3.2.1. Discrimination of the Different Treatment Groups of the Plum Samples
with E-Tongue

Figure 4 reports the first two linear discriminant variables of the LDA model calculated
to observe detectable trends in the control and mixed raw plum juices based on the e-
tongue sensor signals. Building the LDA model on the first and third parallel sample
set and projecting the result of second sample set resulted in a fairly well separation
of the groups of juices along the first discriminant factor. Interestingly, the data points
corresponding to “24 ◦C Intact”, “24 ◦C Control”, and “5 ◦C Injury” treatment groups were
partly overlapping, while “5 ◦C Control” and “5 ◦C Intact” samples not. The data points of
“24 ◦C Injury” samples were clearly separated. Only the “24 ◦C Injury” samples showed
Monilia activity, which intrinsically digested the fruits, greatly altering their chemical
composition. This change was effectively detectable with e-tongue. Interestingly, the “5 ◦C
Control”, “5 ◦C Injury”, and “24 ◦C Control” samples were grouped in cluster, presumably
due to similar sensorial characteristics. Table 6 contains the correct classification values of
the different sample groups during LDA modelling and validation (88.89%, and 63.89%).
Even in this analysis, it was true that the classification accuracy of the samples stored
at 24 ◦C was better. During validation, the prediction classification of “24 ◦C Control”
and “24 ◦C Intact” samples were equal. Raw fruit juices of the “5 ◦C Control” group
were completely misclassified as “5 ◦C Injury” or “5 ◦C Intact”. As the figure implied,
there was 100% correct classification of the “24 ◦C Injury” samples during model building
and validation.
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Table 6. LDA classification model on the e-tongue data of control and infected raw plum juices with second parallel sample
validation when the different treatment groups were used as class variable (N = 51).

Accuracy 24 ◦C
Control

24 ◦C
Injury

24 ◦C
Intact

5 ◦C
Control

5 ◦C
Injury

5 ◦C
Intact

Correct
Classification

Recognition
N = 35

24 ◦C Control 83.33 0 0 16.67 16.67 0

88.89%

24 ◦C Injury 0 100 0 0 0 0

24 ◦C Intact 0 0 100 0 0 0

5 ◦C Control 0 0 0 66.67 0 0

5 ◦C Injury 16.67 0 0 16.67 83.33 0

5 ◦C Intact 0 0 0 0 0 100

Validation
N = 16

24 ◦C Control 66.67 0 33.33 0 0 0

63.89%

24 ◦C Injury 0 100 0 0 0 50.00

24 ◦C Intact 0 0 66.67 0 0 0

5 ◦C Control 0 0 0 0 0 0

5 ◦C Injury 33.33 0 0 50.00 100 0

5 ◦C Intact 0 0 0 50.00 0 50.00

Analyzing separately how each group of samples can be distinguished at the different
temperatures, a notable overlap between the inoculation modes at 5 ◦C was observed
(Figure 5a). When projecting the data of the second parallel samples, this was supported.
As Table 7 shows, the misclassification of raw “Control” juices into the other two sample
groups was absolute. For samples stored at 24 ◦C, when the first parallel samples were
used in the validation, the different inoculation modes could be distinguished completely
during model building and testing (Figure 5b, Table 8).
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Table 7. LDA classification model on the e-tongue data of control and infected plum juices stored at
5 ◦C with second parallel sample validation when the inoculation mode was used as class variable
(N = 25).

Accuracy 5 ◦C
Control

5 ◦C
Injury

5 ◦C
Intact

Correct
Classification

Recognition
N = 18

5 ◦C Control 100 0 0

100%5 ◦C Injury 0 100 0

5 ◦C Intact 0 0 100

Validation
N = 7

5 ◦C Control 0 0 0

66.67%5 ◦C Injury 50 100 0

5 ◦C Intact 50 0 100

Table 8. LDA classification model on the e-tongue data of control and infected plum juices stored at
24 ◦C with first parallel sample validation when the inoculation mode was used as class variable
(N = 26).

Accuracy 24 ◦C
Control

24 ◦C
Injury

24 ◦C
Intact

Correct
Classification

Recognition
N = 18

24 ◦C Control 100 0 0

100%24 ◦C Injury 0 100 0

24 ◦C Intact 0 0 100

Validation
N = 8

24 ◦C Control 100 0 0

100%24 ◦C Injury 0 100 0

24 ◦C Intact 0 0 100

Comparing the NIR spectroscopy and e-tongue results, it can be observed that the
e-tongue proved to be slightly more accurate in the discrimination according to the mode
of inoculation. Chemical and pH-related differences could be described with high accuracy,
especially for samples stored at 24 ◦C.

3.2.2. Detection and Quantification of Spoiled Fruit Content in Raw Plum Juices
with E-Tongue

Figure 6 shows how effectively the Monilia infected fruit content (“24 ◦C Injury”)
added to the raw juices from the “24 ◦Control” samples at different concentrations can
be separated with LDA based on the results of e-tongue. The increasing concentration
level showed an increasing segregation trend along the first discriminant factor from the
group of the juice not containing juice from the “24 ◦C Injury” group. The addition of
strikingly different chemical composition of the juices from the spoiled “24 ◦C Injury”
samples allowed an accurate classification. Differentiation of 0, 5, 20, and 30% mixing was
achieved with 100% and 86.67% accuracy during model building and validation. During
the detection of 10% spoiled fruit content, there was 66.67% misclassification to the 20%
group (Table 9).
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Figure 6. LDA classification models on the e-tongue data of raw plum juice mixtures with second
parallel sample validation when the “24 ◦C Injury” fruit content was used as class variable (N = 39).

Table 9. LDA classification models on the e-tongue results of raw plum juice mixtures with second parallel sample validation
when the “24 ◦C Injury” fruit content was used as class variable (N = 39).

Accuracy 24 ◦C
Control

24 ◦C
Control +
Injury 5%

24 ◦C
Control +

Injury 10%

24 ◦C
Control +

Injury 20%

24 ◦C
Control +

Injury 30%

Correct
Classification

Recognition
N = 25

24 ◦C Control 100 0 0 0 0

100%

24 ◦C Control
+ Injury 5% 0 100 0 0 0

24 ◦C Control
+ Injury 10% 0 0 100 0 0

24 ◦C Control
+ Injury 20% 0 0 0 100 0

24 ◦C Control
+ Injury 30% 0 0 0 0 100

Validation
N = 14

24 ◦C Control 100 0 0 0 0

86.67%

24 ◦C Control
+ Injury 5% 0 100 0 0 0

24 ◦C Control
+ Injury 10% 0 0 33.33 0 0

24 ◦C Control
+ Injury 20% 0 0 66.67 100 0

24 ◦C Control
+ Injury 30% 0 0 0 0 100

The PLSR model, constructed to predict the M. fructigena infected fruit content (“24 ◦C
Injury”) in raw “24 ◦C Control” plum juices (N = 39, and NrLV = 7) estimated the spoiled
fruit content with coefficients of determination of 0.87 and 0.78, and root mean square
errors of 3.98 and 5.09% w/w during calibration and validation, respectively (Figure 7).
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4. Conclusions

The results highlight that the advanced analytical techniques, NIR spectroscopy, and
e-tongue combined with chemometrics generally distinguished between infection modes
with acceptable accuracy when external sample sets were involved in the validation pro-
cess. However, it is important to mention that for some sample groups, the results were
meagre and storage temperature dependent. Storage conditions generally resulted in a
clear difference, so it was worth examining the data separately accordingly. Classification
accuracy was typically better for samples stored at 24 ◦C. By independent LDA prediction,
plums that did not yet show signs of M. fructigena infection could be unequivocally identi-
fied based on their spectral characteristics. Based on the e-tongue results, plums storage
at different temperatures resulted in significant differences in the “Injury” samples. The
method distinguished with considerable precision between raw juices containing different
percentages of juices from “24 ◦C Injury” samples when external validation was applied.
The predictive PLSR model estimated the spoiled fruit content in plum juices with an
error of 5% w/w. This result may be somewhat arguable because cross-validation was used
here in the absence of external validation. It should be emphasized that these applications
are preliminary, only relatively distant conclusions can be drawn from the results that
would be expected for a larger sample size and commercially available fruit juices. The
applications and results provide a basis for extending the investigations to commercially
available samples.
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