Supplementary Figures

Graphite Studded with Facile-Synthesized Cu₂O Nanoparticles-Based Cubes as a Novel Electrochemical Sensor for Highly Sensitive Voltammetric Determination of Mebeverine Hydrochloride

Ahmed H. Naggar^{1,2,*}, Ahmed Kotb², Ahmed A. Gahlan², Mahmoud H. Mahross² Abd El-Aziz Y. El-Sayed² & Adel A. Abdelwahab^{1,2}

¹ Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat,75911, Saudi Arabia

² Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt

^{*} Correspondence: ahayoub@ju.edu.sa, ahnayoub@azhar.edu.eg

Figure S1. (A) Mulliken charges diagram of MEB atoms, (B) MEP of MEB.

Figure S2. (A) Optimized geometric structures; **(B)** MEP; Molecular orbital **(C)** HOMO, **(D)** LUMO, **(E)** Mulliken charges diagram; and **(F)** counter plot of MEB-Cu complex.

Figure S3. Different optimized instrumental conditions on recorded oxidation peak current of 2×10^{-5} M MEB in Britton–Robinson buffer (pH \approx 8.0) using Cu₂ONPs–C@G/PE: **(A)** Effect of accumulation potential (V), **(B)** Effect of frequency (Hz) and **(C)** Effect of pulse height (V).

Figure S4. Different optimized experimental parameters on recorded oxidation peak current of 2×10^{-5} M MEB using Cu₂ONPs–C@G/PE: **(A)** Effect of pH, **(B)** Effect of buffer type at pH \approx 8.0, **(C)** Effect of supporting electrolyte type, and **(D)** Effect of selected supporting electrolyte concentration.

Figure S5. Optimized structure of (A) Molecular orbital, (B) HOMO and (C) LUMO of glucose, fructose and sucrose.

Table S1. Calculated quantum chemical parameters of MEB–Cu complex.

Quantum parameter	Law related to quantum parameter	MEB-Cu complex values
Еномо		-0.16343
Ешимо		-0.15412
Separation energies (ΔE)	$\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}}$	0.0093
Ionization potentials (I)	I = - Еномо	0.1634
Electron affinity (A)	A = - Elumo	0.1541
Chemical potential (u)	u = I+A/2	0.1588
Electronegativity's (X)	X = - u	-0.1588
Absolute hardness (η)	η = (Ецимо – Еномо)/2	0.0047
Absolute softness (σ)	σ = 1/ η	214.88
Global electrophilicity (ω)	$\omega = u^*u/2\eta$	2.7084
Total energy (TE)		-4394.3 a.u.
Dipole moment (μ)		7.99 debye

Table S2: The calculated ΔE of MEB and some studied excipients

Compound	ΔE
MEB	0.1203
Glucose	0.1639
Fructose	0.1760
Sucrose	0.2441