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Abstract: The processes of scattering slow positrons with the possible formation of positronium play
an important role in the diagnosis of both composite materials, including semiconductor materials,
and for the analysis of images obtained by positron tomography of living tissues. In this paper, we
consider the processes of scattering positrons with the capture of an electron and the formation of
positronium. When calculating the cross-section for the capture reaction, exchange effects caused
by the rearrangement of electrons between colliding particles are taken into account. Comparison
of the results of calculating the cross-section with a similar problem of electron capture by a proton
showed that the mass effect is important in such a collision process. The loss of an electron by a
lithium atom is more effective when it collides with a positron than with a proton or alpha particles.
The dynamic equilibrium of the formation of positronium in the presence of a strong magnetic
field is considered. It is shown that a strong magnetic field during tomography investigation shifts
the dynamic equilibrium to the positronium concentration followed by positron annihilation with
radiation of three gamma-quants.

Keywords: positron scattering; electron capture; exchange effects; cross-section with electron ex-
change; electron; positron-positronium equilibrium; equilibrium shift in magnetic field

1. Introduction

Low energy positron beams are widely used in material physics, as well as in bio-
physics and medical physics. Positron beams obtained at accelerators are collected in a
storage ring and pass through a moderator, which reduces the positron velocity to thermal
velocities. Descriptions of the positrons scattering processes in moderators of various
types and in living tissue during when used for medical purposes for conducting positron
therapy, as well as understanding the processes taking place with the participation of
positrons, play a key role in research and diagnostics. Various mechanisms of deceleration
are studied, associated both with inelastic collisions with atoms with the formation of
positronium, and with the formation [1,2] and the processes of interaction of a positron
with phonons of the crystal lattice [3].

The advent of positron emission tomography (PET) [4] has changed the capabilities
and role of nuclear medicine, not because the images it produces are better than conven-
tional single-photon imaging (flat and single-photon emission computed tomography
(SPECT)), but also because it is the fastest growing diagnostic specialty.

After radiation from the nucleus, the positron passes through the substance and
constantly loses kinetic energy due to interaction with other nuclei, in acts of ionization
with other atoms and due to radiation during inelastic scattering, while constantly deviating
from its original path. Thus, the positron will make an extremely tortuous passage through
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matter. Because of this, it is difficult to estimate the range of positrons based on their
energy alone; therefore, empirical measurements are usually carried out to determine the
average range of positrons in a given material. The positron eventually combines with an
electron to form a positronium. The processes of scattering positrons with the possible
formation of positronium play an important role in diagnosis, and for the analysis of
the images obtained in positron tomography of living tissues. That is why the detailed
theoretical analysis of each step and each process during the positron pass is very important
for understanding the total picture of positron scattering. In the last decade, significant
progress has been observed in the creation of positron beams based on low-energy traps [5]
New high-resolution experimental measurements were performed for a number of atomic
and molecular targets, including He [6], Ne and Ar [7,8], Xe [9] and Kr [10]. The cross-
sections for the production of positronium are especially important, see recent work [11].

In the scattering of a positron with capture of an electron from the outer shell of an
atom in a dielectric and in living tissue, exchange effects in the electronic system play an
important role. It is especially important during the slow-scattering of atomic particles,
where the electron shells belonging to the different centers are overlapping over a long
duration. This also occurs during the scattering of elementary particles, such as an alpha
particle, proton or positron, when an electron is captured by this particle from the shell
of the atom. In this case, the electron states of the atomic ion and a new bearing atom
(hydrogen-atom or positronium) are strongly overlapping. Such an overlapping occurs for
the non-orthogonal states, belonging to the different centers. It is necessary to take into
account the exchange effects in slow collisions. Moreover, the overlap of electron shells
and the associated exchange effects, in fact, determine the rearrangement of the electron
shells themselves in the course of charge exchange or a chemical reaction.

Commonly in the formulation of the general theory of scattering on the basis of
invariant perturbation theory, in the algorithm for obtaining expressions for the S-scattering
matrix, as well as the T-matrix of scattering on the energy surface, there is initially no
method that allows taking into account the exchange effects caused by the overlapping
of the electron shells themselves for the colliding complex particles [12,13]. This is done
by the method of obtaining corrections, taken out of the context of perturbation theory,
where first the curve of the adiabatic interaction potential of particles is calculated, and
then the problem of the scattering of structureless particles in the resulting potential is
considered. In such a setting, obtaining an analytical result is impossible, the problem
can be solved only numerically. In recent decades various highly sophisticated methods
including the exterior complex scaling (ECS) [14], R-matrix with pseudo-states (RMPS) [15],
time-dependent close-coupling (TDCC) [16] and convergent close coupling (CCC) [17]
have been used for the theoretical description of electron-impact ionization (and excitation)
processes. Electron scattering by atomic center problems are examples of a cases where
there is only one “natural” center, namely the atomic center. All coordinates are readily
written with the origin set at the atomic center. Yet, there are many atomic collision systems
that involve at least two centers, such as the positron–hydrogen scattering system. This is a
three-body system where all the particles are distinguishable, and which allows for their
rearrangement. There have two “natural” centers, the atomic center and the positronium
(Ps) center. Commonly, for positron–hydrogen scattering ionization the problem splits into
two separate components: the rearrangement process of Ps-formation and the three-body
breakup process. In this case a proper formulation of Ps-formation processes requires a
combined basis consisting of two independent basis sets for each of the centers which makes
theoretical studies considerably more challenging than for electron scattering. Furthermore,
the positron-atom system is an ideal prototype of the ubiquitous collision systems such
as proton-atom scattering, where charge-exchange processes also require a two-center
treatment. The description of intercenter exchange effects leads to the fact that the problem
of electron redistribution between centers always leads to ambiguity of solutions, both in
the formulation and solution of integral equations for the scattering amplitude, and in the
invariant formalism, in the construction of the S-scattering matrix and calculating its matrix
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elements [13]. Integral and differential cross-sections for the Ps-formation channel for e+–
alkali–metal–atom collisions was calculated by using a model optical potential by Gianturco
and Melissa [18]. The atomic targets discussed there were Li, Na, and K. The potential was
obtained without empirical parameters by global modeling of the dynamic polarization
potential and short-range correlation forces using generalized damping functions. The
absorption part of the potential is obtained by means of a dispersion relation. Another
sophisticated approach was developed by King and Gribakin based on the many body
perturbation theory. They used an approximation by considering virtual Ps formation
only in the ground state. Gribakin and Ludlow [19] have further improved the method
by introducing the techniques for the exact summation of the electron–positron ladder
diagram series. One of the most complex and commonly used methods is he close-coupling
(CC) [20], based on the expansion of the total wave function using the wave functions of the
target state. Substitution of this expansion into the Schrödinger equation leads to coupled
differential equations in coordinate space or Lippmann–Schwinger integral equations
for the T-matrix in momentum space. Solving these equations, we obtain the transition
amplitudes for all open channels. For instance, CC refers to close-coupling calculations
with a combined basis made of pseudostates for the atomic center supplemented by Ps
eigenstates. It should be noted that this consideration of scattering problem for two-
electronic system (Helium and positron) is based on one-electron Green function without
taking into account the identity of electrons belonging to the different centers, in contrary
to the consideration [21–23].

To describe the scattering of complex atomic particles we use the scattering theory
algorithm, which basically takes into account the indicated exchange effects; this is a for-
malism based on the invariant exchange perturbation theory (IEPT) [21]. EPT formalism
has developed in a general form [21]. It uses an antisymmetric basis, which takes into
account all possible rearrangements of electrons between scattering centers. It is shown
that this basis is not orthogonal; nevertheless, it possesses the completeness property. The
representation of energy corrections and wave function corrections is unique and contains
a special symmetric form of the perturbation operator. We take into account the principle of
indistinguishability of identical particles when describing the scattering of atomic particles
in general terms. As shown in [21,23], the EPT formalism for the nonstationary case has
the form of an invariant exchange perturbation theory (IEPT). The general expressions
obtained for the scattering matrix (S) and the transition matrix (T) for arbitrary types of
interactions consistently take into account the permutations of electrons between overlap-
ping nonorthogonal states. This formalism was used to describe the process of collision of
atomic particles in connection with the rearrangement of the electronic structure between
scattered particles, taking into account exchange effects [21–25]. All exchange effects that
contribute to the first-order corrections to the amplitude and scattering cross-section are
taken into account sequentially. It takes into account the entanglement of the channels
already in the first approximation of the exchange perturbation theory.

Theoretical studies of the scattering of positrons by a multielectron atom are associ-
ated with additional difficulties due to the complexity of the target structure. Additionally,
helium, which is a two-electron system, has excitation (or excitation ionization) channels
that are usually excluded. This is a good approximation, since the contribution of these
channels is usually two orders of magnitude less than the contribution of the corresponding
one-electron excitation processes. Massey and Moussa [26] at the first-order Born approxi-
mation (FBA) performed the first calculations of e+–He scattering. They used only ground
states for He and Ps and obtained cross-sections for elastic scattering and formation of
Ps in its ground state. These studies showed the importance of the Ps-channel coupling
with the elastic channel and motivated further researches. FBA studies have also shown
that more sophisticated approaches to this problem are required. The distorted-wave
Born approximation (DWBA) results are obtained by using distorted wavefunctions in
first-order calculations. This method gives more accurate results than the FBA down to
lower energies. DWBA was used in early works [27], applied to the excitation of helium by



Chemosensors 2021, 9, 45 4 of 17

positrons in the energy range from the threshold to 150 eV. Although the agreement with
the experimental data was not entirely satisfactory, the method showed the importance of
taking into account the polarization potential in the excitation channels at low energies.
The most systematic study of the ionization process within the framework of DWBA was
carried out by Campeanu [28].

The aim of this work is to consistently take into account exchange effects in the
problem of scattering of slow atomic particles with possible processes of rearrangement
of electron shells (chemical reactions). In this case, the main emphasis is placed precisely
on the exchange effects associated with the overlap of the electron shells of the atomic
particles themselves. This circumstance requires correction of the general formulas for
the invariant perturbation theory and the quantum theory of scattering (T–S scattering
matrices) taking into account the principle of indistinguishability of identical particles for
electrons belonging to colliding atoms. The attempts to consider scattering processes with
taking into account the exchange effects were made in [23–25] for description of an inelastic
coherent electron scattering by disordered media and for the problem of proton scattering
by lithium atom with electron capture [24].

One of the flagships of technological progress in medical diagnostic is the new GE
SIGNA hybrid PET/MRI machine, which provides simultaneous magnetic resonance
imaging and positron emission tomography. Both MRI and PET are methods for examining
internal organs and tissues, based on various physical principles and having their own
characteristics. Magnetic resonance imaging is based on the response of atomic nuclei in
a powerful magnetic field. Under the influence of a strong magnetic field, the positively
charged protons of the nuclei line up along the magnetic lines. Then a radio frequency
signal is applied, under the influence of which the protons temporarily change their
position, and then, returning to their original position, they emit a signal, which is recorded
by an MRI tomography. The result is a high-quality color image with fine details of the
studied part of the body, with clear boundaries of pathological formations. Unlike MRI,
PET does not provide a clear picture of tissues and organs, but it allows to recognize
the course pathological processes literally at the cellular level. For example, a PET scan
shows the spread of metastases in cancer. In 1983, GE introduced the first tunnel-type MRI
scanner for examining a patient’s entire body. It was a pipe, in the walls of which magnets
were mounted, which created a strong field with an induction of 1.5 T. The tunnel had a
diameter of 60 cm, which at that time was considered sufficient for placing people of any
build inside the apparatus. Later, the designers proposed a new version—an MRI machine
with a large tube diameter. On the one hand, this increased the level of patient comfort, on
the other hand, it provided the technical possibility of adding a ring for PET detectors to
the tunnel. Now it was possible to obtain a combined image, where detailed anatomical
information about the boundaries and volumes was combined with data on the biological
functions of the regions of interest in the body at the molecular level. It is important to
note that the strong magnetic fields of MRI can uncontrollably affect the processes in PET,
while simultaneously adding additional information by changing the spectrum of gamma
radiation. Such processes need to be investigated.

Then, the tasks of our work are:
(1) Consideration of the problem of scattering of a positron by a Lithium atom with the

possibility of charge exchange. Detailed quantum-mechanical calculation of the differential
cross-section of this process as a function of scattering angle. Establishing the effect of the
mass of a charged particle on the cross-section of the recharge process.

(2) Investigation of the equilibrium concentration of positronium in the presence
of a strong magnetic field. It is shown that the magnetic field changes the ratio of the
concentration of free electrons and positrons to the bound states of positronium. This
equilibrium is shifted towards positronium components. Then during the following
annihilation of positrons three gamma-quants instead of two will be radiated.
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2. Capture of an Electron by a Positron with Ionization of Lithium

We consider a process of positron scattering on Lithium atom: Li + e+ → Li+ + Ps
with a positronium creation. The relative motion of the positron and the atom is determined
by the operator of kinetic energy − }2

2µ∇2
R, where R is vector directed from the positron

to the nucleus of the Lithium atom and µ =
MLime+

(MLi+me+)
is a reduced mass, where MLi is

Lithium atom mass and me+ is a positron mass. Interaction between positron and the atom
is determined by the operator:

V(1, 2, 3) = − e2

re+1
− e2

re+2
− e2

re+3
+

3e2

R
(1)

where terms − e2

re+n
(n = 1, 2, 3) describe an interaction of positron with electrons, numbered

1, 2, 3, belonging to the lithium atom, and the term 3e2

R describes an interaction of positron
with lithium’s nucleus. The motion of electrons in lithium atom is described by the
Hamiltonian:

H(1, 2, 3) = − }2

2m
(∇2

1 +∇2
2 +∇2

3)−
Ze2

rLi1
− Ze2

rLi2
− Ze2

rLi3
(2)

In our consideration of the scattering process, we will pay especial attention to ques-
tions of the electron permutation symmetry during the scattering process with an electron
capture of the problem. So, an antisymmetric eigenfunction of the Hamiltonian, corre-
spondent to the energy εn eigenvalue with respect to intra-atomic electron permutations is
given by:

ΦLi ⊗ χLi =
1
fLi

(ΨLi1XLi1 + ΨLi2XLi2) (3)

where ΨLi1 is a spatial part and XLi1 is spin part of the antisymmetrized wave func-
tion. The antisymmetrization is performed by using Young’s operators ω

[21]
11 , ω

[21]
12 , ω

[21]
21 ,

ω
[21]
22 [29], where the indices [21] correspond to the type of a Young diagram with two cells

in the first row and one in the second. We use antisymmetrization of the wave function
using Young’s method:

ΨLi1 = ω
[21]
11 ϕ1s(R− r1)ϕ1s(R− r2)ϕ2s(R− r3),

XLi1 = ω
[21]
22 α1β2α3 =

√
3

2 (α1β2α3 − β1α2α3).
(4)

The second term of (3) is equal to zero due to:

ΨLi2 = ω
[21]
21 ϕ1s(R− r1)ϕ1s(R− r2)ϕ2s(R− r3) =

= (P23 − P13 − P123 + P132)ϕ1s(R− r1)ϕ1s(R− r2)ϕ2s(R− r3) = 0,
P23 ϕ1s(R− r1)ϕ1s(R− r2)ϕ2s(R− r3) = ϕ1s(R− r1)ϕ1s(R− r3)ϕ2s(R− r2) =

P123 ϕ1s(R− r1)ϕ1s(R− r2)ϕ2s(R− r3),
P13 ϕ1s(R− r1)ϕ1s(R− r2)ϕ2s(R− r3) = ϕ1s(R− r3)ϕ1s(R− r2)ϕ2s(R− r1) =

= P132 ϕ1s(R− r1)ϕ1s(R− r2)ϕ2s(R− r3),

The Hamiltonian of the unperturbed system, corresponding to the initial rearrange-
ment of electrons, describes the relative motion of a lithium atom and a positron in the
center-of-mass system:

Hp=0
0 = H(1, 2, 3)− }2

2µ
∇2

R (5)

In the initial state, the motion of proton and Lithium atom in the center of mass system
is described as plane wave with the wave vector of relative motion ki. In the same way, in
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the final state, the motion of a Lithium ion is described as a plane wave with a wave vector
of relative motion k f . Thus, the initial state is described by the vector:∣∣∣Φ0

i

)
=

1
fLi

ΨLi1XLi1 exp(iki·R). (6)

Here, a normalization factor fLi =
√

3 is found from the condition,

1
fLi

2 〈ΨLi1|ΨLi1〉〈XLi1|XLi1〉 = 1 (7)

The antisymmetric vector of the final state is obtained by applying the normalized
Young operator [4] to the wave function of the Ps–lithium-ion system in the open channel
}2k2

f
2µ = εi − εn +

}2k2
i

2µ ≥ 0:

∣∣∣Ψ0
f

〉
=

1
f0
(Ψ1X1 + Ψ2X2) exp

(
ik f R

)
(8)

where
Ψ1 = ω

[21]
11 ψ1s(R− r1)ψ1s(R− r2)ψ(r3),

Ψ2 = ω
[21]
21 ψ1s(R− r1)ψ1s(R− r2)ψ(r3) = 0,

X1 = ω
[21]
22

1√
2
(α1β2 − β1α2)χ3 =

= 1√
6
(2α1β2χ3 − 2α2β1χ3 + α1β3χ2 + α3β2χ1 − α3β1χ2 − α2β3χ1)

(9)

And a normalization factor

f0 = 〈X1|χLi+χPs〉
∫
〈Ψ1|ΦLi+ΦPs)d3R =

= 4√
3

∫
(〈ψ1s |ϕ1s〉2〈ψ1s |ϕ2s〉 − 〈ψ1s |ϕ1s〉〈ψ1s |ϕ2s〉〈ψ1s |ϕ1s〉)d3R (10)

A differential cross-section of the scattering events taking into account identity princi-
ple for electrons belonging to the different atomic centers has a general form, based on the
applying of the formalism of invariant exchange perturbation theory [21,25]:

dσf i

dΩ
= j−1 dw f i

dΩ
=

µiµ f k f

(2π}2)
2ki

∣∣∣〈Ψ0
f

∣∣∣T̂∣∣∣Φ0
i

) ∣∣∣2 (11)

where bra-vector
〈

Ψ0
f

∣∣∣ is antisymmetrized with respect to electron permutations among the

incident atomic centers, ket-vector
∣∣Φ0

i
)

corresponds to the initial electrons arrangement

(initial permutation p = 0), µi =
me+ MLi

me++MLi
and µ f =

mPs MLi+
mPs+MLi+

are reduces masses in the
center of masses system, i.e., the lithium atom and positron at the beginning of scattering
process and the lithium ion and Ps at the end of the scattering process. There, the T-matrix is
the operator of transition on the energy surface [21,25] and an operator equation accounting
electron permutations:

T̂ = VN
0 + VN

0

(
f̂
P

)−1

(Ei − H + iη)−1VN
0 (12)

The solution of this operator equation has the form [21]:

T̂ = VN + VN(Ei − H0 + iη)−1
(

f̂
N

)−1
VN+

+VN
(

Ei − H0
p=0 + iη

)−1( f̂
N

)−1
VN
(

Ei − H0
p=0 + iη

)−1( f̂
N

)−1
VN + . . .
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Here with agreement to the general formalism IEPT [21], a renormalized pertur-

bation operator VN
0 has the following form VN = V

(
f̂

N

)
, where

〈
Ψ0

i | f̂ |Φ
0
i
)
= fi and〈

Ψ0
f | f̂ |Φ

0
f

)
= f f . It takes into account a specific normalization of antisymmetric wave

vectors:
〈
Ψ0

i
∣∣Φ0

i
)
=
〈

Ψ0
f

∣∣∣Φ0
f

)
= 1.

We use the Equation (11) in the first approximation, then for our case:

dσf i

dΩ
=

µiµ f k f

(2π}2)
2ki

∣∣∣∣∣ f 2
i

P

〈
Ψ0

f

∣∣∣V(1, 2, 3)
∣∣∣Φ0

i

) ∣∣∣∣∣
2

(13)

where bra-vector
〈

Ψ0
f

∣∣∣ has the form (8), and ket-vector
∣∣Φ0

i
)

is determined by expression
(6), perturbation operator is (3). The initial states of electrons of a lithium atom have the
form [25,30]:

φ1s(R− ri) =

√
α3

1
π exp(−α1|R− ri|),

α1 = 2.698.

φ2s(R− ri) =

√
α3

2
8π (1−

α2
2 |R− ri|) exp(− α2

2 |R− ri|),
α2 = 1.594.

(14)

To describe the final states of electrons in a helium-like lithium ion, we use the functions:

ψis(R− ri) =

√
α3

3
π exp(−α3|R− ri|),

α3 = 1.692, __i = 1, 2
(15)

We describe the final state of an electron in positronium (Ps) as a one-electron
hydrogen-like wave function:

ψ(r3) =

√
β3

π exp(−βr3),
β = 1/2.

(16)

The differential cross-section calculated using analytical Expression (13) is shown in
Figure 1.
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[
cm2

Strad

]
, θ is a scattering angle and k a wave vector module

in elastic scattering process k = ki = |ki| = k f . Here k is taken in the atomic units k = k
aB

(a.u.).

It is easy to see from Figure 1 that the process of electron capture is most efficient at
small scattering angles θ = 0 and θ~π/2. A similar situation occurs during the scattering
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of a proton with electron capture [24], differential cross-section is calculated by using
(13); the capture efficiency has a pronounced peak at small scattering angles. But in the
case of positron scattering, this process is seven orders of magnitude less efficient. The
isotopic effect is clearly visible, due to the difference between the masses of the proton
and the positron by a factor of 1600. Table 1 gives a comparison of results for the total
cross-section of the process positronium formation obtained from experiments [31,32]
and from theoretical investigations [33,34] and calculations by using CCC with truncated
basis [35].

Table 1. Total positronium-formation cross-section (10−16 cm2).

Energy eV 1 Exp
[31]

2 Exp
[32]

Theor-1
[33]

Theor-2
[34]

CCC
[35]

Authors
E(eV)
K = K/a

Authors
Crossection

0.4 32 ± 3 32 33 31 K = 2
E = 0.4 46

0.5 35 ± 3 36 35 33

0.6 32 ± 3 37 36 34 K = 2.5
E = 0.63 37

0.7 41 ± 3 42 40 38

0.8 36 ± 3 40 40 38

0.9 30 ± 3 25 ± 2 39 39 39 K = 3
E = 0.9 31

1 35 ± 3 29 40 38 K = 3.5
E = 1.225

2 37 ± 3 27± 2 27 41 37 K = 4
E = 1.6 23

3 33 ± 3 18 ± 2 31 33 30 K = 5
E = 2.5 19

4 25 ± 3 17 ± 2 22 31 25 K = 6
E = 3.6 16

5 18 ± 3 9 ± 2 20 25 20 K = 7
E = 4.9 14

8 11 ± 3 16 19 17 K = 8
E = 6.4 12

10 4 ± 2 9 10 10

K = 9
E = 8.1
K = 10
E = 10

10.6
9.6

3. Dynamic Equilibrium of Electron–Positron–Positronium

After emission from the nucleus and losing kinetic energy by interactions with the
surrounding matter the positron eventually combines with an electron when both are
essentially at rest. A metastable intermediate species called positronium may be formed
by the positron and electron combining. The cross-section of this process for scattering by
atomic centers, which determines the probability of positronium production per unit time,
was discussed above. The positronium is a hydrogen-like element composed of the positron
and electron that revolve around their combined centre of mass. Due to this, a moving
electron in the Coulomb potential of a positron has a reduced mass µe =

meme+
me + me+

= me
2 ,

which means that the energy spectrum and the ionization potential differ from the hydrogen

atom by a factor of two EnPs = − µee4

2}2n2 = 1
2 EnH .
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The positronium has a mean life of around 10−7 s. The ground state of positronium,
like that of hydrogen, has two possible configurations depending on the total spin of the
electron and the positron. The singlet state with total spin equal to zero, 1S0, (S = 0, Ms = 0) is
known as para-positronium (p-Ps). It has a mean lifetime of 0.12 ns and decays preferentially
into two gamma rays with energy of 511 keV each (in the center-of-mass frame), see Figure 2.
By detecting these photons the position at which the decay occurred can be determined.
This process is used in positron-emission tomography. Para-positronium can decay into
any even number of photons (2, 4, 6, ...), but the probability quickly decreases with the
number: the branching ratio for decay into 4 photons is 1.439(2) × 10−6. Para-positronium
lifetime in vacuum is approximately [36]

τpp =
2}

mc2α5 = 0.1244ns
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Here α = e2

}c = 1
137 is the fine-structure constant.

The triplet state with total spin S = 1(Ms = −1, 0, 1), 3S1, is known as ortho-positronium
(o-Ps). It has a mean lifetime of 142.05 ± 0.02 ns, and the leading decay is three gammas.
Other modes of decay are negligible; for instance, the five-photons mode has branch-
ing ratio of ≈10−6 [37]. The ortho-positronium lifetime in a vacuum can be calculated
approximately as:

τpp =
1
2 9}

2mc2α6(π2 − 9)
= 138.6 ns,

For more accurate calculations with corrections to O(α2), which has a value of
7.040 µs−1 for the decay rate, gives a lifetime 142 ns [38,39]. It is mentioned also about
positronium in the 2S state, which is metastable having a lifetime of 1100 ns against
annihilation [40].

Positronium formation occurs with a higher probability in gases and metals, but
only in about one-third of cases in water or human tissue where direct annihilation of the
electron and the positron is more favorable.

3.1. Equilibrium Constant K(T) of the Reaction

We consider the ionization reaction at a given temperature T:

e+ + Li = Ps + Li+ (17)

Then the condition of dynamic equilibrium will have the form:

µe+ + µLi = µPs + µLi+ (18)
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where µn (n = e+, Li, Ps, Li+-positron, lithium, positronium, lithium-ion, respectively) is a
chemical potential. We consider each component as a perfect gas. This model is appropriate
both for the semiconductor materials, and for the living tissues due to the screening effect.
Then, we have a chemical potential for the perfect gas in the following form:

µ = −T ln

(
g0

n

(
mT

2π}2

)3/2
)
+ ε0 (19)

where ε0 is the internal ground state energy and g0 is the factor of the ground state degen-
eration. Then, from (18) and (19) we have the following:

− T ln

(
ge+ gLi
gLi+ gPs

nPsnLi+

ne+nLi

(
me+ MLi
MLi+mPs

)3/2
)
+ [ε0e+ + ε0Li − ε0Ps − ε0Li+ ] = 0 (20)

where ε0Li+ − ε0Li = I = 5.39 eV is the first ionization potential of lithium, ε0e+ − ε0Ps =
Ebond—is a value of bond energy of electron in positronium atom. Its ionization potential
from the ground state is 6.77 eV (half the ionization potential of hydrogen, the radius
of the positronium atom in the ground state is 0.106 nm (twice the hydrogen atom),
Ebond − I = ∆ = 6.77− 5.39 = 1.38eV is an energy profit of the process.

Then we have for the concentrations relation:

ne+nLi
nPsnLi+

=
ge+ gLi
gLi+ gPs

(
me+ MLi
MLi+mPs

)3/2
e−

∆
T . (21)

In our consideration, ge+ = 2, _gLi = 2, _gLi+ = 1, _gPs/p = 1, _gPs/o = 3

ne+nLi
nPsnLi+

=
4

gPs

(
me+ MLi
MLi+mPs

)3/2
e−

∆
T . (22)

Then, for o-Ps we have

Ko(T) =
ne+nLi
nPsnLi+

=

√
2

3
e−

∆
T (23)

Figure 3 shows the dependence of the temperature for this balance constant.
For p-Ps we have:

Kp(T) =
ne+nLi
nPsnLi+

=
√

2e−
∆
T . (24)

Here we use as a temperature parameter T a mean-temperature of expositional tissue,
which is about ten times the room temperature.

3.2. Equilibrium Constant in Magnetic Field

To calculate a chemical potential of charged particles, like as electron and positron
in the presence of strong magnetic field it is necessary to consider a statistical sum z with
taking into account magnetic field. This statistical sum has the following form (for details
of calculations, see Appendix A: Derivation of the chemical potential in a magnetic field).

zn = 1
N!

(
Vge−

ε0
T

(2π})3

∫
p

e−
εν(pz ,σz)

T d3p

)N

=

(
eVe−

ε0
T

N(2π})3

∫
p

e−
εν(pz ,σz)

T d3p

)N

=

=

(
eVe−

ε0
T

N(2π})3 (2πmT)3/2 }ωB
T

ch
(

µB B
T

)
sh
( }ωB

2T

)
)N

,

ωB = eB
mc , ___µB = e}

2mc ,
}ωB

2 = µBB ∼ 1.5·106·10−20 = 1.5·10−14Erg ≈ 0.009eV

(25)
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ence of the magnetic field: 

0.3 0.4 0.5 0.6 0.7
T eV

0.01

0.02

0.03

0.04

0.05

0.06

K T

0.3 0.4 0.5 0.6 0.7
T eV

100

200

300

400

500

600

1

K
T

0.3 0.4 0.5 0.6 0.7
T eV

0.05

0.10

0.15

0.20

Kp T

0.3 0.4 0.5 0.6 0.7
T eV

50

100

150

200

1

Kp
T

Figure 3. A dependence of equilibrium constant on mean-temperature T (a) Ko(T) for the orto-positronium; (b) a reverse con-
stant 1/Ko for the orto-positronium; (c) Kp(T) for the para-positronium; (d) a reverse constant 1/Kp for the para-positronium.

Then, the free energy F and chemical potential µ have the form accounting the influ-
ence of the magnetic field:

F = −T ln z = −NT ln

(
Ve

N(2π})3 (2πmT)3/2 }ωc
T

2ch
(

µB H
T

)
2sh }ωc

2T
e−

ε0
T

)
=

= −NT ln

(
Ve

N(2π})3 (2πmT)3/2 }ωc
T

2ch
(

µB H
T

)
2sh }ωc

2T

)
+ Nε0,

µ = −T ln

(
1
n

(
mT

2π}2

)3/2 }ωc
T

2ch
(

µB H
T

)
2sh }ωc

2T

)
+ ε0,

(26)

For the positronium and for the lithium-atom we take into account only the Zeeman
energy splitting of sublevels:

µPs = −T ln
(

1
nPs

(
MPsT
2π}2

)3/2
2ch
(

µB H
T

))
+ ε0Ps,

µLi = −T ln
(

1
nLi

(
MLiT
2π}2

)3/2
2ch
(

µB H
T

))
+ ε0Li

(27)

Then for (18) in the magnetic field instead of (20) we have the following expressions:

−T ln
(

ge+ gLi
gLi+ gPs

nPsnLi+
ne+nLi

(
me+ MLi
MLi+mPs

)3/2
)
+ [ε0e+ + ε0Li − ε0Ps − ε0Li+ ] = 0

µe+ + µLi = µPs + µLi+

−T ln

 }ωc+
T

2ch
(

µe+ H
T

)
2sh

}ωe+
2T

2ch
(

µB H
T

)
2ch
(

µB H
T

) gLi3+

2ch
(

µe+H
T

) nPsnLi+
ne+nLi

(
me+ MLi

mPs MLi+

)3/2
+

+[ε0e+ + ε0Li − ε0Ps − ε0Li+ ] = 0,
ne+nLi

nPsnLi+
=
(

me+ MLi
mPs MLi+

)3/2 }ωc+
T

sh }ωc
2T

e−
∆
T .

}ωc
T ≥ 1

ne+nLi
nPsnLi+

= 2}ωc
T e−

}ωc
2T

(
me+ MLi

mPs MLi+

)3/2
e−

∆
T .

(28)
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It is easy to see that the magnetic field changes the ratio of the concentration of free
electrons and positrons to the bound states of positronium. This equilibrium is shifted
towards positronium components. A dependence of the equilibrium constant KB(T) in the
magnetic field as a function of mean-temperature is shown in Figure 4.
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In addition to the described process with the participation of lithium, one more process
of the formation of positronium can occur, in a magnetic field and without it. We consider
a process of positronium formation from the ordinarily process:

e+ + e = Pso
µe+ + µe = µoPs

(29)

Using expression (20) for chemical potentials for the system without magnetic field
we have:

− T ln

(
ge+ ge

gPs

nPs
ne+ne

(
me+me

mPs

)3/2( T
2π}2

)3/2
)
+ [ε0e+ + ε0e − ε0Ps] = 0 (30)

where the relations for the energies give us:

[ε0e+ + ε0e − ε0Ps] = I = 6.77 eV.

Then we have the following concentration ratio:

ne+ne

nPs
=

ge+ ge

gPs

(
me+me

mPs

)3/2( T
2π}2

)3/2
e−

I
T . (31)

For the temperature in eV and for the Kelvin scale in our case, respectively:

ne+ne
nPs

= 32
3 1021

(
T
π

)3/2
e−

6.77
T ,

ne+ne
nPs

= 4
3 1015(To)3/2e−

7.7·104
To .

(32)
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In the presence of a magnetic field for (29), taking into account Expression (26) for the
chemical potentials of an electron and a positron, and (27), for positronium, we have:

−T ln

 }ωc+
T

2ch
(

µe+ H
T

)
2sh

}ωe+
2T

}ωc
T

2ch
(

µe H
T

)
2sh }ωe

2T

1
2ch
(

µB H
T

) 1
2ch
(

µe+H
T

) nPs
ne+ne

(
me+me

mPs

)3/2( T
2π}2

)3/2
+

+[ε0e+ + ε0e − ε0Ps] = 0,

From here we come to the following concentration ratio:

ne+ne

nPs
=

}ωc+
T

2sh }ωe+
2T

}ωc
T

2sh }ωe
2T

(
me+me

mPs

)3/2( T
2π}2

)3/2
e−

IH
T (33)

Equation (33) takes into account the change in the value of the ionization potential I in
a magnetic field [41]. Just like a hydrogen atom in a magnetic field, the energy spectrum in
positronium must also change in a magnetic field. The ground state energy of positronium
in magnetic field has the following energy correction [42,43]:

∆ε0H ' − e2

2rH
= −5.76·10−13erg = −0.36 eV

rH =
√

}
mωH

=
√

}c
eH = 2·10−7cm

where we used rH =
√

}
mωH

=
√

}c
eH and aBPs =

}2

µe2 are Lamoure radius and Bohr radius
for positronium, respectively. So that ionization potential I in a magnetic field [41,42]

IH = (6.77 + 0.36)eV = 7.13 eV

}ωc = } eH
mc

=
1.6·10−101.5·106

1010 = 1.6·10−14·1.5Erg = 0.015 eV

Figure 5 shows comparison of equilibrium constants dependent on mean-temperature
T for direct electron–positron reaction with formation of positronium in magnetic field and
without magnetic field.
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Figure 5. A dependence of equilibrium constant on mean-temperature T for direct electron–positron reaction with formation
of positronium in magnetic field (yellow line) and without magnetic field (blue line) (a) K(T); (b) A reverse constant 1/K in
a magnetic field (yellow line) and without magnetic field (blue line).

4. Discussion

Understanding and describing the processes of scattering positrons plays a key role
both in obtaining positron beams and in using positron therapy. The mechanism of
deceleration associated with inelastic collisions with atoms on the example of the lithium
atom with the formation of positronium and ion is studied in present work. In the process
of slow scattering, exchange effects are very important. We took into account the strong
overlap of electronic states during scattering and the adiabatic transition of an electron
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from the lithium center to the positron center. Analytical consideration and calculations
using IEPT show that the highest efficiency of the electron capture process for a positron
and a proton [43] occurs at different scattering angles. After electron capture fragments
of reaction scatter on angle around π/2 for the case of positronium and lithium ion (see
Figure 1) and under the angle around zero for hydrogen atom and lithium ion. For higher
energy positrons (see Figure 1) the electron capture process is more efficient for small
angles, around zero. A maximal efficiency of positronium creation is for the positron
initial energy ε ∼ 400a.u = 10, 800 eV. It is a one of the possible mechanisms of positron
deceleration: first, an electron capture and then decay of positronium without annihilation.

Consideration of the various types of reactions of slow positrons with the formation of
positronium allows us to conclude that the direct formation of positronium in the absence
of a magnetic field occurs in the low-temperature limit T < 0.1 eV, but already at T > 0.16 eV,
the equilibrium shifts towards free electrons and positrons. This is due to the fact that the
temperature factor, which is proportional to T3/2 in Relation (31), begins to prevail over
the exponential contribution that enhances the bound state. At the same time magnetic
field H~1.5 Tesla influence on this relation and move it to the positronium formation (see
Figure 5). A participation of the atomic ionization process during positron scattering with
electron capture makes positronium creation probable not only for room temperatures but
also for temperatures 0.4–1 eV. Because of the absence of factor T3/2 in the Relationship (21),
in (22) for reaction (18) this constant of dynamic equilibrium is dependent of the exponential
factor with energy profit. The influence of the magnetic field on this process is the same, as
in previous case, it shifts the equilibrium to the positronium. It is important to note that
a strong magnetic field (H~1.5 Tesla) interacts both with the intrinsic magnetic moment
of the electron and with a positron with an energy (εH = µBH ∼ 1.5·10−14Erg ≈ 0.01 eV)
exceeding the hyperfine interaction of the magnetic moments of an electron and a positron

in the positronium (εs f = |µB |2

a3
BPs
∼ 10−16Erg ∼ 10−4 eV). Since the magnetic moments of

an electron and a positron have the opposite sign, and because of the interaction with
the magnetic field, the most preferable spin state for both particles is the state with the
total spin S = 1, that is, ortho-positronium. The magnetic field reduces the probability
of formation of para-positronium to zero. It is very easy to prove this by censoring the
annihilation radiation, which should be with 3-gamma quanta (Figure 1).

5. Conclusions

We used the method of the invariant exchange perturbation theory in the first approach
(see Equation (11)). It allowed us correctly take into account the intercentre exchange effects.
But we understand, that at the considered low impact energies, higher order interactions
(couplings to other channels such as target excitation and excited-state Ps-formation) are
important. The first approximation of the exchange perturbation theory describes well a
coherent entanglement of channels due to the exchange in the elastic scattering channels,
for a more detailed consideration of excited states, second-order corrections of the EPT
formalism are required. Other methods (close-coupling, distorted-wave, etc.) have already
been applied to the problem for calculations of integrated cross-sections.

Both processes under consideration, involving positrons, can help in the analysis of
the results of tomographic studies. The process of scattering of a positron with the capture
of an electron from an atom, described quantum mechanically with the correct allowance
for the exchange contributions, gives detailed results for the magnitude and angular
dependence of the scattering cross-section. It determines the probability of formation
of the positronium and the actual probability of “launching” the process of establishing
dynamic equilibrium in the system in the statistical sense. Another conclusion is concerned
with the influence of magnetic fields on the mentioned equilibrium. It is shown that the
magnetic field not only shifts the dynamic equilibrium, or a balance towards the formation
of a positronium, but also leaves only the ortho-positronium, making the existence of the
para-positronium impossible.
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Appendix A. Derivation of the Chemical Potential in a Magnetic Field

A statistical sum of small canonical distribution written for perfect gas is:

z =
1

N!
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In a magnetic field:
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where Landau levels are taken into account. Then the integration in (A1) is:∫
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The summation on the internal degrees of freedom (spin states) are:

∑
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exp
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Finally, we have the statistical sum for the perfect gas of charged particles in magnetic field:
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