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Abstract: Heavy metal pollution of water has become a global issue and is especially problematic
in some developing countries. Heavy metals are toxic to living organisms, even at very low con-
centrations. Therefore, effective and reliable heavy metal detection in environmental water is very
important. Current laboratory-based methods used for analysis of heavy metals in water require
sophisticated instrumentation and highly trained technicians, making them unsuitable for routine
heavy metal monitoring in the environment. Consequently, there is a growing demand for au-
tonomous detection systems that could perform in situ or point-of-use measurements. Microfluidic
detection systems, which are defined by their small size, have many characteristics that make them
suitable for environmental analysis. Some of these advantages include portability, high sample
throughput, reduced reagent consumption and waste generation, and reduced production cost. This
review focusses on developments in the application of microfluidic detection systems to heavy metal
detection in water. Microfluidic detection strategies based on optical techniques, electrochemical
techniques, and quartz crystal microbalance are discussed.
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1. Introduction

Heavy metal pollution of drinking water is a critical issue affecting numerous countries
worldwide. Heavy metals occur naturally, but can also be introduced into the environ-
ment through various anthropogenic activities including mining, improper disposal of
industrial waste, and use of heavy metal containing pesticides and fertilisers. Additionally,
poor management of agricultural and industrial waste has contributed to increased water
pollution [1]. To mention one particularly problematic example, Table 1 lists countries with
reported arsenic contamination in water supplies [2–5].

Although the term “heavy metals” is lacking a single definition, metals with densities
higher than 5 g mL−1 are frequently defined as heavy metals. The term is also used to refer
to any metallic element that has a relatively high density and is toxic at low concentrations.
Certain heavy metals bioaccumulate in living organisms and are toxic to human health
even at very low concentrations. The greatest risks to human health are caused by arsenic,
cadmium, mercury, and lead, while chromium, nickel, cobalt, iron, and manganese are
also known to cause harm to human health at elevated concentrations [3–14]. The various
health implications that are caused by exposure to heavy metals are outlined in Table 2.
Humans are exposed to heavy metals through consumption of contaminated food, water,
and air. Children are most commonly exposed to heavy metals through ingestion, while
industrial exposure is common in adults [4]. Various agencies and organisations such as
the World Health Organisation (WHO), European Union (EU), and the US Environmental
Protection Agency (US EPA) have established drinking water guidelines for heavy metals
in water (Table 2).
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Table 1. List of countries affected by arsenic contamination in water [2–5].

Americas Argentina, Bolivia, Canada, Chile, Dominica, El Salvador, Honduras,
Mexico, Nicaragua, Peru, United States of America,

Africa Ghana, South Africa, Zimbabwe

Asia Bangladesh, China, Cambodia, India, Iran, Japan, Myanmar, Pakistan,
Philippines, Nepal, Sri Lanka, Taiwan, Thailand, Vietnam

Europe Austria, Bulgaria, Croatia, France, Finland, Germany, Greece, Hungary,
Italy, Poland, Romania, Russia, Serbia, United Kingdom,

Oceania Australia, New Zealand

Table 2. Drinking water quality guidelines (µg L−1) for heavy metals.

Heavy
Metal Symbol WHO EU US EPA Oxidation States Health Effects

Arsenic As 10 10 10 III, V Skin damage, renal system
failure, cancer [5,6].

Cadmium Cd 3 5 5 II Cardiovascular issues,
osteoporosis, cancer [7].

Chromium Cr 50 50 100 III, VI Teeth abnormalities, diarrhoea,
kidney failure [8,15].

Copper Cu 2000 2000 1300 I, II Liver damage, gastrointestinal
problems [16,17].

Cobalt Co - - 100 II, III Cardiovascular and pulmonary
system issues [18].

Iron Fe - 200 300 II, III Haemochromatosis,
gastrointestinal issues [9,19].

Lead Pb 10 10 15 II Nervous system impairment,
brain damage, cancer [20,21].

Manganese Mn 100 50 50 II, IV Neurological defects [10].

Mercury Hg 1 1 2 I, II Renal failure, neurological
disorders, cancer [11,12].

Nickel Ni 70 20 - II Dermatitis, kidney failure,
cardiovascular disease [13,14].

There is consequently great demand for regular water quality monitoring in order to
identify and assess heavy metal pollution in both groundwater and surface water [22,23]. To
date, water monitoring is predominantly based on manual sampling followed by laboratory
analysis [24]. A wide range of techniques have been employed for heavy metal detection
in water, including atomic absorption spectrometry (AAS) [25,26], graphite furnace atomic
absorption spectrometry (GFAAS) [27], energy dispersive X-ray fluorescence (EDXRF) [28],
inductively coupled plasma mass spectrometry (ICP-MS) [29], and inductively coupled
plasma optical emission spectrometry (ICP-OES) [30]. Although these techniques offer
high analytical performance (sensitivity, specificity, accuracy, and precision) there are
several limitations associated with them; these techniques are based on sophisticated
instrumentation and require highly trained technicians in order to be correctly used and
adequately maintained. All of these factors contribute to significant cost of analysis.
Moreover, sample collection, transport, and processing add additional costs which vary
depending on the frequency of sampling requirements. Transportation and labour expenses
represent a large proportion of the overall cost of water monitoring [31]. As a result,
small and rural communities in developing countries are not able to utilise sophisticated
techniques such as ICP-MS and AAS [32]. Consequently, laboratory-based methods are
not suitable for routine high frequency sample analysis [33]. Cost effective, sensitive, and
selective methods that are easy to use are required for heavy metal monitoring [34].
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Numerous researchers have investigated microfluidic analytical systems in order to
improve environmental analysis. Microfluidic systems are characterised by their ability to
process small amounts of analyte using channels with dimensions ranging from tens to
hundreds of micrometres [35]. Microfluidic detection systems can incorporate important
experimental steps such as sample preparation, reaction, separation, and detection into
one device [36]. A typical microfluidic detection system requires a method for reagent
and sample introduction, a method for transporting and mixing the sample and reagent
within the system, and a detection device [35]. Some microfluidic detection systems employ
features such as membranes, pneumatic controls, monoliths, and pillars, which can improve
the performance of the analysis [37]. For microfluidic devices based on optical detection,
a range of components such as optical waveguides and microlenses can be utilised. This
topic is discussed in more detail in reviews by Yang et al. [38] and Gai et al. [36].

Manz et al. was the first to introduce the idea of miniaturised analysis systems [39].
Since then, rapid advances in optoelectronics have enabled miniaturisation of functional
and detection components of microfluidic detection systems [40]. Microfluidic detection
systems have a wide range of applications including medical diagnostics [41], protein
studies [42], drug screening [43], environmental monitoring [44], and food analysis [45].
A variety of detection strategies, including optical detection, and electrochemical and
mass spectrometry, have been used for microfluidic detection. Different optical detection
strategies have been outlined by Pol et al. [46] and Ullah et al. [47]. In addition, the
latest progress in electrochemical based microfluidic detection has been described by Liu
et al. [48], Waheed et al. [49], and Li et al. [50].

A range of studies have outlined the advantages of microfluidic detection systems
over standard laboratory based methods [51,52]. Firstly, the small dimensions of the
detection channel enable lower reagent consumption and minimised waste production in
comparison to conventional methods [53,54]. Secondly, the high ratio between surface area
and volume along with the short diffusion distance enables fast reaction times [55]. Thirdly,
miniaturised onsite analysis of samples also reduces contamination risk during sample
handling and transportation. Lastly, the fluid flow can be easily and accurately controlled
within microfluidic detection chips [56].

This review gives an overview of developments in heavy metal monitoring using
microfluidic detection systems over the last two decades, with an emphasis on optical and
electrochemical based detection methods. Metals are included based on their toxicity or
other impacts on water quality [57] and include arsenic, cadmium, lead, mercury, cobalt,
nickel, copper, iron, manganese, and chromium. Databases including Analytical Abstracts,
SciFinder, Web of Science, and Science Direct were searched using relevant terms including:
heavy metals, microfluidic, optical detection, colorimetric detection, fluorescence, surface
plasmon resonance, electrochemical, electroanalytical, quartz crystal microbalance. Articles
were selected for inclusion based on the analytical performance of the described devices,
consideration of relevant interferants, potential for use in portable/deployable devices,
and to achieve coverage of a range of relevant metals.

2. Optical Detection Strategies for Microfluidics
2.1. Absorbance Based Detection

UV-vis spectroscopy is a commonly used detection method due to its sensitivity and
ease of use. In a microfluidic chip, the optical pathlength through the sample is often
greatly reduced compared to conventional analysis, leading to decreased sensitivity of the
measurement [58]. However, various strategies have been developed to address this issue.
For example, optical length can be enlarged by using different channel geometries [59],
use of mirrors at the end of microchannels [60], and embedding waveguide optics into the
microfluidic channel [61,62].
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Absorbance based detection also requires a light source. Light emitting diodes (LEDs)
coupled to fibre optics have been frequently used in microfluidic detection systems. LEDs
emit a narrow band of wavelength, therefore, LED-based sensors do not require optical
couplers or monochromators [63]. In addition, LEDs are robust and can withstand adverse
conditions such as high humidity and mechanical vibrations [64].

Lace and co-workers developed a method for microfluidic detection of arsenic in water
using leucomalachite green dye [65,66]. The dye reacted with arsenic to produce a green
coloured complex with peak absorption (λmax) at 617 nm. A linear response was obtained
between 0.07–3 mg L−1, and the limit of detection (LOD) was found to be 0.19 mg L−1.
Additionally, a simple reagent to sample ratio was obtained by combining the reagents,
thereby enabling simple and cost effective microfluidic detection chip design. The method
was robust, with the ability to detect arsenic in a range of various environmental water
samples, however, iron was found to interfere with the detection of arsenic. The same
authors optimised a colorimetric method based on 1,5-diphenylcarbazide for monitoring of
chromium (Cr VI) with detection of the resulting complex at 543 nm. The optimised method
had LOD of 0.023 mg L−1 and linear range from 0.03–3 mg L−1. The method proved to be
simple, fast, and robust. Investigation of the method’s performance in different sample
matrices and the good agreement obtained with ICP-MS measurements revealed that the
method is suitable for determination of Cr VI in various water matrices [67].

O’Toole et al. developed a novel paired emitter-detector (PEDD), a dual LED-based
optical detection system which employs two LEDs, one serving as the light source and the
second, in reverse bias mode, employed as the light detector [68]. The PEDD system was
subsequently used for sensitive dual wavelength detection of metals including manganese
(Mn II) and cobalt (Co II). LODs of 1.0 µg L−1 and 2.5 µg L−1 were obtained for the
detection of Mn(II) and Co(II) complexed with 4-(2-pyridylazo) resorcinol (PAR) [69]. The
same research group has more recently developed a microfluidic electrochemical sensor
for lead and cadmium in seawater [70].

Milani et al. developed an autonomous microfluidic detection device based on col-
orimetric detection for iron Fe (II) and manganese determination in water. The analytical
device consisted of a polymethyl methacrylate (PMMA) microfluidic chip (Figure 1), cus-
tom designed syringe pumps, LEDs, lithium battery, and a microcontroller encased in
a cylindrical housing. The authors used the ferrozine (3-(2-pyridyl)-5,6-diphenyl-1,2,4-
triazine) method for iron determination and PAN (1-(2-pyridylazo)-2-naphthol) method for
manganese determination. The ferrozine molecule upon reaction with iron formed a purple
coloured species with λmax at 562 nm, whereas the PAN molecule generated a red colour
complex once reacted with manganese, with λmax at 560 nm. The on-chip optofluidic cell
was 600 µm wide, 300 µm deep, with optical pathlength of 100 mm. This allowed sensitive
detection while minimizing the internal volume of the manifold to a total of 50 µL, allowing
for low reagent and sample consumption. The reported LODs for iron and manganese
were 27 nM and 28 nM, respectively. The linear range for iron was reported to be between
27–200 nM, and the linear range for manganese was found to be between 0.28–6 µM. Five
minutes were required for one iron analysis, and ten minutes were needed for a manganese
analysis. The method was applied for sea water sample analysis and was not affected by
high salt concentration [71].

Du et al. used a microfluidic flow injection analysis system for iron detection in
water. The method utilised liquid core waveguide spectrometric detection. Flow injection
and sample introduction was carried out linearly moving an array with sample vials.
The sample and carried solution were passed onto microfluidic chip by gravity, and
phenantroline was used as the colorimetric reagent. Very high sample throughput was
obtained with this method, as the method was able to analyse 300 samples in an hour.
Linear response was reported to be between 1.0–100 µM, and the LOD was 1 µM [72].
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Nuriman et al. developed an optical fibre method for mercury detection in water.
Absorbance was measured within a microfluidic chip that contained a chromoionophore im-
mobilised in PVC film. Tris [2-(4-phenyldiazenyl)phenylamino)ethoxy]-cyclotriveratrylene
was used as the chromophore, and λmax was found to be 495 nm. The detection system
was able to measure fifteen samples in one hour. The linear range was obtained from
1.0 × 10−6–2.5 × 10−4 M, and LOD was reported to be 0.5 µM. Good agreement between
the developed method and cold vapour atomic absorption spectrometry was obtained.
The method was applied to river water sample analysis, with over 90% recovery reported.
However, copper, nickel, lead, and cadmium were found to interfere with the method at
small concentrations [73].

Microfluidic paper-based analytical devices (µPADs) have numerous properties that
make them suitable for use in microfluidic detection. They are cost effective, biodegradable,
portable, and can be easily produced and patterned. Furthermore, no additional power
sources are required for liquid transportation within the device as the liquid within the
µPADs is driven by capillary force [74]. Satarpai et al. used µPADs for colorimetric
detection of lead in water samples. Sodium rhodizonate in tartrate buffer was used a
colorimetric reagent which formed a pink colour upon reaction with lead. The total
analysis time was less than 15 min, and the results were recorded using a digital camera.
LOD was reported to be 10 µg L−1, and the linear range was observed between 10 µg L−1

and 100 µg L−1. In addition, the method was used for tapwater and surface water sample
analysis. Good agreement was obtained between the novel method and GF-AAS [75].

Chauhan et al. reported a method for arsenic detection in water using iron oxide
nanoparticles. Arsenic was reduced to arsine by cysteine capped iron oxide nanoparticles
and reacted with silver nitrate embedded onto µPAD resulting in a formation of a dark red
colour complex. Ten minutes were required for complete colour development. The LOD
was reported to be 0.01 mg L−1, and linear range was observed between 0.001–0.9 mg L−1.
The method was applied for river water analysis and showed good correlation with AAS
measurements [76].

Cai et al. developed a distance-based detection method for mercury using µPADs,
where dithiozone in NaOH solution was loaded onto paper channels. Insoluble colour
precipitate was formed by a reaction between dithiozone and mercury. Because of the
linear relationship between the length of the precipitate and the concentration of mer-
cury, the concentration of mercury was determined by simple measurements with a ruler.
Therefore, the method did not require instrumentation, making it portable and easy to use.
LOD was found to be 0.93 mg L−1; linear response was observed between 1–30 mg L−1.
Cobalt, zinc, nickel, and silver at concentrations higher than 5 mg L−1 interfered with the
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determination of mercury [77]. Distance-based detection was also implemented by Sharifi
et al.; their paper-based analytical device used a three-dimensional “origami” design, and
the incorporation of a PVC membrane, to reduce movement of coloured products and
thereby reduce colour heterogeneity. Colour detection was performed using an image
scanner, and movement distance was related to concentration of the coloured complex.
LoDs for copper detected using pyrocatechol violet and chrome azurol S were 1.7 and
1.9 mg L-1 respectively, however very broad detection ranges were obtained of 5-1400 and
5-200 mg L-1, respectively [78].

Chowdury et al. used a paper-based microfluidic device with a gold nanosensor
functionalised with α-lipophilic acid and thioguanine for arsenic detection in well water.
In the presence of arsenic, the nanosensor changed colour from red to black. A desktop
scanner was used to analyse the results obtained from µPADs. Linear detection range was
observed between 1–50 µg L−1. Fe III was found to interfere with the determination of
arsenic. This interference could be overcome by adjusting the pH of the water samples
to 12.1. In addition, good correlation between the method’s performance and ICP-OES
measurements was obtained [79].

Devadhasan et al. developed chemically functionalised µPADs for nickel, Cr VI,
and mercury detection in water. Silane compounds terminating at amine, carboxyl, and
thiol groups were embedded on chromatography paper through condensation reactions.
Chromogenic reagents were coupled to the functional groups. Dimethylglyoxime was
used for nickel determination, forming a pink colour upon reaction with the metal. Cr VI
was reacted with 1,5 diphenylcarbazide, which produced a purple colour upon reaction.
Finally, Michler’s thioketone was used for mercury detection, forming a brown colour
upon reaction. The LODs for nickel, Cr VI, and mercury were found to be 0.24 mg L−1,
0.18 mg L−1, and 0.19 mg L−1, respectively. In addition, various lake water samples were
analysed using the method, and the results were compared to ICP-MS measurements,
showing good correlation [80].

Gold nanoparticle application in microfluidic detection provides reduced complexity
and enhanced sensitivity. In addition, gold nanoparticles are stable and show visible colour
change upon aggregation [81]. Li et al. developed a mercury detection method in which
helium plasma was used to reduce gold ions and create nanoparticles. Gold nanoparticles
were functionalised with 3-mercaptopropionic acid. The functionalised nanoparticles
aggregated and changed colour from red to blue in the presence of mercury (Hg II). A
fibre-based light source (DT-mini-2, Ocean Optics, Rochester, NY, USA), spectrometer
(HR4000, Ocean Optics) and 2 optical fibres with a collimator were used to quantitatively
measure the colour shift of the solution. Concentration of mercury was determined by
UV-vis spectroscopy, and the LOD was found to be 0.2 mg L−1 [82].

Digital imaging has become a widely used alternative for colorimetric sensing of
analytes, including heavy metals, due to factors including the increased accessibility of
high-quality smartphone cameras and image processing software. Kamnoet et al. de-
veloped a paper-based microfluidic device for simultaneous detection of copper, cobalt,
nickel, mercury, and manganese using bathocuproine, dimethylglyoxime, dithizone, and
4-(2-pyridylazo) resorcinol as complexing agents. Selectivity was provided by using two
pre-treatment zones where interfering ions were removed by masking agents. LODs
were 0.32, 0.59, 5.87, 0.20, and 0.11 mg L−1 for Cu(II), Co(II), Ni(II), Hg(II), and Mn(II),
respectively. The linear ranges were 0.32–63.55 mg L−1 Cu(II), 0.59–4.71 mg L−1 Co(II),
5.87–352.16 mg L−1 Ni(II), 0.20–12.04 mg L−1 Hg(II), and 0.11–0.55 mg L−1 Mn(II). Samples
of drinking water and pond samples were analysed and gave good accuracy and agreement
with an ICP-OES method [83]. Grasianto et al. recently reported the use of bathophenan-
throline nanocrystals loaded onto a µPAD. A volume of aqueous sample was applied to
the nanocrystal, which absorbed Fe (II) until its capacity was reached; this resulted in
sample enrichment within the nanocrystal layer, causing an obvious colour change for
µg L−1 concentrations. Detection was performed by smartphone camera imaging. LOD of
2.4 µg L−1 Fe2+ was achieved in a river water sample, however, interference by environ-
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mentally relevant ions such as Ca2+ and Mg2+ was reported [84]. Recent advances in the
use of imaging-assisted techniques for heavy metals in water have been comprehensively
reviewed by Jain et al. [85].

2.2. Fluorescence Detection

Fluorescence detection is widely used due to its high selectivity and sensitivity [86,87].
Some of the most commonly used excitation sources for fluorescence-based detection
include light emitting diodes (LEDs), laser sources, and mercury and xenon arc lamps [36].
LEDs have a broad commercially available spectral range, making them suitable for use as
excitation sources [88,89]. LEDs are suitable for integration into microfluidic chips, due
to their highly efficient light production and low power requirement [90]. Laser induced
fluorescence is a very sensitive method and is commonly used in combination with point
detectors such as photomultiplier tubes. Laser induced fluorescence is applicable to small
sample volumes and, therefore, it is suitable for use in microfluidic chips [91,92]. High
pressure vapour discharge lamps are commonly used in fluorescence microscopy as they
have a broad spectrum and wide range of wavelengths.

Borodiazaindacene (BODIPY) dyes are characterised by sharp emission and absorption
peaks, chemical stability, and simple chemical alteration [93]. Bell et al. developed a droplet
based microfluidic sensor for mercury detection in water (Figure 2). Gated mesoporous
nanoparticles were combined with a fluorescent BODIPY dye. The microfluidic detection
system consisted of transparent perfluoroalkoxyalkane (PFA) tubing, which enabled direct
fluorescence measurements. A green LED (peak emission at 505 nm) was the excitation
source, while the signal was obtained using optical fibre bundles. Response time was
found to be 10 min, and the method yielded optimum response at pH 7.3. No significant
interferences from other metals were reported. The LOD was 0.02 µg L−1 with a linear
range between 0.02–200 µg L−1 [94].
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hydroxy-4-alkylsulfanylcyclobut-2-enone (APC) and Hg (top) and the microfluidic detection system
setup (bottom) [94]. Copyright (2016) American Chemical Society.

Kou et al. developed a microfluidic system for lead, cadmium, and mercury detection
in water. An inverted microscope was used for obtaining images from the detection system.
BODIPY was used as a fluorophore for cadmium detection with λmax of 597 nm. For
lead sensing, a fluorescent sensor consisting of four bis(2-pyridylmethyl)amine groups
was used, resulting in maximum fluorescence intensity at 560 nm upon reaction with
lead. Rhodamine derivative was used for mercury detection with λmax of 575 nm. A
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mercury lamp was used for fluorescence excitation. The LOD for cadmium was found to
be 5.62 mg L−1 with linear range between 5.62–112.41 mg L−1 [95].

Calixarene derivatives have been widely used as building blocks and neutral molecule
receptors in fluorescent reagent design [96]. Faye et al. synthesised fluorescent sensor
Calix-DANS3-OH, consisting of three dansyl groups and alkyl chain, for lead determina-
tion in water. The sensor was embedded in the wall of a polydimethylsiloxane (PDMS)
microfluidic detection chip. LOD was reported to be 42 µg L−1, and λmax was found to be
496 nm. The measurements in the microfluidic detection system were carried out at pH
3 with a total analysis time of 3 min. No significant interference from other metals was
reported [97].

Zhao et al. used a microfluidic detection system for lead determination in water using
Calix-DANS4 as a fluorimetric sensor. Y shaped microchannels were designed with optical
fibre detection on a PDMS microfluidic detection chip. Sensor molecules were excited by
365 nm LED source using a dual optical fibre system, and emitted light was collected using
another optical fibre and photomultiplier. The LOD was found to be 5 µg L−1. The method
was applied to surface water analysis, and calcium was found to cause interference [98].

Wu et al. used a fluorescence-based microfluidic device for in situ lead determination
in water. The microfluidic device was combined with microcolumn absorption based on
a microcapillary filled with aminopropyl silica. Calix-DANS4 was used as a fluorescent
sensor for lead determination in water. Emission spectra were acquired using a spec-
trofluorimeter. A period of 25 min was required for complete analysis, and no significant
interferences from other metals were reported. The linear range for lead was found to be
between 2.07–16.5 µg L−1, and LOD was 2 µg L−1. Furthermore, the method was compared
to AAS with good agreement between the measurements obtained [99].

Rhodamine chromophores have been widely used for fluorescent labelling because of
their unique properties, such as long wavelengths of excitation (greater than 550 nm) and
emission (590 nm), good bioavailability, large absorption coefficients, and high fluorescent
quantum yields [100–103]. Kim et al. synthesised ethylenediamine derivative of a rhodamine
6G silica particle (RSSP) and embedded it onto a PDMS microfluidic chip for iron sensing in
water samples. Aluminium and mercury were found to interfere with iron determination.
However, the chemosensor was capable of detecting iron at a wide pH range. The linear
range was obtained between 2–8 µg L−1, and λmax was found to be 552 nm [104].

Zhang et al. used a microfluidic device based on fluorimetric detection for cadmium
detection in water. Rhod-5N was used as a fluorescent sensor in a PDMS microfluidic
chip with Y type mixer. The method yielded an optimum response at pH 7. LOD was
0.45 µg L−1, and the linear range was found to be between 1.12–22.4 µg L−1. Lead was
found to interfere with the determination of cadmium, however, this issue was solved by
using solid phase adsorption on aminopropyl silica [105].

Peng et al. developed a microfluidic detection based method for mercury determina-
tion in water using a rhodamine derivative. A PDMS microfluidic chip coupled with LIF
detection was used for measurements. Strong fluorescence signal in presence of mercury
was obtained at 579 nm. Copper, zinc, and iron were found to cause interference with the
mercury detection. The authors reported a detection limit of 0.006 mg L−1. The linear range
for mercury was observed between 6.21–14.05 mg L−1. The method was applied for envi-
ronmental water sample analysis. Recoveries obtained for mercury from the environmental
sample analysis ranged from 85–103% [106].

Fluorescence signals can be enhanced using metal nanoparticles [107]. Lafleur et al.
used a gold nanoparticle based microfluidic sensor for mercury detection in water using
a PDMS microfluidic chip. Gold nanoparticles were functionalised with rhodamine 6G.
Fluorescence measurements were carried out using an inverted microscope. The LOD was
found to be 0.6 µg L−1, and linearity was obeyed between 0.6–60 µg L−1. The method was
applied to groundwater sample analysis, where LOD was found to be 16 µg L−1 due to
matrix interferences. Additionally, cadmium was found to cause interference [108].
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Digital microfluidics (DMF) use surface tension modulation induced by an electric
field to manipulate sample as individual droplets. This approach can be used to avoid
blockages, decreases reaction time, and improve detection sensitivity and selectivity [109].
Zhang et al. developed a method for mercury detection in coastal water using DMF with a
rhodamine based fluorescent agent (1-Rhodamine B hydrazide-3-phenylthiourea). Upon
reaction with mercury, pink colour formation was observed. The detection system consisted
of a DMF chip, a controller unit, and a voltage amplifier. A fluorescence spectrometer was
used for measurements. Less than 20 s were required for the analysis. Linear response was
obtained between 0.7–10 µg L−1, and the LOD was 0.7 µg L−1. The method’s performance
was not affected by highly saline conditions. Moreover, the results obtained from the
method were in good agreement with atomic fluorescence measurements [110].

Wang et al. developed a microfluidic-based fluorescent “electronic eye” combined
with tetrasodium iminodisuccinate (IDS)-etched CdTe/CdS quantum dots for detection of
cadmium in water. The device consisted of a microfluidic chip, an ultraviolet LED (365 nm)
for fluorescent excitation, an optical lens, and a smartphone for portable photographic
detection and analysis. The IDS was added to the CdTe/CdS quantum dots to cause
fluorescence quenching due to the chemical etching. Subsequent exposure to Cd (II)
induced fluorescence changes that allowed quantitative detection. Linear response was
observed over the range 1–250 µg L−1, and the LOD was reported as 0.26 µg L−1. An
interference study was also reported in which Na+, K+, Ca2+, Mg2+, Cr3+, and Mn2+ did
not interfere significantly, but some other metals were identified as interferants due to
fluorescence quenching (Cu2+ and Hg2+), and formation of a passivation layer (Zn2+) [111].

2.3. Chemiluminescence Detection

Chemiluminescence based detection methods are highly sensitive and require simple
instrumentation in comparison to other optical detection methods. Additionally, chemi-
luminescence based detection does not require an external light source. This in turn
eliminates interferences from the microfluidic substrate and background emission and
makes the analysis system more cost effective [112]. However, chemiluminescence is lim-
ited to reagents such as luminol [113], peroxyoxalate and oxalate [114], and ruthenium
complexes [115]. Additionally, it is affected by variables such as temperature, pH, and
solution composition. Consequently, this can result in poor reproducibility [116].

Nogami et al. used a microfluidic detection device based on chemiluminescence for
detection of iron, copper, and cobalt in water. 1,10 phenanthroline was reacted with hy-
drogen peroxide with analyte metals acting as catalysts. From these reactions, a dioxetane
compound was obtained and transformed to an excited state of 3,39-diformyl-2,29-dipyridyl.
This compound returned to the ground state with chemiluminescent emission detected using
a photomultiplier tube. The LODs for copper, cobalt, and iron were found to be 0.47, 35.35,
and 55.84 mg L−1, respectively. Copper had a linear range between 0.47–6.73 mg L−1 [117].

Sun et al. used a paper based microfluidic device for lead detection (Figure 3). The
analysis involved incubation of the sample, followed by mixing. The detection device was
made from aluminium and PMMA, and the optical signal was detected by a smartphone.
Unlike conventional µPAD methods, this method used wetting and gravity as a driving
force. G-quadruplex based luminescence was used for measuring lead ions. Lead ions
enhance single stranded DNAs to generate a G-quadruplex, which in turn enhances
the luminescence of the iridium probe. The linear range for lead was observed from
2–200 µg L−1. The method was applied for environmental water sample testing; however,
wastewater and sea water samples required a pre-treatment step. Good agreement was
obtained between measurements carried out by microfluidic method and by AAS and
fluorescence spectrophotometry [118].
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Figure 3. A diagram of the fabrication process of SD-µPADs by Sun et al. [118]. (A) The manufacturing
process of superhydrophobic coating on the paper substrate. A negative-relief Teflon stamp was
placed onto a polydimethylsiloxane (PDMS)-coated glass slide and then removed to obtain a thin
liquid PDMS coating. Following this, the stamp was pressed onto paper and heated at 90 ◦C for 15
min. Teflon stamp was peeled off, making a paper chip with superhydrophobic patterns. (B) The
configuration of the paper-based chip. The zones and channels are hydrophilic, while the rest regions
are superhydrophobic. (C) Diagram of lead (II) detection on the chip. The water samples were
added to the reaction zone. After three minutes, the chip was turned by 90◦, which enabled the
droplet to travel to the detection zone and react with the iridium (III) complex. Figure reprinted with
permission from Elsevier.

Som-aum et al. used a microfluidic detection device for arsenic detection in water
samples based on chemiluminescence detection. Chemiluminescence was detected on
the chip using luminol with a heteropoly acid complex. In the presence of arsenic, a
vanadomolybdoarsenate heteropoly acid complex was formed with high selectivity; the
luminol chemiluminescence measurements were not affected by metals such as iron, cobalt,
and copper. The linear range for As (V) was observed from 7.49–3.74 mg L−1, and the
reported LOD was 6.6 ng L−1. Five minutes were required for complete analysis. The
method was applied to arsenic determination in tap water samples and mineral water.
Interferences by chromate and phosphate were avoided by passing the reaction solution
through an anion exchange microcolumn [119].

Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) is one of the most widely used
chemiluminescent compounds because of its availability and low cost [120]. Som-aum et al.
developed a method for total chromium determination in water using chemiluminescence
based microfluidic detection device. The chemiluminescence reaction was based on luminol
oxidation by hydrogen peroxide with chromium acting as a catalyst. Sodium hydrogen
sulphite was used to reduce Cr VI to Cr III. A glass microfluidic chip with a T mixer and
negative pressure pumping system was used. Interference from iron, aluminium, nickel,
and zinc was reported. The LOD was found to be 0.31 × 10−4 ng L−1, and the linear range
was between 0.052 × 10−3 and 0.052 × 10−1 ng L−1. The total analysis time was under
one minute. The method was applied for seawater sample analysis with good recovery
obtained [121].

Lv et al. used a microfluidic chip coupled with chemiluminescence detection for iron
determination in water. Air stream sampling was used for the analysis, which reduced
background interference and air bubble formation, and luminol was immobilised on
exchange resin in the microfluidic chip. In total, three minutes were required for each
sample analysis. The linear range was obeyed between 0.06–2.79 mg L−1, and LOD was
found to be 0.017 mg L−1. Furthermore, good agreement was obtained between the novel
method and spectrophotometry [122].
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Chen et al. developed a method for cobalt detection in water using microfluidic
detection based on chemiluminescence. The reaction was based on luminol oxidation by
hydrogen peroxide, which took place in a PDMS chip with a serpentine mixing channel.
Less than two minutes were required for the analysis. The linear range for cobalt was
found to be between 5.89–5.89 × 107 ng L−1, and LOD was 2 ng L−1 [123].

Microfluidic paper based analytical devices are useful for chemiluminescence de-
tection as no excitation source or optical filters are needed. Chemiluminescence-based
methods in, combination with µPADs, allow for low cost, and simple and easily disposable
detection system development [124]. Alahmad et al. developed a microfluidic paper based
analytical device based on chemiluminescence detection for chromium detection in water.
The µPAD was fabricated using wax printing, and optical fibres were used to capture the
chemiluminescence signal. Cr III catalysed the oxidation reaction of luminol by hydrogen
peroxidase, and less than one minute was required for the analysis. The method did not
require a separation and preconcentration step. Linear response was observed from 0.05 to
1 mg L−1, and the LOD was 0.02 mg L−1. Furthermore, the method was applied for water
sample analysis. Good agreement was found between the method and ICP-OES [125].

Bhandari et al. introduced the lab on a cloth concept [126]. Microchannels can be
easily built into cloth using wax screen printing. Lab on cloths are simple and cost effective
while combining the properties of conventional lab on a chip detection systems [127].
Liu et al. used flow chemiluminescence for chromium detection in water using a lab on
cloth device. Gravity and capillary forces drove the liquid in the lab on cloth that was
fabricated using wax screen printing. Luminol was oxidised by hydrogen peroxide with Cr
III acting as a catalyst, and the resulting signal was measured by a charge-coupled device
(CCD) camera. The method had a linear range between 0.01–100 mg L−1, and the LOD
was found to be 6.2 µg L−1. Various water samples were measured with recoveries ranging
between 100 and 110%. In addition, less than 30 s were required for sample analysis [128].

2.4. Surface Plasmon Resonance

Surface plasmon resonance (SPR) can considerably enhance the sensitivity and ac-
curacy of chemical detection and accurately detect various molecular reactions [129]. In
this technique, plasmonic waves are generated between a metal layer and a dielectric
medium [130]. SPR has been widely used for detection of various analytes because of
characteristics such as simple design, high sensitivity, and low cost [131,132]. Motalbizadeh
et al. used a smartphone based microfluidic detection system for arsenic and mercury
detection using surface plasmon resonance (SPR) of gold nanoparticles. Colour change
was obtained due to nanoparticle aggregate formation as gold nanoparticles reacted with
dithiothreitol-10,12 pentacosadiynoic acid and lysine in the presence of mercury and ar-
senic. The linear range for mercury and arsenic was between 710 to 1278 µg L−1. The LOD
for mercury and arsenic was 10.77 to 53.86 µg L−1, respectively [133].

Metallic nanoparticles display strong SPR bands with high molar absorption co-
efficients, which can provide highly sensitive responses [134]. Gomez-de Pedro et al.
developed a microfluidic detection system for mercury monitoring using modified gold
nanoparticles. The mercury ions were detected by synthesised thiourea ionophores, which
were attached to the nanoparticles. Upon reaction with mercury ions, a change of the
gold SPR band was obtained. A flow injection analysis system was used consisting of a
peristaltic pump, an injection valve, and PTFE tubing connected to the microfluidic chip.
The optical detection system consisted of a 525 nm LED, mounted in a printed circuit board
(PCB), a photomultiplier, and a data acquisition card connected to a PC that controls the
system and modulates the LED signal (Figure 4). Optimum results were obtained with a
flowrate of 1.6 mL min−1, with 3.3 min required for one sample analysis. The LOD was
found to be 11 µg L−1, and the linear range was observed between 11–100 µg L−1. No
significant interference was reported [135].
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Apilux et al. developed a µPADs for mercury detection in water using silver nanoparti-
cles. Interaction between mercury ions and silver nanoparticles was examined by scanning
electron microscope. Silver nanoparticles were oxidised by mercury ions resulting in parti-
cle fragmentation, and consequent change in the SPR band. Sample volume as small as
2 µl was required for the analysis, with maximum RSD of 8.6% reported. Linear response
was obtained between 5–75 mg L−1, and the LOD using digital imaging and analysis
by Adobe Photoshop software was 0.12 mg L−1. Moreover, the method was applied for
mercury detection in spiked drinking and tap water samples with recoveries of 93–113%
obtained [136].

Although silver and gold nanoparticles are widely used for surface plasmon resonance-
based analysis, they are reportedly toxic [137,138]. In contrast, curcumin nanoparticles
are non-toxic, and curcumin can readily chelate a range of different metals. Pourreza et al.
developed a chemosensor for mercury detection in water using curcumin nanoparticles
integrated into a paper based analytical device. With preconcentration the linear range was
observed between 0.01–0.4 mg L−1, and LOD was 0.003 mg L−1. The method was precise,
with RSD of 4.47% reported. No interference was reported. The method was applied for
various environmental water sample analysis, with good agreement found between the
measurements carried out by cold vapor generation atomic absorption spectrometry [139].

Molecularly imprinted nanoparticles are polymeric nanoparticles with binding sites
that are the same size and shape as the target molecule [140]. Advantages associated
with molecularly imprinted nanoparticles include high stability, simple synthesis process,
robustness, and sensitivity [141]. Shristav et al. developed a method for simultaneous
lead and copper detection in water samples using molecularly imprinted nanoparticles
which were dip-coated onto an optical fibre, which was then exposed to sample in a
flow cell. Response time for the method was 15 s, and no significant interference was
reported. A non-linear relationship between the peak absorption wavelength and the metal
concentration was obtained in each case, and LODs for copper and lead were 8.18 × 10−4

and 4.06 × 10−6 µg L−1, respectively [142].

3. Electrochemical Detection for Microfluidics

Electrochemical detection is characterised by target analyte interaction with electrodes
or probes. As a result, various electrical signals are obtained which enable quantitative
analysis of the analytes [143]. Electrodes can be easily integrated into a microfluidic de-
tection system resulting in simple, low powered, and cost-effective detection with high
sensitivity [144]. Additionally, minimal loss of sensitivity is observed through electro-
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chemical method miniaturisation [145]. One disadvantage associated with electrochemical
detection is the short operating life of electrodes. Because of high sensitivity, fast response,
and easy integration into microfluidic chips, electrochemical methods are widely used in
heavy metal detection [146].

Hong et al. developed a 3D printed microfluidic device for cadmium and lead de-
termination in water using a microporous screen-printed electrode (SPE) modified with
Mn2O3 (Figure 5). The calibration curves at the modified SPE for Cd(II) and Pb(II) covered
two linear ranges from 0.5–8 and 10–100 µg L−1, respectively. The limits of detection
were estimated to be 0.5 µg L−1 for Cd(II) and 0.2 µg L−1 for Pb(II) [147]. Metal organic
framework is a multifunctional material that is used for porous material preparation with
specific surface area [148]. Mn2O3 obtained from manganese metal organic frameworks is a
nanomaterial with distinctive mechanical, electronic, and thermal characteristics [149,150].
The detection system was created by integrating metal organic framework derived Mn2O3
modified SPE into a 3D microfluidic cell. The sensor transmitted the data via USB connec-
tion to a computer allowing for real time detection of heavy metals. The linear range for
cadmium was found to be between 0.5–8 µg L−1, and the LOD was 0.5 µg L−1. The linear
range for lead was observed between 10 to 100 µg L−1, and the LOD was 0.2 µg L−1 [150].
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Le et al. developed a microelectrodialyser for lead detection in water. The microsystem
was fabricated using ion exchange membranes and lead was analysed by square wave
anodic stripping voltammetry (SWASV) at a boron doped electrode. Peristaltic pumps were
used to move the liquid through the system. Miniaturised platinum conductivity electrodes
were used to measure the concentration of lead in samples in a PDMS microchannel. The
linear range for lead detection was 20–100 µg L−1, and the LOD was found to be 4 µg L−1.
The method showed good reproducibility with relative standard deviation (RSD) reported
to be 0.35% [151].

Polyaniline (PANi) is a conducting polymer characterised by low cost, easy deposition
on films, environmental stability, and high conductivity [152]. Nguyen et al. used a
microfluidic detection chip based on sodium dodecyl sulfate-doped polyaniline (PANi-
SDS) modified electrode for mercury detection in water. The electrode was integrated
into a PDMS microfluidic detection chip. The lead samples were measured using SWASV.
The linear range was observed between 1.20–7.02 µg L−1, and LOD was 0.48 µg L−1. The
method was used for mercury analysis in water samples with high recovery rates obtained.
Moreover, good reproducibility was obtained with RSD of 4.6% [153].
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Electrochemical detection based µPADs also referred to as electrochemical paper based
analytical devices (ePADs) have several advantages as they enable low-cost monitoring
with high selectivity and sensitivity [154]. Additionally, they are simple to use, do not
require additional instrumentation, and are easily disposable [155]. Screen printing technol-
ogy is well established for the production of low-cost disposable electrochemical sensors.
Shi et al. used paper based microfluidic devices for cadmium and lead determination using
electrochemical detection. The authors combined paper strips with screen printed carbon
electrodes (SPCE). The SPCE were constructed onto a PMMA platform. No pre-treatment
was needed for the water sample analysis, and the samples were measured using SWASV.
The linear range for lead was 2–100 µg L−1. LODs for lead and cadmium was 2 µg L−1 and
2.3 µg L−1, respectively. The method was successfully applied for lead determination in
salt water and groundwater [156].

Shen et al. developed a portable microfluidic detection device for cadmium and lead
determination in water using a carbon-based sensor. Working and counter electrodes
were embedded into a microfluidic paper channel (Figure 6). The microfluidic detection
system was based on graphite foil and paper making it cost effective. SWASV was used for
sample measurements. Optimum results were obtained at pH 4.6 with 15 min required for
one sample analysis. The LODs for cadmium and lead were found to be 1.2 µg L−1 and
1.8 µg L−1, respectively. Both metals could be simultaneously detected in concentrations
between 20 and 100 µg L−1. However, copper was found to interfere with the detection
method [157].
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Bismuth based electrodes are less toxic than those based on mercury making them
more appealing for environmental monitoring purposes. Additionally, they are charac-
terised by a wide linear dynamic range and good resolution [158,159]. Zou et al. developed
a lab on a chip with a bismuth electrode. The author used microfabrication and screen-
printing techniques for device production. The sensor had a working bismuth sensor. The
detection of lead and cadmium was carried out by anodic stripping voltammetry (ASV) in-
side the microchannels. LODs for cadmium and lead were determined to be 9.3 µg L−1 and
8 µg L−1, respectively. The linear range for cadmium was found to be from 28–280 µg L−1.
The linear range for lead was observed from 25–400 µg L−1 [160].

Nantaphol et al. developed a microfluidic paper-based device for determination of
lead and cadmium using boron doped diamond paste electrodes (BDDPEs) [161]. BDDPEs
are characterised by low background current, robustness, stability in acidic and alkaline
conditions, and high sensitivity [162,163]. A flow through design was coupled with square
wave anodic voltammetry. The linear range for lead was reported to be observed between



Chemosensors 2021, 9, 60 15 of 26

1 to 200 µg L−1. The linear range for cadmium was between 25 and 200 µg L−1. The
LODs for lead and cadmium were found to be 1 µg L−1 and 25 µg L−1, respectively. The
method was used for drinking water analysis, and good agreement was found between the
reported method and ICP-OES [161].

Pungjunun et al. developed a µPAD based method using gold nanoparticles for total
arsenic detection in water. Thiosulfate solution was used to reduce the As (V) to As (III),
which was deposited on gold nanoparticle-modified boron doped diamond electrode and
detected using SWASV. The LOD was found to be 20 µg L−1, and the linear range was
between from 0.1–1.5 mg L−1. Although copper was found to interfere with the detection
of arsenic, ferricyanide was used to complex copper and overcome the interference [164].

Subramanian et al. integrated a radial channel ion concentration polarization device
directly to electrodes to perform linear sweep voltammetric detection of a range of metal
ions including arsenic. As (III) was detected down to 1 µg L−1, while the voltammogram
exhibited peaks specific to ions including Cu (II), Fe (II), Mn (II), and Pb (II). The authors
proposed the use of their device, in combination with a portable electrochemical analyser,
as a point of use sensor for resource limited areas [165].

A review by Díaz-González and Fernández-Sánchez [166] provides a concise overview
of recent advances in relation to electroanalytical devices for decentralized analysis of water
contaminants including heavy metals, including sections on paper-based microfluidic
devices and smartphone-based electrochemical sensors. Li et al. have also reviewed
electrochemical microfluidic technologies for detection of heavy metals [152].

4. Detection Using Quartz Crystal Microbalance

Quartz crystal microbalance (QCM) is a sensitive detection technique based on the
piezoelectric effect, where the resonant frequency of the quartz crystal oscillation linearly
decreases with mass loading on the crystal’s surface [167]. QCM is a sensitive, durable,
and cost-effective sensing technique with the ability to perform continuous in situ mea-
surements [168]. Furthermore, the substrates used for QCM sensing can be easily modified,
which provides a versatile sensing method [169].

Dendrimers are branched polymers which are characterised by distinct sizes and
geometries [170]. The ability of dendrimers to coordinate metal ions in their interior
and exterior branches allows for highly selective sensor development [171]. Shen et al.
developed a method for copper ion determination using QCM sensing by combining
phosphate modified dendrimer and ionophore. A QCM sensor based on ion selective
membrane was created and attached to a flow cell. Syringe pumps were used for sample
introduction into the cell. The method was selective for copper in presence of nickel, zinc,
and calcium ions. Linear range was observed between 0.006–6.355 mg L−1. The response
time was 40 s with optimum results obtained at pH 5.7 [172].

Wang et al. developed a QCM sensor based on phosphate modified dendrimer for
copper detection in water. QCM sensor was integrated within a microfluidic flow cell
designed with a temperature controller, which maintained 21 ◦C temperature throughout
the analysis. Microinjector was used to introduce samples into the cell. The method was
precise, with a maximum RSD of 2.9% reported. The linear range was 0.006–60 µg L−1, and
LOD was 0.006 µg L−1. The response time was reported to be less than 40 s [173].

Aptamers are nucleic acid-based affinity probes which coordinate interaction between
mercury ions and thymine [174–176]. Dong et al. developed a QCM based sensor with flow
system for mercury detection utilising mercury specific aptamer with gold nanoparticles. Short
thiolated mercury specific aptamers were set on the surface of QCM as capture probes, whereas
the mercury specific aptamers attached to gold nanoparticles served as linking probes. In the
presence of mercury ions, change in the resonance frequency was obtained. The LOD was
0.048 µg L−1. The method was applied for spiked tap and wastewater analysis with recoveries
ranging from 96.8 to 101.6% in the concentration range of 5–20 µg L−1 [177].

DNAzyme based sensors are sensitive and have been used in various signal transduc-
tion mechanisms for metal ion detection [178,179]. Teh et al. developed a DNAzyme based
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QCM method with dissipation monitoring for lead determination in water. Gold nanopar-
ticles were used for signal amplification. Lead specific DNAzymes were immobilised on
QCM surface allowing them to bind with gold nanoparticles, and GR-5 DNAzyme was
used as a recognition probe. In presence of lead ions, the gold nanoparticles were removed
from the sensor surface causing a dissipation change. Linear range for lead was observed
from 0.013–0.062 mg L−1, and the LOD was 0.013 mg L−1. Additionally, the method was
used for spiked tap water sample analysis with good recovery obtained. Moreover, the
results were in a good agreement with ICP-MS measurements [180].

Can et al. 2016 developed a method for cadmium determination in water using QCM
sensor coupled with (2,3,7,8,12,13,17,18-Octakis-(4-tert-butylbenzylthio)-porphyrazinato)
Mg(II) (MgPz). The QCM sensor was placed in a flow cell attached to a peristaltic pump.
Optimum flow rate was found to be 0.3 µL min−1. Experiments were carried out at 25 ◦C,
and no significant interference was reported. Double deionised water was passed through
the detection system after each measurement. A LOD of 10 mg L−1 was reported [181].

5. Discussion and Outlook

Numerous research groups have developed microfluidic detection systems for heavy
metal monitoring in order to create portable and cost-effective alternatives to costly
laboratory-based detection methods. Some of these are summarised in Table 3. Microfluidic
analytical system performance depends on the effectiveness of the detection method used
for the analysis. Further research in optical and electrochemical detection methods is
needed to allow microfluidic sensor development. Additionally, improvements in micro-
fabrication and new material development for microfluidic detection systems is required.
Future developments would also be concentrated on microfluidic detection system ap-
plication to field. Challenges such as analysis of complex water matrices and variable
environmental conditions with minimum power consumption will need to be addressed.

Table 3. Summary of various microfluidic detection methods for heavy metals.

Detection Principle Mechanism Target Analyte LOD Linear Range References

Absorbance
Cell diffusing mixing

technology with PAN and
ferrozine

Fe (II)
Mn (II)

Mn 28 nM,
Fe 27 nM

Fe 27–200 nM,
Mn 0.028–6 µM [71]

Absorbance Flow injection analysis
using phenantroline Fe (II) 1.0 µM 1.0–100 µM [72]

Absorbance Chromoionophre PVC film Hg (II) 0.5 µM 1.0× 10−6–2.5 × 10−4 M [73]

Absorbance µPADs using sodium
rhodizonate Pb (II) 10 µg L−1 10–100 µg L−1 [75]

Absorbance Iron oxide nanoparticles and
µPADs As (III) 0.01 mg L−1 0.01–0.90 mg L−1 [76]

Absorbance Distance based detection
using µPADs Hg (II) 0.93 mg L−1 1–30 mg L−1 [77]

Absorbance µPADs and gold
nanoparticles As (III) - 1–50 µg L−1 [79]

Absorbance Chemically patterned µPADs
Ni (II)
Cr (VI)
Hg (II)

Ni 0.24 mg L−1,
Cr 0.18 mg L−1,
Hg 0.19 mg L−1

- [80]

Absorbance
Droplet-based AuNP

synthesis with dielectric
barrier discharge plasma

Hg (II) 0.2 mg L−1 - [82]

Absorbance Leucomalachite green dye As (III) 0.19 mg L−1 0.07–3 mg L−1 [65]

Surface plasmon
resonance Gold nanoparticles Hg (II),

As (III) - Hg 0.71–1.28 mg L−1,
As 0.01–0.054 mg L−1 [133]

Surface plasmon
resonance Gold nanoparticles Hg (II) 11 µg L−1 11–100 µg L−1 [135]
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Table 3. Cont.

Detection Principle Mechanism Target Analyte LOD Linear Range References

Surface plasmon
resonance Curcumin nanoparticles Hg (II) 0.003 mg L−1 0.01–0.4 mg L−1 [139]

Surface plasmon
resonance

µPADs with silver
nanoparticles Hg (II) 12 mg L−1 12–75 mg L−1 [136]

Surface plasmon
resonance

Molecularly imprinted
nanoparticles

Cu (II)
Pb (II)

Cu 8.18 × 10−4,
Pb 4.06 × 10−6 4.06–1000 µg L−1 [142]

Fluorescence Droplet based sensor using
nanoparticles Hg (II) 0.02 µg L−1 0.02–200 µg L−1 [94]

Fluorescence BODIPY and nanoparticles Cd (II) 5.62 mg L−1 5.62–112.41 mg L−1 [95]

Fluorescence Calix-DANS3-OH Pb (II) 42 µg L−1 - [97]

Fluorescence Calix-DANS3-OH Pb (II) 5 µg L−1 - [98]

Fluorescence
Precolumn adsorption and

fluorometric detection using
Calix- DANS4

Pb (II) 2 µg L−1 2.07–16.5 µg L−1 [99]

Fluorescence
Rhodamine 6G silica particle

embedded onto
mesoporous silica

Fe (III) - 2–8 µg L−1 [104]

Fluorescence Flow injection detection Cd (II) 0.45 µg L−1 1.12–22.40 µg L−1 [105]

Fluorescence On line fluorescent
derivatisation Hg (II) 0.006 mg L−1 6.21–14.041 mg L−1 [106]

Fluorescence Gold nanoparticles Hg (II) 0.6 µg L−1 0.6–60 µg L−1 [108]

Fluorescence Digital microfluidics (DMF) Hg (II) 0.7 µg L−1 0.7–10 µg L−1 [110]

Chemiluminescence 1,10 phenanthroline based
Cu (II)
Co (II)
Fe (II)

Cu 0.47 mg L−1,
Co 35.35 mg L−1,
Fe 55.84 mg L−1

Cu 0.47–6.73 mg L−1 [117]

Chemiluminescence G-quadruplex based
luminescence Pb (II) - 2–200 µg L−1 [118]

Chemiluminescence Luminol with heteropoly acid
complex As (V) 6.6 µg L−1 0.075–3.74 mg L−1 [119]

Chemiluminescence Luminol oxidation reaction Cr (III)
Cr (VI)

0.312 × 10−4 ng
L−1

0.052 × 10−3–
0.052 × 10−1 ng L−1 [121]

Chemiluminescence Microchip with air sampling Fe (II) 0.017 mg L−1 0.06–2.79 mg L−1 [122]

Chemiluminescence µPADs Cr (III) 0.2 mg L−1 0.05–1 mg L−1 [125]

Chemiluminescence Lab on a cloth Cr (III) 0.006 mg L−1 0.01–100 mg L−1 [128]

Chemiluminescence Luminol oxidation reaction Co (II) 2 ng L−1 5.89–5.89 × 107 ng L−1 [123]

Electrochemical Microporous SPE modified
with Mn2O3

Cd (II)
Pb (II)

Cd 0.5 µg L−1,
Pb 0.2 µg L−1

Cd 0.5 to 8 µg L−1,
Pb 10–100 µg L−1 [147]

Electrochemical
Microelectrodialyser

combined with boron doped
diamond electrode

Pb (II) 4 µg L−1 20–100 µg L−1 [151]

Electrochemical SPE coupled with PANi-SDS Hg (II) 0.481 µg L−1 1.203–7.021 µg L−1 [153]

Electrochemical SPCE combined with paper
strips

Cd (II)
Pb (II)

Pb 2 µg L−1,
Cd 2.3 µg L−1 2–100 µg L−1 [156]

Electrochemical µPADs with carbon based
sensor

Cd (II)
Pb (II)

Cd 1.2 µg L−1,
Pb 1.8 µg L−1 20–100 µg L−1 [157]

Electrochemical
µPADs with boron doped
diamond paste electrodes

(BDDPEs)

Cd (II)
Pb (II)

Pb 1 µg L−1,
Cd 25 µg L−1

Cd 25–200 µg L−1,
Pb 1–200 µg L−1 [161]

Electrochemical SPE based on bismuth
electrode detection

Cd (II)
Pb (II)

Cd 9.3 µg L−1,
Pb 8 µg L−1 25–400 µg L−1 [160]

Electrochemical µPADs with gold
nanoparticles

As (III)
As (V) 0.02 mg L−1 0.1–1.5 mg L−1 [164]
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Table 3. Cont.

Detection Principle Mechanism Target Analyte LOD Linear Range References

Quartz crystal
microbalance

Phosphate modified
dendrimers Cu (II) - 0.006–6.355 µg L−1 [172]

Quartz crystal
microbalance

Aptasensor with gold
nanoparticles Hg (II) 0.048 mg L−1 - [177]

Quartz crystal
microbalance

DNAzymes and gold
nanoparticles Pb (II) 0.013 mg L−1 0.013–0.062 mg L−1 [180]

Quartz crystal
microbalance

Phosphate modified
dendrimers Cu (II) 0.006 µg L−1 0.006–60 µg L−1 [173]

Quartz crystal
microbalance Magnesium porphyrazine Cd (II) 10 mg L−1 - [181]

At present, in situ monitoring for microfluidic detection systems is limited due to
various issues. Biofouling is a serious concern, especially for measurements in the marine
environment. Biofilms can drastically reduce the width of the channels, reducing the
flow rate or blocking it completely [182]. Additionally, biofilms can alter the composition
of metal compounds in water leading to unreliable measurements [183]. Another major
issue is the formation of air bubbles, which can affect the flow rate within the microfluidic
channels as well as interfering with the analytical signal via optical, chemical, or electro-
chemical effects. Irregular flow rate can also be caused by variation in pressure in pumping
systems [184]. Syringe pumps can cause oscillations in the flow due to the frictional forces
between syringe piston and the syringe wall [185]. The stability of materials is another
restriction that can shorten the operating lifetime of a detection system. In addition, once
the microfluidic detection system is deployed in the field, the electronics within the mi-
crofluidic detection system are subjected to oxidation reactions, which can in turn affect
the readings. Deployable microfluidic detection systems should be able to operate for long
periods of time. However, achieving this requirement without elevating the manufacturing
cost is a major challenge [186].

Many research groups have developed microfluidic detection systems with high
sensitivity. For example, Bell et al. developed a method for mercury determination with
LOD of 0.2 µg L−1 using fluorescence based microfluidic detection system [94]. Hong et al.
developed an electrochemical based method for cadmium and lead analysis, with LOD
of 0.2 and 0.5 µg L−1, respectively [147]. Exceptionally low detection limits have been
achieved using chemiluminescence based methods. Chen et al. described a method for
cobalt determination in water with LOD of 2 ng L−1 [123]. Som-aum et al. reported an
LOD of 3.12 × 10−4 ng L−1 for chromium using luminol [121].

Microfluidic detection methods that have been applied for water sample analysis with
various matrices have been reported by numerous research groups. In environmental water
sample analysis complex water matrices lead to interferences which affect the analysis
of target analyte and decrease the lifetime of the detection system. This issue can be
resolved by using highly selective molecules. Environmental samples also contain colloidal
particles which can affect optical and electrochemical based detection methods. This issue
could be mitigated by introducing filtration systems in microfluidic detection devices [46].
Numerous strategies for solving interference problems have been developed; Zhang et al.
used solid phase absorption to overcome interference [105], Chowdury et al. adjusted pH to
prevent iron interference on arsenic determination [79]; Punjunum et al. used ferricyanide
for copper interference elimination [164]. In general, however, more extensive research is
needed to assess the capability of microfluidic detection systems to produce reliable and
reproducible measurements in a wide range of complex environmental water matrices.

Despite very significant research efforts and the development of numerous microflu-
idics-based analytical systems, often with impressive analytical performance under lab-
oratory conditions, only a small number of microfluidic detection methods have been
developed into portable or autonomous detection devices. Current and future research
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must focus on transforming microfluidic detection systems into autonomous, fully inte-
grated detection devices that could be deployed in the field or used for portable, low cost,
point of use measurements. In this context, work such as that of Boehle et al. [187] and
Wu et al. [188] are encouraging, albeit not applied to heavy metal detection in the studies
cited here. Boehle et al. integrated paper-based colorimetric sensing with a Raspberry Pi
computing and camera system and a 3D-printed light box to yield a portable and low-cost
analytical device [187]. Wu et al. described a microfluidic detection platform incorporating
an integrated microfluidic mixing/reaction chip and a micro-spectrometer (with fluores-
cence mode) for wavelengths of 300–1100 nm. The platform was optimised for portability
and low cost [188].

Ideally, autonomous detection systems should be able to operate for long time periods
such as weeks, months, or longer. The supply of power is limited for autonomous in
situ microfluidic detection system operation in the field. This issue can be overcome
by availing of increasingly efficient battery technology, small-scale energy harvesting,
or reducing the energy consumption. Ultra-low power electronic and optoelectronic
components have already been developed and reported [189], but it is noticeable that
many of the analytically successful microfluidic systems described in this review rely on
off-chip components such as fluid control, detector, or data-processing elements; these
components may be too expensive or power-hungry to fulfil the needs of dispersed, low-
cost monitoring applications. Such systems may find applications as high throughput,
low cost-per-sample alternatives to the established instrumental techniques for laboratory
analysis of heavy metals. Numerous researchers have achieved good agreement between
microfluidic detection systems and laboratory-based methods such as AAS, GFAAS, ICP-
OES, and ICP-MS. Nevertheless, more extensive “real-world” validation of microfluidic
detection methods is needed for them to become competitive with analytically powerful
laboratory methods.

6. Conclusions

In recent years, microfluidic technology has undergone rapid developments which
have increased the feasibility of their application to water quality monitoring and to en-
vironmental monitoring in general. Numerous microfluidic detection devices based on
optical and electrochemical detection principles have been developed by various research
groups around the world. Many of these systems have achieved impressive analytical
performances and good correlation with “gold standard” laboratory-based detection meth-
ods. However, microfluidic analytical technology has not been established as a robust
and reliable approach to routine water monitoring applications, and the full potential
of microfluidic detection systems in the field of environmental monitoring has not yet
been achieved.

Relatively few microfluidic detection systems have been fully automated and trans-
formed into autonomous devices capable of operating in the field for long time periods.
Further improvements in wireless connectivity and widespread implementation of “In-
ternet of Things” technologies and infrastructure will be important to overcome certain
challenges associated with autonomous monitoring. Increased collaboration between sci-
entists from different fields is needed to allow for efficient microfluidic detection system
design. Scale-up from laboratory prototype to commercial scale production is still hin-
dered by high initial costs, but manufacturing of microfluidic components is becoming
increasingly accessible. Ongoing improvements in 3-D printing capabilities will improve
the manufacturing of microfluidic detection systems in the future, making the production
more cost effective and accessible to researchers with limited expertise in, or access to,
traditional fabrication techniques.

Significant analytical and practical barriers remain; the previous two decades have
demonstrated that the challenge of achieving the required analytical specifications over
long-term deployments in variable and chemically complex sample matrices featuring
significant particulate and bio-fouling potential is far from trivial. This is particularly the
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case for parameters such as heavy metals, which need to be measured at low concentrations.
Nevertheless, it can be reasonably expected that microfluidic detection systems will play
an important role in environmental monitoring for these and other parameters in the
near future, as well as potentially providing cost-effective alternatives to laboratory-based
detection methods.
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